Aplicaciones de la ley de Faraday

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Aplicaciones de la ley de Faraday"

Transcripción

1 Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Aplicaciones de la ley de Faraday Elaborado por: Jorge A. Pérez y Miguel A. Serrano Introducción Los transformadores de potencia han sido parte importante del crecimiento tecnológico, su principio de operación se basa en el trabajo realizado por Michael Faraday. Se estudiará su comportamiento de forma experimental en función de determinar parámetros básicos de los mismos. Esta experiencia se desarrolló basado en trabajos realizados en la clase FS-493 (Laboratorio Avanzado II) [3] Objetivos 1. Estudiar la relación entre campo magnético variable y f.e.m. inducida en una bobina. 2. Estudiar las aplicaciones de la Ley de Faraday en el principio de operación de un transformador de potencia. 3. Determinar la relación de transformación entre bobinas vinculadas por un núcleo ferromagnético. Marco Teórico Ley de Faraday La Ley de Inducción de Faraday establece que, la fuerza electromotriz (f.e.m) inducida en una espira conductora v, es proporcional a la variación temporal del flujo magnético Φ que atraviesa dicha espira. v = dφ (1) El signo negativo se debe a que dicha expresión debe cumplir también con la ley de Lenz para campos inducidos entre circuitos. Al estudiar un circuito compuesto de varias espiras conectadas una con otra, observamos que la f.e.m inducida depende también de la cantidad de espiras (N) usadas, quedando una expresión como la siguiente: ξ = N dφ (2) 1

2 Transformador Es un dispositivo electromagnético que permite variar el valor de voltaje de un circuito eléctrico. [2] Dichos dispositivos funcionan utilizando el principio de inducción de Faraday, estos inducen un voltaje en un devanado denominado secundario, a partir del campo variable generado al circular una corriente en otro devanado denominado primario. Considerénse dos bobinas, cada una con N 1 Figura 1: Devanados con los flujos Φ 11 y Φ 12 y N 2 espiras en su devanado respectivamente, como se observa en la Figura 1. Al considerar el flujo Φ 1 de la primera bobina, este tiene dos componentes, un flujo propio Φ 11 y un flujo que interactua con la segunda bobina Φ 12. Φ 1 = Φ 11 + Φ 12 (3) Φ 12 = Φ 2 (4) Al utilizar la ecuación (2) con lo mencionado anteriormente, obtenemos dos expresiones para la f.e.m en cada lado del circuito. ξ 1 = N 1 dφ 1 ξ 2 = N 2 dφ 12 Este análisis es complicado debido a que hay que considerar las distintas componentes de los flujos. Al utilizar un material ferromagnético para el núcleo de ambas bobinas podemos hacer la consideración siguiente: (5) (6) Φ 1 = Φ 2 = Φ (7) Φ 11 0 (8) Con esta simplificación podemos expresar (5) y (6) de la forma siguiente: dφ ξ 1 = N 1 dφ ξ 2 = N 2 Si dividimos (9) y (10) una con la otra, obtendremos la siguiente expresión. (9) (10) ξ 1 ξ 2 = N 1 N 2 (11) 2

3 Figura 2: Representación de un transformador con núcleo ferromagnético. A partir de (11) podemos analizar las variables por separado y obtener: Equipo y Materiales Generador de funciones Núcleo de material ferromagnético de forma rectangular Bobinas de cobre con distinta cantidad de vueltas Multímetros Cables de conexión ξ 1 = N 1 ξ 2 N 2 (12) 1 ξ 2 = ξ 1 N 2 N 1 (13) Montaje y Procedimiento Experimental Parte 1: Cálculo de n = N 1 /N 2 1. Monte el circuito como se muestra en la figura. 2. Gire la perilla de amplitud del generador de funciones para variar y registrar el valor de ξ 1 en intervalos de 1 volt, registrando el valor de ξ Anote los valores medidos de ξ 1 y ξ 2 en el Cuadro Anote los valores de N 1 y N 2 así como la incertidumbre instrumental para el voltaje. 1 Variar el valor de ξ 1 en el intervalo de 0-10 volts 3

4 FS-415 Electricidad y Magnetismo II UNAH Parte 2: Estudio de la Relaci on entre ξ2 y N1 1. Monte el circuito como se muestra en la figura, de tal forma que se pueda cambiar el embobinado secundario de manera sencilla 2. Gire la perilla de amplitud del generador de funciones para fijar el valor del voltaje de entrada (ξ1 ). Registre el valor de ξ2 y N1 en el Cuadro 2 3. Desconecte el circuito, reemplace la bobina primaria a una con valor distinto de N1. 4. Utilizando el mismo valor de voltaje para ξ1 y N2, registre el valor de voltaje de salida ξ2. 5. Repita el procedimiento para obtener un total de seis parejas de datos. Figura 3: Montaje de los enbobinados en el n ucleo. Figura 4: Montaje del circuito completo para las partes 1 y 2. 4

5 Registro de Datos ξ 1 (Volts) ξ 2 (Volts) N 1 = N 2 = V = Cuadro 1: Registro de Datos para la Parte 1 N 1 (Vueltas) ξ 2 (Volts) ξ 1 = N 2 = V = Cuadro 2: Registro de Datos para la Parte 2 Procesamiento de Datos Experimentales Parte 1: Cálculo de n = N 1 /N 2 1. Con los valores medidos de ξ 1 y ξ 2 del Cuadro 1, realice un ajuste de la forma y = mx + b, donde ξ 1 y y ξ 2 x y el valor n = N 1 /N 2 m. 2. Determine el valor de la razón n = N 1 /N 2 con su incertidumbre absoluta. n = n ± n 3. Realice la gráfica de la función de ajuste y la gráfica de puntos experimentales para mostrar el comportamiento de las variables. 4. Realice el cálculo del porcentaje de error ( %E) del valor experimental respecto al valor nominal de n. [2] 5

6 5. Calcule la incertidumbre porcentual de la medición experimental n %. Parte 2: Estudio de la Relación entre ξ 2 y N 1 1. A partir de los valores obtenidos en el Cuadro 2, realice un ajuste de la forma y = k 1 x Donde ξ 2 y, N 1 x y el producto ξ 1 N 2 k 2. Determine el valor de la constante k con su incertidumbre absoluta. 3. A partir del valor de k calculado, determine el valor de N 2 con su incertidumbre absoluta Calcule el porcentaje de error respecto al valor nominal de N Calcule la incertidumbre porcentual de N 2. Cuestionario 1. Utilizando el sistema mostrado en la Figura 2, deduzca la ecuación (11) utilizando el análisis energético. Considere que la potencia del sistema es constante Qué es flujo de dispersión de un trasnformador? 3. A que se debe que la aproximación mostrada en (7) sea adecuada? Respaldan esta suposición los resultados obtenidos experimentalmente? 4. Es adecuado el método para determinar la relación de transformación de un sistema como el utilizado? Referencias [1] Wangsness, Ronald K., Campos Electromagnéticos, Segunda Edición,Limusa-Noriega, [2] Sadiku, Matthew N. O. y Alexander, Charles K., Fundamentos Circuitos Eléctricos, Tercera Edición, McGraw-Hill, [3] Salgado, R.; Martínez, H. y López, E.. Ley de Faraday, Laboratorio Avanzado II, Escuela de Física, Universidad Nacional Autónoma de Honduras, Utilice propagación de errores. 3 Utilice P=VI 6

1. Estudiar la relación entre campo magnético variable y f.e.m. inducida en una bobina.

1. Estudiar la relación entre campo magnético variable y f.e.m. inducida en una bobina. UNIVERSIDAD NACIONAL AUTÓNOMA DE HONDURAS FACULTAD DE CIENCIAS ESCUELA DE FÍSICA FS-415 Electricidad y Magnetismo II Práctica 4: Aplicaciones de la Introducción Durante mucho tiempo se pensó que los fenomenos

Más detalles

Experimento de laboratorio No. 6 Estudio de la ley de Faraday en un transformador.

Experimento de laboratorio No. 6 Estudio de la ley de Faraday en un transformador. Experimento de laboratorio No. 6 Estudio de la ley de Faraday en un transformador. AUTOR(ES): Aurea D. Rodríguez Llerena, OBJETIVOS 1. Estudiar el fenómeno de inducción electromagnética en un transformador.

Más detalles

Laboratorio de Física II

Laboratorio de Física II Laboratorio de Física II Capitulo 12: Inducción electromagnética (funcionamiento de transformadores) Ley de Faraday Ley de Lenz Transformadores OBJETIVOS [12.1] Entender en que consiste el fenómeno de

Más detalles

Guía del docente. - 4º medio:

Guía del docente. - 4º medio: Guía del docente 1. Descripción curricular: - Nivel: 4º medio. - Subsector: Ciencias Físicas. - Unidad temática: Circuito de corriente variable. - Palabras claves: corriente eléctrica, bobinas, brújulas,

Más detalles

:: MARCO TEÓRICO [12.3] En la figura (12.1) se muestran dos bobinas B1 y B2 próximas entre si pertenecientes a circuitos diferentes.

:: MARCO TEÓRICO [12.3] En la figura (12.1) se muestran dos bobinas B1 y B2 próximas entre si pertenecientes a circuitos diferentes. INDUCCION ELECTROMAGNETICA Funcionamiento de Transformadores CAAPPÍ ÍTTUU LOO L 12 Ley de Faraday Ley de Lenz Transformadores :: OBJETIVOS [12.1] Entender en que consiste el fenómeno de la inducción electromagnética

Más detalles

d m φ dt ξ = Por otro lado, por definición, la fem es la integral del campo a lo largo de una trayectoria C, o trayectoria cerrada

d m φ dt ξ = Por otro lado, por definición, la fem es la integral del campo a lo largo de una trayectoria C, o trayectoria cerrada Tema: Inducción magnética. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Teoría Electromagnética. I. Objetivos. Comprender acerca de la relación del voltaje inducido en una bobina, en función

Más detalles

FENÓMENOS DE INDUCCIÓN ELECTROMAGNÉTICA LA LEY DE FARADAY

FENÓMENOS DE INDUCCIÓN ELECTROMAGNÉTICA LA LEY DE FARADAY 1. Objetivos Departamento de Física Laboratorio de Electricidad y Magnetismo FENÓMENOS DE INDUCCIÓN ELECTROMAGNÉTICA LA LEY DE FARADAY Observar el efecto producido al introducir un imán en una bobina.

Más detalles

Inducción electromagnética. M del Carmen Maldonado Susano

Inducción electromagnética. M del Carmen Maldonado Susano Inducción electromagnética M del Carmen Maldonado Susano Cuando las intensidades de corriente son del mismo sentido existen entre ellas fuerzas atractivas; cuando las intensidades de corriente son de sentido

Más detalles

1. MOTOR DE CORRIENTE CONTINUA Y DINAMO

1. MOTOR DE CORRIENTE CONTINUA Y DINAMO 1. MOTO DE COIENTE CONTINUA Y DINAMO 1.1. OBJETIVO El propósito de esta práctica es estudiar el comportamiento de un motor DC pequeño cuando opera directamente y en reversa como generador o dinamo. En

Más detalles

NOTA IMPORTANTE: El Centro Nacional de Metrología no es responsable del contenido de este documento. Para cualquier duda o aclaración favor de

NOTA IMPORTANTE: El Centro Nacional de Metrología no es responsable del contenido de este documento. Para cualquier duda o aclaración favor de Servicios Profesionales en Instrumentación, S.A. de C.V. Calibración de amperímetros de gancho utilizando bobinas multiplicadoras. Principios básicos. El campo magnético es el mecanismo fundamental por

Más detalles

1. Estudiar la FEM inducida en bobinas y la inductancia mutua. 2. Estudiar el cambio de la inductancia en una bobina al variar el núcleo laminado.

1. Estudiar la FEM inducida en bobinas y la inductancia mutua. 2. Estudiar el cambio de la inductancia en una bobina al variar el núcleo laminado. Laboratorio 6 Inducción E.M. y el Transformador 6.1 Objetivos 1. Estudiar la FEM inducida en bobinas y la inductancia mutua. 2. Estudiar el cambio de la inductancia en una bobina al variar el núcleo laminado.

Más detalles

INDUCCIÓN ELECTROMAGNÉTICA

INDUCCIÓN ELECTROMAGNÉTICA INDUCCIÓN ELECTROMAGNÉTICA OBJETIVOS: Estudio del fenómeno de autoinducción y de inducción mutua a partir del cáclulo de las siguientes magnitudes: 1. El coeficiente de autoinducción, L, de una bobina

Más detalles

APLICACIÓN DE LA LEY DE INDUCCIÓN DE FARADAY: EL TRANSFORMADOR TAREA DE PREPARACIÓN

APLICACIÓN DE LA LEY DE INDUCCIÓN DE FARADAY: EL TRANSFORMADOR TAREA DE PREPARACIÓN Andrés González 393 APLICACIÓN DE LA LEY DE INDUCCIÓN DE FARADAY: EL TRANSFORMADOR TAREA DE PREPARACIÓN 1. Por qué el núcleo del transformador es de hierro o acero? Podría ser de otro material? El núcleo

Más detalles

Electricidad y Magnetismo. Unidad 7. Inducción Electromagnética

Electricidad y Magnetismo. Unidad 7. Inducción Electromagnética INSTITUTO POLITECNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA QUÍNICA E INDUSTRIAS EXTRACTIVAS Electricidad y Magnetismo Unidad 7. Inducción Electromagnética INDUCCIÓN ELECTROMAGNÉTICA A principios de

Más detalles

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS NAVALES FÍSICA II. PRÁCTICAS DE LABORATORIO Electromagnetismo

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS NAVALES FÍSICA II. PRÁCTICAS DE LABORATORIO Electromagnetismo ESCUELA TÉCNICA SUPERIOR DE INGENIEROS NAVALES FÍSICA II PRÁCTICAS DE LABORATORIO Electromagnetismo ESCUELA TÉCNICA SUPERIOR DE INGENIEROS NAVALES PRÁCTICA 2 CAMPO MAGNÉTICO Y F.E.M. INDUCIDA Jesús GÓMEZ

Más detalles

DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Instrumentación Industrial Mecánica Laboratorio de Instrumentación Mecatrónica 1

DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Instrumentación Industrial Mecánica Laboratorio de Instrumentación Mecatrónica 1 1. Tema: Característica estática de un sensor de inductancia variable. 2. Objetivos: a. Conocer la operación de un dispositivo de inductancia variable. b. Determinación de la característica estática tensión

Más detalles

Práctica de Inducción electromagnética.

Práctica de Inducción electromagnética. Práctica Práctica de Inducción electromagnética. Luis Íñiguez de Onzoño Sanz 1. Introducción Teórica II. Materiales III 3. Descripción de la práctica IV 4. Procedimiento IV 5. Resultados V 6. Errores IX

Más detalles

Consiste en provocar una corriente eléctrica mediante un campo magnético variable.

Consiste en provocar una corriente eléctrica mediante un campo magnético variable. www.clasesalacarta.com 1 Inducción electromagnética Inducción Electromagnética Consiste en provocar una corriente eléctrica mediante un campo magnético variable. Flujo magnético ( m ) El flujo magnético

Más detalles

CENTRO DE CIENCIA BÁSICA ESCUELA DE INGENIERÍA Curso Electricidad y Magnetismo

CENTRO DE CIENCIA BÁSICA ESCUELA DE INGENIERÍA Curso Electricidad y Magnetismo 1 PRÁCTICA DE LABORATORIO: LEY DE INDUCCIÓN LECTROMAGNÉTICA (Ley de Faraday - Henry) 1. OBJETIVOS: Determinar la relación entre la magnitud de la fuerza electromotriz inducida (f.e.m) y las variables involucradas

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE HONDURAS FACULTAD DE CIENCIAS ESCUELA DE FÍSICA. Laboratorios Reales: Electricidad y Magnetismo II INTRODUCCIÓN

UNIVERSIDAD NACIONAL AUTÓNOMA DE HONDURAS FACULTAD DE CIENCIAS ESCUELA DE FÍSICA. Laboratorios Reales: Electricidad y Magnetismo II INTRODUCCIÓN UNIVERSIDAD NACIONAL AUTÓNOMA DE HONDURAS FACULTAD DE CIENCIAS ESCUELA DE FÍSICA Laboratorios Reales: Electricidad y Magnetismo II MAPEO DEL CAMPO MAGNETICO DE UN SOLENOIDE FINITO ELABORADO POR: ROBERTO

Más detalles

TEMA 5: Motores de Corriente Continua.

TEMA 5: Motores de Corriente Continua. Esquema: TEMA 5: Motores de Corriente Continua. TEMA 5: Motores de Corriente Continua....1 1.- Introducción...1 2.- Ley de Faraday...2 3.- Constitución de una Máquina Eléctrica...2 4.- Principio de un

Más detalles

LEY DE INDUCCIÓN DE FARADAY

LEY DE INDUCCIÓN DE FARADAY No 9 LABORATORIO DE ELECTROMAGNETISMO DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Estudiar y comprobar los principios de la inducción electromagnética

Más detalles

APUNTE: EL TRANSFORMADOR

APUNTE: EL TRANSFORMADOR APUNTE: EL TRANSFORMADOR Área de EET Página 1 de 6 Derechos Reservados Titular del Derecho: INACAP N de inscripción en el Registro de Propiedad Intelectual #. de fecha - -. INACAP 2002. Página 2 de 6 INDICE

Más detalles

LABORATORIO DE TRANSFORMADORES

LABORATORIO DE TRANSFORMADORES LABORATORIO DE TRANSFORMADORES EXPEUEW7 I. OBJETIVO Objetivo Establecer el procedimiento para determinar la polaridad de las terminales de los devanados, utilizando: Corriente Continua y Corriente Alterna.

Más detalles

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA A) CAMPO MAGNÉTICO El Campo Magnético es la perturbación que un imán o una corriente eléctrica producen en el espacio que los rodea. Esta perturbación del espacio se manifiesta en la fuerza magnética que

Más detalles

Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Teoría Electromagnética.

Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Teoría Electromagnética. Tema: Aplicaciones prácticas de circuitos magnéticos. I. Objetivos. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Teoría Electromagnética. Analizar la relación del número de vueltas en los

Más detalles

CENTRO DE CIENCIA BÁSICA ESCUELA DE INGENIERÍA Curso Electricidad y Magnetismo LEY DE INDUCCIÓN LECTROMAGNÉTICA (Ley de Faraday - Henry)

CENTRO DE CIENCIA BÁSICA ESCUELA DE INGENIERÍA Curso Electricidad y Magnetismo LEY DE INDUCCIÓN LECTROMAGNÉTICA (Ley de Faraday - Henry) 1 LEY DE INDUCCIÓN LECTROMAGNÉTICA (Ley de Faraday - Henry) 1. PROPOSITO: Observar y cuantificar la fuerza electromotriz inducida (femi) en una bobina localizada dentro de un campo magnético producido

Más detalles

Ley de inducción de Faraday

Ley de inducción de Faraday Ley de inducción de Faraday Galarza Jorge A., Sardelli Gastón, Scalise Guido, Valli Mauricio e-mail: jagal41@hotmail.com o mauriciolaplata@sinectis.com.ar e-mail: jagal41@hotmail.com o mauriciolaplata@sinectis.com.ar

Más detalles

2.1 Estudio de la inducción electromagnética.

2.1 Estudio de la inducción electromagnética. Página7 UNIDAD 2 Funcionamiento de la máquina de corriente continua como generador. 2.1 Estudio de la inducción electromagnética. La producción de energía eléctrica, bien sea por dinamos, bien por alternadores,

Más detalles

PRÁCTICA # 3 PRINCIPIOS DE ELECTROMAGNETISMO

PRÁCTICA # 3 PRINCIPIOS DE ELECTROMAGNETISMO PRÁCTICA # 3 PRINCIPIOS DE ELECTROMAGNETISMO OBJETIO 1.- El alumno comprenderá los factores que intervienen en la formación de un campo magnético en una estructura ferromagnética. INTRODUCCIÓN Recordemos

Más detalles

Electricidad Inducción electromagnética Inducción causada por un campo magnético variable

Electricidad Inducción electromagnética Inducción causada por un campo magnético variable P3.4.3.1-2 Electricidad Inducción electromagnética Inducción causada por un campo magnético variable Medición de la tensión de inducción en un lazo conductor con un campo magnético variable Descripción

Más detalles

Faraday tenía razón!! María Paula Coluccio y Patricia Picardo Laboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA 1999

Faraday tenía razón!! María Paula Coluccio y Patricia Picardo Laboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA 1999 Faraday tenía razón!! María Paula Coluccio y Patricia Picardo aboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA 1999 Resumen En el presente trabajo repetimos la experiencia que

Más detalles

UNIVERSIDAD DEL VALLE INGENIERIA ELECTRONICA APLICACIÓN DE LA LEY DE INDUCCIÓN DE FARADAY: EL TRANSFORMADOR INFORME DE LABORATORIO.

UNIVERSIDAD DEL VALLE INGENIERIA ELECTRONICA APLICACIÓN DE LA LEY DE INDUCCIÓN DE FARADAY: EL TRANSFORMADOR INFORME DE LABORATORIO. UNIVERSIDAD DEL VALLE INGENIERIA ELECTRONICA ALICACIÓN DE LA LEY DE INDUCCIÓN DE FARADAY: EL TRANSFORMADOR INFORME DE LABORATORIO Andrés González OBJETIVOS Comprobar experimentalmente la influencia de

Más detalles

5.- Interacción ente campos magnéticos y corrientes. Ley de Faraday-Henry o de inducción electromagnética

5.- Interacción ente campos magnéticos y corrientes. Ley de Faraday-Henry o de inducción electromagnética 5.- Interacción ente campos magnéticos y corrientes. Ley de Faraday-Henry o de inducción electromagnética Si el flujo de campo magnético que atraviesa una bobina es variable respecto al tiempo, se induce

Más detalles

Mapeo del Campo Magnético de un Solenoide Finito

Mapeo del Campo Magnético de un Solenoide Finito Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Mapeo del Campo Magnético de un Solenoide Finito Elaborado por: Roberto Ortiz Introducción Se tiene un Solenoide de N 1

Más detalles

Inducción electromagnética. 1. Flujo de campo magnético

Inducción electromagnética. 1. Flujo de campo magnético Inducción electromagnética 1. Flujo de campo magnético 2. Inducción electromagnética 2.1 Experiencia de Henry 2.2 Experiencias de Faraday 2.3 Ley de Faraday-Henry 2.4 Ley de Faraday- Lenz 3. Otros caso

Más detalles

UNIVERSIDAD DE COSTA RICA

UNIVERSIDAD DE COSTA RICA UNIVERSIDAD DE COSTA RICA IE-035 LABORATORIO DE MÁQUINAS ELÉCTRICAS I EXPERIMENTO 5 - GRUPO 0 PROFESOR: JUAN RAMON RODRÍGUEZ Transformador Monofásico. Relación de transformación y Circuito Equivalente.

Más detalles

LABORATORIO DE ELECTRICIDAD Y MAGNETISMO LEY DE OHM

LABORATORIO DE ELECTRICIDAD Y MAGNETISMO LEY DE OHM LABORATORIO DE ELECTRICIDAD Y MAGNETISMO LEY DE OHM OBJETIVO Estudiar empíricamente la relación existente entre el voltaje aplicado a un conductor y la corriente eléctrica que genera. EQUIPAMIENTO 1. Circuito

Más detalles

FS-415 Electricidad y Magnetismo II UNAH. Universidad Nacional Autónoma de Honduras. Facultad de Ciencias Escuela de Física.

FS-415 Electricidad y Magnetismo II UNAH. Universidad Nacional Autónoma de Honduras. Facultad de Ciencias Escuela de Física. Universidad Nacional Autónoma de Honduras Elaborado por: Ing. Francisco Solórzano Asesor: M.Sc. Maximino Suazo Facultad de Ciencias Escuela de Física Magnetostricción I. Objetivo 1. Analizar la respuesta

Más detalles

UNIVERSIDAD NACIONAL DE TRES DE FEBRERO GUIA DE EJERCICIOS: C A MPO MAGNETICO Y CIRCUITOS MAGNETICOS INGENIERIA DE SONIDO ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD NACIONAL DE TRES DE FEBRERO GUIA DE EJERCICIOS: C A MPO MAGNETICO Y CIRCUITOS MAGNETICOS INGENIERIA DE SONIDO ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD NACIONAL DE TRES DE FEBRERO ELECTRICIDAD Y MAGNETISMO GUIA DE EJERCICIOS: C A MPO MAGNETICO Y CIRCUITOS MAGNETICOS INGENIERIA DE SONIDO Titular: Ing. Alejandro Di Fonzo Jefe de Trabajos Prácticos:

Más detalles

SESION 8: PRINCIPIOS DE FUNCIONAMIENTO DE MAQUINAS DE CORRIENTE CONTINUA.

SESION 8: PRINCIPIOS DE FUNCIONAMIENTO DE MAQUINAS DE CORRIENTE CONTINUA. SESION 8: PRINCIPIOS DE FUNCIONAMIENTO DE MAQUINAS DE CORRIENTE CONTINUA. 1. INTRODUCCION Haciendo girar una espira en un campo magnético se produce una f.e.m. inducida en sus conductores. La tensión obtenida

Más detalles

Inducción n electromagnética. tica. Física Sexta edición. Capítulo 31 31

Inducción n electromagnética. tica. Física Sexta edición. Capítulo 31 31 Inducción n electromagnética tica Capítulo 31 31 Física Sexta edición Paul PaulE. E. Tippens Ley de Faraday Fem inducida por un conductor en movimiento Ley de Lenz El generador de ca El generador de cc

Más detalles

CAMPO MAGNÉTICO 3. FENÓMENOS DE INDUCCIÓN

CAMPO MAGNÉTICO 3. FENÓMENOS DE INDUCCIÓN CAMPO MAGNÉTICO 3. FENÓMENOS DE INDUCCIÓN RESUMEN 1. LEY DE FARADAY 2. LEY DE LENZ 3. INDUCTANCIA 4. ENERGÍA DEL CAMPO MAGNÉTICO 5. CIRCUITOS RL 6. OSCILACIONES. CIRCUITO LC 7. CORRIENTE ALTERNA. RESONANCIA

Más detalles

Experiencia P30: Inducción electromagnética Sensor de Voltaje

Experiencia P30: Inducción electromagnética Sensor de Voltaje Sensor de Voltaje Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Electromagnetismo P30 Induction.DS P41 Induction - Magnet P41_INDU.SWS Equipo necesario Cant. Equipo necesario Cant. Sensor

Más detalles

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo FUNDAMENTOS DE INGENIERÍA ELÉCTRICA José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo Tema 6: Inducción magnética PUNTOS OBJETO DE ESTUDIO 3

Más detalles

INFORME DE LABORATORIO DE ELECTROMAGNETISMO N 6 LEY DE INDUCCIÓN DE FARADAY

INFORME DE LABORATORIO DE ELECTROMAGNETISMO N 6 LEY DE INDUCCIÓN DE FARADAY INFORME DE LABORATORIO DE ELECTROMAGNETISMO N 6 LEY DE INDUCCIÓN DE FARADAY CRISTIAN DANILO CERA MENESES RUSVEL ENRIQUE PASSOS LEYVA SERGIO ANDRES RIOBÓ PÉREZ UNIVERSIDAD POPULAR DEL CESAR FACULTAD DE

Más detalles

MAQUINAS ELECTRICAS MODULO DE AUTOAPRENDIZAJE V

MAQUINAS ELECTRICAS MODULO DE AUTOAPRENDIZAJE V SESION 1: INTRODUCCION DE A LOS PRINCIPIOS DE LAS MAQUINAS ELECTRICAS 1. DEFINICION DE MAQUINAS ELECTRICAS Las Máquinas Eléctrica son dispositivos empleados en la conversión de la energía mecánica a energía

Más detalles

Unidad 5. Relación entre electricidad y magnetismo

Unidad 5. Relación entre electricidad y magnetismo Unidad 5 Relación entre electricidad y magnetismo ELEMENTOS DE FíSICA 133 5.1. Fenómeno de inducción electromagnética Existe relación entre los fenómenos eléctricos y magnéticos, ya que las corrientes

Más detalles

Transformador monofásico (Guía 39)

Transformador monofásico (Guía 39) Universidad de Costa Rica Facultad de Ingeniería Escuela de Ingeniería Eléctrica IE-0303 Laboratorio de Electrotecnia I Transformador monofásico (Guía 39) Estudiantes: Estefany Camacho Arias B31293 Francisco

Más detalles

RELACIONES BÁSICAS LEY DE FARADAY CARACTERÍSTICAS DEL NUCLEO CARACTERÍSTICAS DE LOS TERMINALES LEY DE AMPERE

RELACIONES BÁSICAS LEY DE FARADAY CARACTERÍSTICAS DEL NUCLEO CARACTERÍSTICAS DE LOS TERMINALES LEY DE AMPERE MAGNETISMO RELACIONES BÁSICAS LEY DE FARADAY CARACTERÍSTICAS DE LOS TERMINALES CARACTERÍSTICAS DEL NUCLEO LEY DE AMPERE MAGNITUDES MAGNÉTICAS MAGNITUDES ELÉCTRICAS Longitud l Campo magnético H Longitud

Más detalles

ELECTROMAGNETISMO ELECTROIMANES.

ELECTROMAGNETISMO ELECTROIMANES. ELECTROMAGNETISMO El electromagnetismo hace referencia a la relación existente entre electricidad y magnetismo. Esta relación fue descubierta por el físico danés Christian Ørsted, cuando observó que la

Más detalles

TEMA 7. Máquinas rotativas de corriente continua. Principio y descripción CONSTITUCIÓN DE UNA MÁQUINA DE CORRIENTE CONTINUA.

TEMA 7. Máquinas rotativas de corriente continua. Principio y descripción CONSTITUCIÓN DE UNA MÁQUINA DE CORRIENTE CONTINUA. TEMA 7. Máquinas rotativas de corriente continua. Principio y descripción. CONTENIDO: 7.1.- Constitución de una máquina de corriente continua. 7.2.- Principio de funcionamiento. 7.3.- Tipos de excitación.

Más detalles

Laboratorio de Teoría Electromagnética II Practicas Transformadores

Laboratorio de Teoría Electromagnética II Practicas Transformadores Transformadores Práctica No. 5 Objetivos: Que el alumno conozca el principio de operación de un transformador monofásico Introducción: Cuando hay inducción mutua entre dos bobinas o devanados, entonces

Más detalles

x x x x x x n= número de espiras por unidad de longitud r r enc nli El número de espiras en el tramo L es nl N= número total de espiras

x x x x x x n= número de espiras por unidad de longitud r r enc nli El número de espiras en el tramo L es nl N= número total de espiras c d x x x x x x x b a n número de espiras por unidad de longitud L r r b r r c r r d r r a r r b r r dl µ 0I dl + dl + dl + dl dl L a b c d a enc I enc nli El número de espiras en el tramo L es nl L µ

Más detalles

MÁQUINAS DE CORRIENTE CONTÍNUA. LA MÁQUINA LINEAL.

MÁQUINAS DE CORRIENTE CONTÍNUA. LA MÁQUINA LINEAL. MÁQUINAS DE CORRIENTE CONTÍNUA. LA MÁQUINA LINEAL. Fuerza sobre el conductor. r r r df = IΛ B dl F = I. B.L Tensión inducida en el conductor. dφ dφ e =, pero dados los sentidos normales se cumple que :

Más detalles

Unidad 7: Motores eléctricos de corriente continua I. Los motores eléctricos se pueden clasificar según la corriente empleada en:

Unidad 7: Motores eléctricos de corriente continua I. Los motores eléctricos se pueden clasificar según la corriente empleada en: INTRODUCCIÓN Los motores eléctricos se pueden clasificar según la corriente empleada en: PARTES DE UN MOTOR ELÉCTRICO Hemos visto que el generador es una máquina reversible. Es decir, puede actuar también

Más detalles

TEMA 3: CAMPO MAGNÉTICO

TEMA 3: CAMPO MAGNÉTICO 3.2 Campo magnético en medios materiales Campo magnético: creado por corrientes eléctricas Espiras: corrientes macroscópicas I Campo E m, sólo disminuye E 0 Barra magnetita: corrientes microscópicas I

Más detalles

Práctica 4: Transformador trifásico. Medir la resistencia de los devanados de un transformador trifásico.

Práctica 4: Transformador trifásico. Medir la resistencia de los devanados de un transformador trifásico. IEE 1. Objetivos Clave: 1131073 Área de Ingeniería Energética y Electromagnética 2 Prof. Dr. Irvin López García e-mail: irvinlopez@yahoo.com Práctica 4: Transformador trifásico Medir la resistencia de

Más detalles

PROGRAMA INSTRUCCIONAL MAQUINAS ELÉCTRICAS I

PROGRAMA INSTRUCCIONAL MAQUINAS ELÉCTRICAS I UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA ESCUELA DE ELÉCTRICA PROGRAMA INSTRUCCIONAL MAQUINAS ELÉCTRICAS I CÓDIGO ASIGNADO SEMESTRE U. C DENSIDAD HORARIA H.T H.P/H.L H.A

Más detalles

Inducción electromagnética

Inducción electromagnética Fenómeno consistente en provocar o inducir una corriente eléctrica mediante un campo magnético variable. Experiencias de Faraday Una bobina conectada a una batería, otra bobina conectada a un galvanómetro.

Más detalles

GUÍA 6: CIRCUITOS MAGNÉTICOS Electricidad y Magnetismo

GUÍA 6: CIRCUITOS MAGNÉTICOS Electricidad y Magnetismo GUÍA 6: CIRCUITOS MAGNÉTICOS Primer Cuatrimestre 2013 Docentes: Dr. Alejandro Gronoskis Lic. María Inés Auliel Andrés Sabater Universidad Nacional de Tres de febrero Depto de Ingeniería Universidad de

Más detalles

EXPERIMENTO DE LABORATORIO No 1 EL TRANSFORMADOR MONOFASICO. Página 1 de 6

EXPERIMENTO DE LABORATORIO No 1 EL TRANSFORMADOR MONOFASICO. Página 1 de 6 EXPERIMENTO DE LABORATORIO No 1 EL TRANSFORMADOR MONOFASICO Página 1 de 6 OBJETIVOS 1. Conocer las relaciones de voltaje y corriente de un transformador. 2. Estudiar las corrientes de excitación, la capacidad

Más detalles

Campo Magnético en un alambre recto.

Campo Magnético en un alambre recto. Campo Magnético en un alambre recto. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se hizo pasar

Más detalles

CORRIENTE INDUCIDA EN UN SOLENOIDE. EL TRANSFORMADOR.

CORRIENTE INDUCIDA EN UN SOLENOIDE. EL TRANSFORMADOR. eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA

Más detalles

Inductancia. La inductancia es la capacidad de. magnético, como sucede con un capacitor en un campo eléctrico. Bobina de 1500 vueltas y pila de 6 [V]

Inductancia. La inductancia es la capacidad de. magnético, como sucede con un capacitor en un campo eléctrico. Bobina de 1500 vueltas y pila de 6 [V] Inductancia La inductancia es la capacidad de almacenar energía debido a un campo magnético, como sucede con un capacitor en un campo eléctrico. Bobina de 500 vueltas y pila de 6 [V] Inductancia La inductancia

Más detalles

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 10 EL CAMPO MAGNETICO DEFINICIÓN DEL VECTOR INDUCCIÓN MAGNÉTICA Y DEL CAMPO MAGNÉTICO.

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 10 EL CAMPO MAGNETICO DEFINICIÓN DEL VECTOR INDUCCIÓN MAGNÉTICA Y DEL CAMPO MAGNÉTICO. APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 10 EL CAMPO MAGNETICO DEFINICIÓN DEL VECTOR INDUCCIÓN MAGNÉTICA Y DEL CAMPO MAGNÉTICO. Todos hemos observado como un imán atrae objetos de

Más detalles

INDUCCIÓN ELECTROMAGNÉTICA

INDUCCIÓN ELECTROMAGNÉTICA INDUCCIÓN ELECTROMAGNÉTICA 1. Inducción electromagnética. 2. Leyes. 3. Transformadores. 4. Magnitudes de la corriente eléctrica. 5. Síntesis electromagnética. Física 2º bachillerato Inducción electromagnética

Más detalles

Inducción Electromagnética

Inducción Electromagnética Inducción Electromagnética Área Física Resultados de aprendizaje Calcular diferentes magnitudes físicas en circuitos sujetos a inducción magnética. Contenidos 1. Introducción teórica. 2. Ejercicios. Debo

Más detalles

3. TRANSFORMADORES. Su misión es aumentar o reducir el voltaje de la corriente manteniendo la potencia. n 2 V 1. n 1 V 2

3. TRANSFORMADORES. Su misión es aumentar o reducir el voltaje de la corriente manteniendo la potencia. n 2 V 1. n 1 V 2 3. TRANSFORMADORES Un transformador son dos arrollamientos (bobina) de hilo conductor, magnéticamente acoplados a través de un núcleo de hierro común (dulce). Un arrollamiento (primario) está unido a una

Más detalles

PROGRAMA INSTRUCCIONAL MAQUINAS ELECTRICAS I

PROGRAMA INSTRUCCIONAL MAQUINAS ELECTRICAS I UNIVERSIDAD FERMIN TORO VICE-RECTORADO ACADEMICO FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA ELECTRICA PROGRAMA AL MAQUINAS ELECTRICAS I CÓDIGO ASIGNADO SEMESTRE U.C DENSIDAD HORARIA H.T H.P/H.L H.A H.V

Más detalles

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com INDUCCIÓN ELECTROMAGNÉTICA 1- a) Explique en qué consiste el fenómeno de inducción electromagnética y escriba la ley de Lenz-Faraday. b) Una espira, contenida en el plano horizontal XY y moviéndose en

Más detalles

PRUEBA DE VACIO Y CORTO CIRCUITO

PRUEBA DE VACIO Y CORTO CIRCUITO I. OBJETIVOS: PRUEBA DE VACIO Y CORTO CIRCUITO Determinar los parámetros del circuito equivalente para la experiencia en vacio de un transformador monofásico. Determinar si el valor de las perdidas en

Más detalles

Ud. 4 Magnetismo y electromagnetismo. Índice del libro

Ud. 4 Magnetismo y electromagnetismo. Índice del libro Ud. 4 Magnetismo y electromagnetismo Índice del libro Ud. 4 Magnetismo y electromagnetismo 1. Magnetismo 1.1. Propiedades de los imanes Continuación 1.2 Líneas de fuerza y campo magnético 1.3. Clasificación

Más detalles

Interacción electromagnética

Interacción electromagnética Unidad 6 Interacción electromagnética chenalc@gmail.com Fenómeno consistente en provocar o inducir una corriente eléctrica mediante un campo magnético variable. Experiencias de Faraday Una bobina conectada

Más detalles

Experiencia P49: Transformador Sensor de voltaje, salida de potencia

Experiencia P49: Transformador Sensor de voltaje, salida de potencia Sensor de voltaje, salida de potencia Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Electricidad P49 Transformer.DS ( vea al final experiencia) ( vea al final experiencia) Equipo necesario

Más detalles

Tema 3. Máquinas Eléctricas. Ingeniería Eléctrica y Electrónica

Tema 3. Máquinas Eléctricas. Ingeniería Eléctrica y Electrónica 1 Tema 3. Máquinas Eléctricas 2 Máquinas eléctricas. Definición, tipos. Índice El transformador El motor El generador 3 Máquina Eléctrica: Máquinas que realizan la conversión de energía de una forma u

Más detalles

UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE CIENCIAS Y TECNOLOGÍA DIRECCIÓN DE PROGRAMA INGENIERIA DE PRODUCCIÓN

UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE CIENCIAS Y TECNOLOGÍA DIRECCIÓN DE PROGRAMA INGENIERIA DE PRODUCCIÓN UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE CIENCIAS Y TECNOLOGÍA DIRECCIÓN DE PROGRAMA INGENIERIA DE PRODUCCIÓN PROGRAMA DE LA ASIGNATURA PROGRAMA: Ingeniería de Producción DEPARTAMENTO:

Más detalles

MAQUINAS ELECTRICAS MODULO DE AUTOAPRENDIZAJE V

MAQUINAS ELECTRICAS MODULO DE AUTOAPRENDIZAJE V 1. GENERALIDADES SESION 3: EL AUTOTRANSFORMADOR REAL Un autotransformador, no es otra cosa que un transformador normal conectado con sus arrollamientos(bobinas) primario y secundario en serie, donde las

Más detalles

SOLUCIONARIO GUÍAS ELECTIVO

SOLUCIONARIO GUÍAS ELECTIVO SOLUCIONARIO GUÍAS ELECTIVO Electricidad IV: campo magnético, fuerza magnética SGUICEL013FS11-A16V1 Solucionario guía Electricidad IV: campo magnético, fuerza magnética Ítem Alternativa Habilidad 1 E Aplicación

Más detalles

No, ya que existen perdidas, pudiendo hacer tal conexionado en un transformador ideal.

No, ya que existen perdidas, pudiendo hacer tal conexionado en un transformador ideal. 1. Un transformador de tensión es reversible. Si se toman dos transformadores idénticos de 230/12 V y si conectan los dos secundarios entre si y uno de los primarios se conecta a una toma de tensión, En

Más detalles

Laboratorio de Técnicas Experimentales II - 2º Física Laboratorio L1 - "Osciloscopio"

Laboratorio de Técnicas Experimentales II - 2º Física Laboratorio L1 - Osciloscopio Laboratorio de Técnicas Experimentales II - 2º Física Laboratorio L1 - "Osciloscopio" Práctica L1-2 - Estudio de un circuito : estado de carga de un condensador e tegración de señales - Inducción electromagnética

Más detalles

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN MEDIA SUPERIOR

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN MEDIA SUPERIOR 1. REPASO NO. 1 FÍSICA IV LEY DE COULOMB Y CAMPO ELÉCTRICO 1. Una partícula alfa consiste en dos protones (qe = 1.6 x10-19 C) y dos neutrones (sin carga). Cuál es la fuerza de repulsión entre dos partículas

Más detalles

EVALUACIÓN. Nombre del alumno (a): Escuela: Grupo: 1. Describe las tres formas de electrizar un cuerpo y da un ejemplo de cada una de ellas.

EVALUACIÓN. Nombre del alumno (a): Escuela: Grupo: 1. Describe las tres formas de electrizar un cuerpo y da un ejemplo de cada una de ellas. EVALUACIÓN Por: Yuri Posadas Velázquez Nombre del alumno (a): Escuela: Grupo: PREGUNTAS Contesta lo siguiente y haz lo que se pide. 1. Describe las tres formas de electrizar un cuerpo y da un ejemplo de

Más detalles

Física. fisica.ips.edu.ar

Física. fisica.ips.edu.ar Inducción Electromagnética 4º Año Cód- 7406-16 fisica.ips.edu.ar www.ips.edu.ar I g n a c i o T a b a r e s J u a n F a r i n a Dpto. de Físi ca Inducción Electromagnética Capítulo 4 Inducción electromagnética

Más detalles

LABORATORIO DE ELECTROMAGNETISMO Nº6 LEY DE INDUCCIÓN DE FARADAY

LABORATORIO DE ELECTROMAGNETISMO Nº6 LEY DE INDUCCIÓN DE FARADAY LABORATORIO DE ELECTROMAGNETISMO Nº6 LEY DE INDUCCIÓN DE FARADAY ACOSTA TORRES JESID YESNEIDER CALDERON USECHE RICARDO GALIANO GUTIERREZ LUZ ESTHER JAIMES LEAL LUIS ANGEL PAVA MORALES HECTOR ANTONIO UNIVERSIDAD

Más detalles

Inducción electromagnética y el transformador

Inducción electromagnética y el transformador DEMO 33 Inducción electromagnética y el transformador Autor/a de la ficha Palabras clave Objetivo Material Jose L. Cruz y Domingo Martínez Inducción magnética 1.- Observar fenómenos de inducción mediante

Más detalles

EPO 11 ESCUELA PREPARATORIA OFICIAL NÚM. 11

EPO 11 ESCUELA PREPARATORIA OFICIAL NÚM. 11 Resuelve los siguientes problemas sobre los temas vistos en clase. En una placa circular de 5cm de radio existe una densidad de flujo magnético de 4 T. Calcula el flujo magnético, en webers y maxwell,

Más detalles

INDICE Capitulo 1. El concepto del circuito magnético Capitulo 2. Excitación de estructuras ferromagnéticas con corriente directa

INDICE Capitulo 1. El concepto del circuito magnético Capitulo 2. Excitación de estructuras ferromagnéticas con corriente directa INDICE Capitulo 1. El concepto del circuito magnético 1-1. introducción 1 1-2. algunas leyes básicas de electrostática 3 1-3. algunas leyes básicas de magnetostática 8 1-4. otras conclusiones útiles en

Más detalles

Slide 1 / 51. Inducción Electromagnética y La Ley de Faraday

Slide 1 / 51. Inducción Electromagnética y La Ley de Faraday Slide 1 / 51 Inducción Electromagnética y La Ley de Faraday Slide 2 / 51 Inducción electromagnética y Ley de Faraday FEM inducida Ley de inducción de Faraday Ley de Lenz FEM inducida a un conductor en

Más detalles

FÍSICA. 2º BACHILLERATO. BLOQUE III: ELECTROMAGNETISMO Examen 1

FÍSICA. 2º BACHILLERATO. BLOQUE III: ELECTROMAGNETISMO Examen 1 Examen 1 1. Diga si es CIERTO o FALSO y razone la respuesta: " Siempre que se produce una variación de la intensidad que circula por un circuito aparece una fuerza electromotriz inducida en ese circuito."

Más detalles

MÁQUINAS ELÉCTRICAS ROTATIVAS: MOTORES DE CC

MÁQUINAS ELÉCTRICAS ROTATIVAS: MOTORES DE CC MÁQUINAS ELÉCTRICAS ROTATIVAS: MOTORES DE CC 1.- Concepto y principal clasificación de las máquinas eléctricas Una máquina eléctrica es un dispositivo capaz de generar, aprovechar o transformar la energía

Más detalles

PRÁCTICA NÚMERO 10 LEY DE INDUCCIÓN DE FARADAY

PRÁCTICA NÚMERO 10 LEY DE INDUCCIÓN DE FARADAY PRÁCTICA NÚMERO 10 LEY DE INDUCCIÓN DE FARADAY I. Objetivo. Estudiar la ley de inducción de Faraday. II. Material. 1. Una bobina de 400 vueltas y otra de 800 vueltas. 2. Un transformador de 6.3 Volts y

Más detalles

Transformada de Laplace Descripción de un transformador

Transformada de Laplace Descripción de un transformador Transformada de Laplace Descripción de un transformador Néstor Jorge Dietrich Estudiante de Ingeniería en Computación Universidad Nacional del Sur, Avda. Alem 1253, B8000CPB Bahía Blanca, Argentina nestordietrich@gmail.com

Más detalles

- Comprobar experimentalmente, las relaciones de transformación de impedancia, voltaje y corriente de un transformador ideal.

- Comprobar experimentalmente, las relaciones de transformación de impedancia, voltaje y corriente de un transformador ideal. 1. Objetivos -Proponer, simular, calcular y reproducir para el análisis, la topología de diversos circuitos acoplados magnéticamente (al menos 6). Dos con acople en aire, dos con núcleo abierto y dos con

Más detalles

Unidad 12. Circuitos eléctricos de corriente continua

Unidad 12. Circuitos eléctricos de corriente continua Unidad 12. Circuitos eléctricos de corriente continua 1. El circuito eléctrico 2. Magnitudes eléctricas 3. Elementos de un circuito 4. Resolución de problemas complejos 5. Distribución de la energía eléctrica

Más detalles

INDUCCIÓN ELECTROMAGNÉTICA

INDUCCIÓN ELECTROMAGNÉTICA PRÁCTICA DE LABORATORIO II-14 INDUCCIÓN ELECTROMAGNÉTICA OBJETIVOS Estudiar el fenómeno de inducción electromagnética. Medir campos magnéticos mediante una bobina de exploración. Estudiar la variación

Más detalles

CAMPO MAGNÉTICO SOLENOIDE

CAMPO MAGNÉTICO SOLENOIDE No 7 LABORATORIO DE ELECTROMAGNETISMO MEDICIÓN DEL CAMPO MAGNÉTICO EN UN SOLENOIDE DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Medir el campo magnético

Más detalles

Parte II. Transformador Monofásico

Parte II. Transformador Monofásico Parte II Transformador Monofásico 1 Capítulo 8 Transformador Monofásico Ideal Supongamos un arreglo como en el da la figura 8.1(a), en el cual en una trayectoria cerrada de sección S y longitud L de material

Más detalles

Tema Fuerza electromotriz inducida

Tema Fuerza electromotriz inducida Tema 21.11 Fuerza electromotriz inducida 1 Orígenes de la Fuerza electromotriz inducida Hemos visto que cuando circula una corriente eléctrica por un conductor se genera un campo magnético (solenoide,

Más detalles