Práctica de Inducción electromagnética.
|
|
|
- Miguel Andrés Flores Botella
- hace 9 años
- Vistas:
Transcripción
1 Práctica Práctica de Inducción electromagnética. Luis Íñiguez de Onzoño Sanz
2 1. Introducción Teórica II. Materiales III 3. Descripción de la práctica IV 4. Procedimiento IV 5. Resultados V 6. Errores IX 7. Comentarios X 8. Conclusiones X Práctica Práctica de Inducción electromagnética. I
3 Introducción Teórica: En un principio, el magnetismo se estudio como la característica de ciertos materiales de atracción entre ellos u otros distintos de similares características y no fue hasta 180 cuando Hans Christian Ørsted descubrió que el paso de una corriente eléctrica a través de un conductor producía un campo magnético a su alrededor surgiendo del mismo el electromagnetismo, rama de la física que estudia los fenómenos eléctricos y magnéticos asentada por Faraday ( ) y complementada por Maxwell ( ). Cuando una corriente circula por un solenoide esta produce en su interior un campo magnético según la siguiente expresión. B= 0 N l Según la primera ecuación de Maxwell cuando un solenoide es atravesado por un campo magnético se crea un flujo magnético por espira de valor correspondiente al de la siguiente fórmula. espira = S B d s= B S= B S (producto del campo por la sección del solenoide) En esta situación, si introducimos dentro del solenoide en cuestión otro de N' espiras, el flujo equivale a: =N ' espira = N ' B S ' Se puede apreciar que al variar la intensidad de la corriente que circula por el primer solenoide el campo magnético por el producido varía y por tanto el flujo magnético también lo hará y de acuerdo con la ley de Faraday se induce una fuerza electromotriz que tiende a oponerse a la variación del flujo magnético a través de circuito, por tanto obtenemos una f.e.m. instantánea inducida en el solenoide interior debido al campo magnético producido por el exterior de valor: E i = N d PHY dt I = N ' S ' db dt = 0 N ' S ' N l Que sabiendo que alimentamos el circuito con una intensidad senoidal de amplitud I sub 0 y frecuencia n obtenemos una f.e.m. dl dt E i = 0 N ' S ' N l I 0 n sin t A nosotros nos interesa la f.e.m. máxima inducida, que es cuando la función seno es igual a la unidad así como que nos interesa el valor eficaz puesto que es el valor que recogen los multímetros dando como expresión final: E= 0 N ' S ' N l I n En ella se aprecia que el valor eficaz de la f.e.m. inducida depende de la intensidad eficaz, de la frecuencia y del número de espiras y superficie transversal del solenoide secundario. II
4 Materiales Solenoide El solenoide es un alambre aislado enrollado en forma de hélice por el que cuando circula una corriente eléctrica se produce un campo magnético en su interior. El solenoide que usamos en la práctica es de una longitud de 0,75 m con un diámetro de 0,079 m. Sus características técnicas son: 485 espiras/m un coeficiente de autoinducción de 1 mh con una intensidad máxima permitida de 8 amperios. También usaremos otros solenoides de menor tamaño, en concreto: espiras, 41 mm de diámetro y 160 mm de longitud.. 00 espiras, 41 mm de diámetro y 160 mm de longitud espiras, 41 mm de diámetro y 160 mm de longitud espiras, 6 mm de diámetro y 160 mm de longitud espiras, 33 mm de diámetro y 160 mm de longitud. Amperimetro Es un instrumento que sirve para medir la intensidad de corriente que está circulando en un circuito eléctrico. En este se pueden regular la escala para adecuarla a nuestro experimento en el que hemos usado una intensidad variable entre 0 y 0,06 amperios. Voltimetro Este aparato sirve para medir el voltaje de un circuito, la mayor parte de ellos son llamados multímetros debido a su capacidad de poder medir distintas magnitudes. Así mismo permite cambiar la escala de medición. III
5 Generador de funciones Este apartado sirve para hacer una corriente alterna en la que podremos variar tanto la frecuencia como la intensidad, variables necesarias para la consecución de nuestra experiencia. Este aparato, al igual que la fuente de intensidad permite realizar un ajuste muy fino de cada uno de sus parámetros gracias a sus ruedas de selección, una de rápido desplazamiento y otra para el ajuste detallado. Descripción de la práctica Esta práctica tiene como objetivo comprobar experimentalmente la variación de la fuerza electromotriz inducida en función de la amplitud de la señal, de la frecuencia del campo magnético, el número de espiras de la bobina secundaria y de la sección recta de la bobina de inducción. Asi mismo debemos comparar los datos obtenidos experimentalmente con los obtenidos teóricamente representando los resultados en gráficas para una correcta visualización. Procedimiento Solenoide primario y secundario Generador de funciones Amperímetro Voltímetro El montaje a realizar consta de dos circuitos separados físicamente. Por una parte esta el circuito primario que está formado por el solenoide principal, un generador de corriente alterna y un amperímetro. El circuito secundario está formado por una bobina de menor tamaño, alojada en el interior del solenoide mayor, así como de un voltímetro gracias al cual medimos la f.e.m. inducida. IV
6 Resultados Sabiendo E= 0 N l N ' S ' I n 1. Variación de la f.e.m. frente a la variación de la intensidad. Fijamos una frecuencia (n) constante de Hz, con una bobina secundaria de 300 espiras, longitud 0,16 m y un diámetro de 0,041 m mientras variamos la intensidad. E= ,16 0,041 I I (ma) Experimental 0 0, ,967 9, 0 51,933 50, ,900 7, ,866 9, , , , ,6 Variación de la f.e.m. frente a la variación de la intensidad , , ,000 90,000 0,000 10,000 0, I (ma) Experimental Por tanto, la ecuación de la recta según la teoría expuesta sería: E mv = ,16 0, I ma =, I ma V
7 . Variación de la f.e.m. frente a la variación de la frecuencia del campo magnético. Fijamos una intensidad (I) constante de 30 ma, con una bobina secundaria de 300 espiras, longitud 0,16 m y un diámetro de 0,041 m mientras variamos la frecuencia. E= ,16 0, n n (khz) Experimental ,8 4 14,56 8,6 3 1,84 13,3 4 9,11 18, 5 36,4 4,5 6 43,68 31 Variación de la f.e.m. frente a la variación de la frecuencia del campo mangnético Experimental 0 0 0,5 1 1,5,5 3 3,5 4 4,5 5 5,5 6 n (khz) Asi mismo se puede concluir que la ecuación de esta recta siguiendo la teoría es: E mv = ,16 0, n khz =7,8034 n khz VI
8 3. Variación de la f.e.m. frente al número de espiras. Fijamos una frecuencia (n) constante de Hz, con una intensidad de 30 ma, longitud 0,16 m y un diámetro de 0,041 m mientras variamos el número de espiras. E= n 0,16 0, I (ma) Experimental 100 5,967 18, 00 51,933 44, ,900 71,5 Variación de la f.e.m. frente al número de espiras 75,000 65,000 55,000 45,000 35,000 5,000 0,000 15, Número de espiras Experimental Siguiendo la teoría vemos que la ecuación de la recta es: E mv = ,16 0, n espiras =0,5966 n espiras VII
9 4. Variación de la f.e.m. frente a sección recta de la bobina. Fijamos una frecuencia (n) constante de Hz, con una intensidad de 30 ma, 300 espiras y un diámetro de 0,041 m mientras variamos la longitud. E= ,16 l ' Diametro (m) Experimental 0,06 0,885 4, 0,033 33,644 43, 0,041 77,900 71,5 Variación de la f.e.m. frente a sección recta de la bobina 75,000 65,000 55,000 45,000 35,000 5,000 0,000 0,06 0,07 0,08 0,09 0,030 0,031 0,03 0,033 0,034 0,035 0,036 0,037 0,038 0,039 0,040 0,041 Diametro (m) Siendo la ecuación de la recta: Experimental E mv = , l ' mm =46,3413 l ' mm VIII
10 Errores variación de la intensidad , , ,000 90,000 0,000 10,000 0, I (ma) Experimental frecuencia del campo mangnético n (khz) Experimental 75,000 65,000 55,000 45,000 35,000 5,000 0,000 15,000 número de espiras Número de espiras Experimental 75,000 65,000 55,000 45,000 35,000 5,000 0,000 sección recta de la bobina 0,0 5 0,0 8 0,03 0 0,03 3 0,03 5 Diametro (m) 0,03 8 0,04 0 0,04 3 Experimental Con las gráficas a las vista se puede apreciar el error de forma fácil e ilustrativa. En todos los casos excepto en el último las medidas tomadas experimentalmente son menores que las calculadas teóricamente debido esto a la influencia de otros campos externos al experimento. También se puede comprobar una cierta tendencia de que cuantos mayores sean los datos que estemos midiendo, mayor es el error producido, hecho que se ve fácilmente en la gráfica que relaciona la fuerza electromotriz inducida y la frecuencia de la corriente. En el caso donde más se diferencian las medidas es en el que se estudia la relación entre el número de espiras y la f.e.m. inducida aunque apreciando la diferencia constante entre los datos teóricos y experimentales se puede presuponer que tuvo que existir algún problema de medición. IX
11 Comentarios A la hora de tomar las medidas nuestro mayor problema fue el ajuste fino de los aparatos por su poca tolerancia así como la escala en que tomábamos las medidas en algunos momentos resultó ser la equivocada. En la memoria el problema derivó de los errores de escala de la práctica puesto que, al no haber tomado correctamente la escala la diferencia entre los experimentales y los teóricos eran muy grandes, problema solucionado una vez arreglé las escalas de medición. Con la realización del resumen teórico encontré dificultades para llegar entender la teoría expuesta en la práctica puesto que el nivel alcanzado en clase aún no llegaba a lo necesario en la práctica. Conclusiones Gracias a esta experiencia hemos podido estudiar uno de los fenómenos eléctricos gracias al cual logramos tener nuestra forma de vida pues, sin el, el transporte de energía eléctrica no sería algo fácil y cotidiano como lo tenemos si no algo tedioso y costoso imposibilitando el desarrollo tecnológico actual. Así mismo ha facilitado el entendimiento de los conceptos básicos de la inducción así como en que medida afectan sus diferentes variables, desde las variables físicas del transformador o las características de la corriente. X
Práctica de Magnetismo. El solenoide.
Práctica 1 Práctica de Magnetismo. E soenoide. Luis Íñiguez de Onzoño Sanz 1. Introducción teórica II 2. Materiaes III 3. Descripción V 4. Procedimiento V 5. Resutados VI 6. Errores VII 7. Preguntas VII
FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA
A) CAMPO MAGNÉTICO El Campo Magnético es la perturbación que un imán o una corriente eléctrica producen en el espacio que los rodea. Esta perturbación del espacio se manifiesta en la fuerza magnética que
LABORATORIO DE FUNDAMENTOS FÍSICOS II LEY DE INDUCCIÓN DE FARADAY
Departamento de Física ------------------------------------------------------------------------------------------------------------------------ LABORATORIO DE FUNDAMENTOS FÍSICOS II Grados TIC PRÁCTICA
CAMPO MAGNÉTICO 3. FENÓMENOS DE INDUCCIÓN
CAMPO MAGNÉTICO 3. FENÓMENOS DE INDUCCIÓN RESUMEN 1. LEY DE FARADAY 2. LEY DE LENZ 3. INDUCTANCIA 4. ENERGÍA DEL CAMPO MAGNÉTICO 5. CIRCUITOS RL 6. OSCILACIONES. CIRCUITO LC 7. CORRIENTE ALTERNA. RESONANCIA
INDUCCIÓN ELECTROMAGNÉTICA
INDUCCIÓN ELECTROMAGNÉTICA 1. Inducción electromagnética. 2. Leyes. 3. Transformadores. 4. Magnitudes de la corriente eléctrica. 5. Síntesis electromagnética. Física 2º bachillerato Inducción electromagnética
CAMPO MAGNÉTICO SOLENOIDE
No 7 LABORATORIO DE ELECTROMAGNETISMO MEDICIÓN DEL CAMPO MAGNÉTICO EN UN SOLENOIDE DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Medir el campo magnético
Tema Fuerza electromotriz inducida
Tema 21.11 Fuerza electromotriz inducida 1 Orígenes de la Fuerza electromotriz inducida Hemos visto que cuando circula una corriente eléctrica por un conductor se genera un campo magnético (solenoide,
CORRIENTE INDUCIDA EN UN SOLENOIDE. EL TRANSFORMADOR.
eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA
Consiste en provocar una corriente eléctrica mediante un campo magnético variable.
www.clasesalacarta.com 1 Inducción electromagnética Inducción Electromagnética Consiste en provocar una corriente eléctrica mediante un campo magnético variable. Flujo magnético ( m ) El flujo magnético
Mapeo del Campo Magnético de un Solenoide Finito
Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Mapeo del Campo Magnético de un Solenoide Finito Elaborado por: Roberto Ortiz Introducción Se tiene un Solenoide de N 1
CIRCUITO RL EN CORRIENTE CONTINUA
Autoinducción CIRCUITO RL EN CORRIENTE CONTINUA En un circuito existe una corriente que produce un campo magnético ligado al propio circuito y que varía cuando lo hace la intensidad. Por tanto, cualquier
3. TRANSFORMADORES. Su misión es aumentar o reducir el voltaje de la corriente manteniendo la potencia. n 2 V 1. n 1 V 2
3. TRANSFORMADORES Un transformador son dos arrollamientos (bobina) de hilo conductor, magnéticamente acoplados a través de un núcleo de hierro común (dulce). Un arrollamiento (primario) está unido a una
d m φ dt ξ = Por otro lado, por definición, la fem es la integral del campo a lo largo de una trayectoria C, o trayectoria cerrada
Tema: Inducción magnética. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Teoría Electromagnética. I. Objetivos. Comprender acerca de la relación del voltaje inducido en una bobina, en función
FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo
FUNDAMENTOS DE INGENIERÍA ELÉCTRICA José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo Tema 6: Inducción magnética PUNTOS OBJETO DE ESTUDIO 3
CORRIENTE CONTINUA I : RESISTENCIA INTERNA DE UNA FUENTE
eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA
CAMPO MAGNÉTICO DE UNA CORRIENTE RECTILÍNEA
Laboratorio de Física General Primer Curso (Electromagnetismo) CAMPO MAGNÉTICO DE UNA CORRIENTE RECTILÍNEA Fecha: 07/02/05 1. Objetivo de la práctica Estudio del campo magnético creado por una corriente
Faraday tenía razón!! María Paula Coluccio y Patricia Picardo Laboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA 1999
Faraday tenía razón!! María Paula Coluccio y Patricia Picardo aboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA 1999 Resumen En el presente trabajo repetimos la experiencia que
Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r
Junio 2013. Pregunta 2A.- Una bobina circular de 20 cm de radio y 10 espiras se encuentra, en el instante inicial, en el interior de un campo magnético uniforme de 0,04 T, que es perpendicular al plano
LABORATORIO DE ELECTRICIDAD Y MAGNETISMO LEY DE OHM
LABORATORIO DE ELECTRICIDAD Y MAGNETISMO LEY DE OHM OBJETIVO Estudiar empíricamente la relación existente entre el voltaje aplicado a un conductor y la corriente eléctrica que genera. EQUIPAMIENTO 1. Circuito
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E
PRUEBS DE CCESO L UNIERSIDD L.O.G.S.E CURSO 2004-2005 - CONOCTORI: ELECTROTECNI EL LUMNO ELEGIRÁ UNO DE LOS DOS MODELOS Criterios de calificación.- Expresión clara y precisa dentro del lenguaje técnico
Tema 8. Inducción electromagnética
Tema 8. Inducción electromagnética Se producirá una corriente eléctrica inducida en un circuito, cuando varíe el flujo magnético que lo atraviesa. Los aparatos se alimentan con energía eléctrica, y necesitan
Inducción electromagnética y el transformador
DEMO 33 Inducción electromagnética y el transformador Autor/a de la ficha Palabras clave Objetivo Material Jose L. Cruz y Domingo Martínez Inducción magnética 1.- Observar fenómenos de inducción mediante
CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO
CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO PROBLEMAS PROPUESTOS 1:.Se coloca una bobina de 200 vueltas y 0,1 m de radio perpendicular a un campo magnético uniforme de 0,2 T. Encontrar la fem inducida
Practica 7. Medición del campo magnético de una bobina Solenoide
Practica 7. Medición del campo magnético de una bobina Solenoide A. Amud 1, L. Correa 2, K. Chacon 3 Facultad de Ciencias, Fundamentos de Electricidad y Magnetismo Universidad Nacional de Colombia, Bogotá
Mejora del factor de potencia
Práctica de corriente alterna. Mejora del factor de potencia Luis Íñiguez de Onzoño Sanz Fundamentos Físicos para Ingenieros III 28 de noviembre de 2007 Índice 1. Conceptos relacionados I 2. Principios
Electromagnetismo (Todos. Selectividad Andalucía )
Electromagnetismo (Todos. Selectividad Andalucía 2001-2006) EJERCICIO 3. (2.5 puntos) Un núcleo toroidal tiene arrolladas 500 espiras por las que circulan 2 Amperios. Su circunferencia media tiene una
x x x x x x n= número de espiras por unidad de longitud r r enc nli El número de espiras en el tramo L es nl N= número total de espiras
c d x x x x x x x b a n número de espiras por unidad de longitud L r r b r r c r r d r r a r r b r r dl µ 0I dl + dl + dl + dl dl L a b c d a enc I enc nli El número de espiras en el tramo L es nl L µ
Campo Magnético en un alambre recto.
Campo Magnético en un alambre recto. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se hizo pasar
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS MATERIA: ELECTROTECNIA OFICIALES DE GRADO (MODELO DE EXAMEN) Curso 2013-2014 INSTRUCCIONES GENERALES Y
EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com
INDUCCIÓN ELECTROMAGNÉTICA 1- a) Explique en qué consiste el fenómeno de inducción electromagnética y escriba la ley de Lenz-Faraday. b) Una espira, contenida en el plano horizontal XY y moviéndose en
Cálculo aproximado de la carga específica del electrón Fundamento
Cálculo aproximado de la carga específica del electrón Fundamento La medida de la carga específica del electrón, esto es, la relación entre su carga y su masa, se realizó por vez primera en los años ochenta
MAQUINAS ELECTRICAS MODULO DE AUTOAPRENDIZAJE V
SESION 1: INTRODUCCION DE A LOS PRINCIPIOS DE LAS MAQUINAS ELECTRICAS 1. DEFINICION DE MAQUINAS ELECTRICAS Las Máquinas Eléctrica son dispositivos empleados en la conversión de la energía mecánica a energía
EL CIRCUITO ELÉCTRICO
EL CIRCUITO ELÉCTRICO -ELEMENTOS DE UN CIRCUITO -MAGNITUDES ELÉCTRICAS -LEY DE OHM -ASOCIACIÓN DE ELEMENTOS -TIPOS DE CORRIENTE -ENERGÍA ELÉCTRICA. POTENCIA -EFECTOS DE LA CORRIENTE ELÉCTRICA 1. EL CIRCUITO
5692 Electrotecnia para Ingeniería I. Horas trabajo adicional estudiante. Totales teoría 16 práctica IEA IM IMA IME IMT CB CB CB
A) CURSO Clave Asignatura 5692 Electrotecnia para Ingeniería I Horas de teoría por semana Horas de práctica por semana Horas trabajo adicional estudiante Créditos Horas Totales 4 1 4 9 64 teoría 16 práctica
UNIVERSIDAD DEL VALLE INGENIERIA ELECTRONICA APLICACIÓN DE LA LEY DE INDUCCIÓN DE FARADAY: EL TRANSFORMADOR INFORME DE LABORATORIO.
UNIVERSIDAD DEL VALLE INGENIERIA ELECTRONICA ALICACIÓN DE LA LEY DE INDUCCIÓN DE FARADAY: EL TRANSFORMADOR INFORME DE LABORATORIO Andrés González OBJETIVOS Comprobar experimentalmente la influencia de
UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS FACULTAD TECNOLÓGICA Tecnología en Electricidad
EJEMPLO MEDICIÓN DE LA RESISTENCIA ELÉCTRICA DE DIFERENTES CONDUCTORES ELÉCTRICOS Fecha del ensayo: Enero 20 de 2004 Ensayo realizado por: Ing. Helmuth Ortiz Condiciones ambientales del ensayo: Temperatura:
Inducción n electromagnética. tica. Física Sexta edición. Capítulo 31 31
Inducción n electromagnética tica Capítulo 31 31 Física Sexta edición Paul PaulE. E. Tippens Ley de Faraday Fem inducida por un conductor en movimiento Ley de Lenz El generador de ca El generador de cc
DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE FÍSICA III
DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE FÍSICA III HERMOSILLO, SONORA, OCTUBRE DEL 2005 NOMBRE: FISICA III CON LABORATORIO UNIDAD REGIONAL: CENTRO EJE BÁSICO DE
CURSO: Circuitos Eléctricos UNIDAD IV: CORRIENTE ALTERNA - TEORÍA
www.ceduvirt.com CURSO: Circuitos Eléctricos UNIDAD IV: CORRIENTE ALTERNA - TEORÍA EJEMPLO 1: Cinco ciclos de una señal ocurren en un tiempo de 25 msg. Hallar el periodo y la frecuencia. Solución Si
FISICA III AÑO: 2010. Cátedra de Física Experimental II --- Asignatura: Física III --- Año 2010
Universidad Nacional de Tucumán Facultad de Ciencias Exactas y Tecnología Departamento de Física Cátedra de Física Experimental II --- Asignatura: Física III --- Año 2010 Proyecto: Transformador Casero
Índice general. Pág. N. 1. Magnitudes de la Física y Vectores. Cinemática. Cinemática Movimiento en dos dimensiones
Pág. N. 1 Índice general Magnitudes de la Física y Vectores 1.1. Introducción 1.2. Magnitudes físicas 1.3. Ecuaciones Dimensionales 1.4. Sistema de Unidades de Medida 1.5. Vectores 1.6. Operaciones gráficas
TEMA 5: Motores de Corriente Continua.
Esquema: TEMA 5: Motores de Corriente Continua. TEMA 5: Motores de Corriente Continua....1 1.- Introducción...1 2.- Ley de Faraday...2 3.- Constitución de una Máquina Eléctrica...2 4.- Principio de un
LA ELECTRICIDAD Y LOS IMANES. Denominación de polos. Magnetismo LEY DE LOS POLOS 13/11/2014. Tema 3 2ª Parte
ELECTRICIDAD IMANES LA ELECTRICIDAD Y LOS IMANES Tema 3 2ª Parte CORRIENTE ELÉCTRICA MAGNETISMO ELECTROMAGNETISMO Magnetismo Consiste en atraer objetos de hierro, cobalto o níquel Imán es el cuerpo que
Corrientes Inducidas. Corrientes Inducidas
E L E C T R I C I D A D Y M A G N E T I S M O Corrientes Inducidas Corrientes Inducidas ELECTRICIDAD Y MAGNETISMO En 1831, Michael Faraday en Inglaterra y Joseph Henry en los Estados Unidos descubrieron,
ELECTROMAGNETISMO ELECTROIMANES.
ELECTROMAGNETISMO El electromagnetismo hace referencia a la relación existente entre electricidad y magnetismo. Esta relación fue descubierta por el físico danés Christian Ørsted, cuando observó que la
LABORATORIO DE ELECTROMAGNETISMO Nº6 LEY DE INDUCCIÓN DE FARADAY
LABORATORIO DE ELECTROMAGNETISMO Nº6 LEY DE INDUCCIÓN DE FARADAY ACOSTA TORRES JESID YESNEIDER CALDERON USECHE RICARDO GALIANO GUTIERREZ LUZ ESTHER JAIMES LEAL LUIS ANGEL PAVA MORALES HECTOR ANTONIO UNIVERSIDAD
JMLC - Chena IES Aguilar y Cano - Estepa. Introducción
Introducción En Magnesia existía un mineral que tenía la propiedad de atraer, sin frotar, materiales de hierro, los griegos la llamaron piedra magnesiana. Pierre de Maricourt (1269) da forma esférica a
Ley de Ohm y dependencia de la resistencia con las dimensiones del conductor
ey de Ohm y dependencia de la resistencia con las dimensiones del conductor Ana María Gervasi y Viviana Seino Escuela Normal Superior N 5, Buenos Aires, [email protected] Instituto Privado Argentino
UNIDAD 4. CAMPO MAGNÉTICO
UNIDAD 4. CAMPO MAGNÉTICO P.IV- 1. Un protón se mueve con una velocidad de 3 10 7 m/s a través de un campo magnético de 1.2 T. Si la fuerza que experimenta es de 2 10 12 N, qué ángulo formaba su velocidad
LA CORRIENTE ELÉCTRICA
ELECTRICIDAD Práctica con el multimetro. LA CORRIENTE ELÉCTRICA Lo que conocemos como corriente eléctrica no es otra cosa que la circulación de cargas o electrones a través de un circuito eléctrico cerrado,
Tema 3. Máquinas Eléctricas. Ingeniería Eléctrica y Electrónica
1 Tema 3. Máquinas Eléctricas 2 Máquinas eléctricas. Definición, tipos. Índice El transformador El motor El generador 3 Máquina Eléctrica: Máquinas que realizan la conversión de energía de una forma u
LABORATORIO No. 7 INDUCCIÓN AUTOINDUCCIÓN E INDUCTANCIA MUTUA ACOPLAMIENTO MAGNÉTICO
LABORATORIO No. 7 INDUCCIÓN AUTOINDUCCIÓN E INDUCTANCIA MUTUA ACOPLAMIENTO MAGNÉTICO 7.1. OBJETIVO DEL LABORATORIO. 7.1.1. OBJETIVO GENERAL. Conocer operativamente los fenómenos de Autoinducción, Inductancia
I.E.S. FRANCISCO GARCIA PAVÓN. CURSO DEPARTAMENTO DE FÍSICA Y QUÍMICA FÍSICA 2º BACHILLER CONTROL 7 29/03/2012 SOLUCIONADO
NOME SOLUCIONADO CUSO: CT TEMA 7. CAMPO MAGNÉTICO TEMA 8. INDUCCIÓN ELECTOMAGNÉTICA NOMAS GENEALES - Escriba a bolígrafo. - No utilice ni típex ni lápiz. - Si se equivoca tache. - Si no tiene espacio suficiente
La Ley de Ohm establece una relación entre voltaje, V, aplicado a un conductor y corriente, I, circulando a través del mismo.
FIS-1525 Ley de Ohm Objetivo Estudiar empíricamente la relación existente entre el voltaje aplicado a un conductor y la corriente eléctrica que circula. Probar el cumplimiento de la ley de Ohm para dos
INDUCCIÓN MAGNÉTICA. b N v u e l t a s. a B
INDUCCIÓN MAGNÉTICA 1) Un solenoide posee n vueltas por unidad de longitud, radio 1 y transporta una corriente I. (a) Una bobina circular grande de radio 2 > 1y N vueltas rodea el solenoide en un punto
UNIVERSIDAD NACIONAL DE TRES DE FEBRERO GUIA DE EJERCICIOS: C A MPO MAGNETICO Y CIRCUITOS MAGNETICOS INGENIERIA DE SONIDO ELECTRICIDAD Y MAGNETISMO
UNIVERSIDAD NACIONAL DE TRES DE FEBRERO ELECTRICIDAD Y MAGNETISMO GUIA DE EJERCICIOS: C A MPO MAGNETICO Y CIRCUITOS MAGNETICOS INGENIERIA DE SONIDO Titular: Ing. Alejandro Di Fonzo Jefe de Trabajos Prácticos:
Comprobar experimentalmente la ley de Ohm y las reglas de Kirchhoff. Determinar el valor de resistencias.
38 6. LEY DE OHM. REGLAS DE KIRCHHOFF Objetivo Comprobar experimentalmente la ley de Ohm y las reglas de Kirchhoff. Determinar el valor de resistencias. Material Tablero de conexiones, fuente de tensión
Unidad 7: Motores eléctricos de corriente continua I. Los motores eléctricos se pueden clasificar según la corriente empleada en:
INTRODUCCIÓN Los motores eléctricos se pueden clasificar según la corriente empleada en: PARTES DE UN MOTOR ELÉCTRICO Hemos visto que el generador es una máquina reversible. Es decir, puede actuar también
Campo Magnético creado por un Solenoide
Campo Magnético creado por un Solenoide Ejercicio resuelto nº 1 Un solenoide se forma con un alambre de 50 cm de longitud y se embobina con 400 vueltas sobre un núcleo metálico cuya permeabilidad magnética
Nombre de la asignatura: Electricidad y Magnetismo. Créditos: Aportación al perfil
Nombre de la asignatura: Electricidad y Magnetismo Créditos: 3-2-5 Aportación al perfil Analizar y resolver problemas en donde intervengan fenómenos electromagnéticos. Aplicar las leyes del electromagnetismo
INDUCCIÓN ELECTROMAGNÉTICA. Física de 2º de Bachillerato
NDUCCÓN ELECTROMAGNÉTCA Física de 2º de Bachillerato 1 Hemos visto que las cargas en movimiento o una corriente eléctrica crea campos magnéticos. Ahora vamos a ver que los campos magnéticos, bajo ciertas
PRACTICA LEY DE OHM CIRCUITOS EN SERIE, PARALELO Y MIXTO
Ing. Gerardo Sarmiento Díaz de León CETis 63 PRACTICA LEY DE OHM CIRCUITOS EN SERIE, PARALELO Y MIXTO TRABAJO DE LABORATORIO Ley de Ohm Asociación de Resistencias OBJETO DE LA EXPERIENCIA: Comprobar la
PRÁCTICA 1: MEDIDAS ELÉCTRICAS. LEY DE OHM.
PRÁCTICA 1: MEDIDAS ELÉCTRICAS. LEY DE OHM. Objetivos: Aprender a utilizar un polímetro para realizar medidas de diversas magnitudes eléctricas. Comprobar la ley de Ohm y la ley de la asociación de resistencias
EVALUACIÓN. Nombre del alumno (a): Escuela: Grupo: 1. Describe las tres formas de electrizar un cuerpo y da un ejemplo de cada una de ellas.
EVALUACIÓN Por: Yuri Posadas Velázquez Nombre del alumno (a): Escuela: Grupo: PREGUNTAS Contesta lo siguiente y haz lo que se pide. 1. Describe las tres formas de electrizar un cuerpo y da un ejemplo de
1. Estudiar la FEM inducida en bobinas y la inductancia mutua. 2. Estudiar el cambio de la inductancia en una bobina al variar el núcleo laminado.
Laboratorio 6 Inducción E.M. y el Transformador 6.1 Objetivos 1. Estudiar la FEM inducida en bobinas y la inductancia mutua. 2. Estudiar el cambio de la inductancia en una bobina al variar el núcleo laminado.
TRANSIENTES EN CIRCUITOS RC y SU APLICACION A LA MEDIDA DE CAPACITANClAS
PRÁCTICA DE LABORATORIO II-09 TRANSIENTES EN CIRCUITOS RC y SU APLICACION A LA MEDIDA DE CAPACITANClAS OBJETIVOS Estudiar los fenómenos transientes que se producen en circuitos RC de corriente directa.
Corriente y Circuitos Eléctricos
Módulo: Medición y Análisis de Circuitos Eléctricos Unidad 1 Unidades y Mediciones Eléctricas Responda en su cuaderno las siguientes preguntas: Cuestionario 1 1.- Defina los siguientes conceptos, indicando
LABORATORIO DE ELECTROMAGNETISMO CAMPO MAGÉTICO DE LA TIERRA
No 11 LABORATORIO DE ELECTROMAGNETISMO CAMPO MAGÉTICO DE LA TIERRA DEPARTAMENTO DE FISICA Y GEOLOGÍA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Verificar la existencia del campo
TEMA PE9. PE.9.2. Tenemos dos espiras planas de la forma y dimensiones que se indican en la Figura, siendo R
TEMA PE9 PE.9.1. Los campos magnéticos de los que estamos rodeados continuamente representan un riesgo potencial para la salud, en Europa se han establecido recomendaciones para limitar la exposición,
LABORATORIO DE MAQUINAS ELECTRICAS. Guía de Practica N 02: MEDICION DE TENSION Y CORRIENTES EN TRANSFORMADORES MONOFASICOS
Universidad Nacional del Santa Facultad de Ingeniería E.A.P. Ingeniería En Energía Departamento Académico de Energía y Física LABORATORIO DE MAQUINAS ELECTRICAS Guía de Practica N 02: MEDICION DE TENSION
PRACTICA 6 SOLENOIDES, BOBINAS Y TRANSFORMADORES. 6.1. Solenoides y Bobinas
PACTICA 6 SOLEOIDES, BOBIAS Y TASFOMADOES 6.. Solenoides y Bobinas Se demostrado que al hacer circular una corriente por un conductor rectilíneo, alrededor de éste se crea un campo magnético ( B r ) que
Práctica No. 4 Capacitancia e Inductancia
Objetivo Práctica No. Capacitancia e Inductancia Conocer el principio de funcionamiento y como están formados los capacitares e inductores. Material y Equipo Resistencias de kω y ¼ de Watt Papel aluminio,
3) El campo magnético entre los polos del electroimán de la figura es uniforme en cualquier momento, pero su magnitud se incrementa a razón de 0.
1) Una espira cuadrada de alambre encierra una área A1, como se indica en la figura. Un campo magnético uniforme perpendicular a la espira se extiende sobre el área A2. Cuál es el flujo magnético a través
Examen Final. Electricidad Magnetismo y Materiales. Pontificia Universidad Javeriana. Nombre:
Examen Final. Electricidad Magnetismo y Materiales. Pontificia Universidad Javeriana. Nombre: 1. (2 puntos) 1.1 En las siguientes afirmaciones, indica verdadero (V) o falso (F) según corresponda. A. La
FÍSICA 2º Bachillerato Ejercicios: Campo magnético y corriente eléctrica
1(9) Ejercicio nº 1 Una partícula alfa se introduce en un campo cuya inducción magnética es 1200 T con una velocidad de 200 Km/s en dirección perpendicular al campo. Calcular la fuerza qué actúa sobre
ONDAS ELECTROMAGNETICAS
Consideraciones básicas ONDAS ELECTROMAGNETICAS El origen de los fenómenos electromagnéticos es LA CARGA ELÉCTRICA: una propiedad de las partículas elementales que las hace atraer (si tienen signos opuestos)
Práctica 3.1 Inducción electromagnética Coeficiente de inducción mutua
Práctica 3.1 Inducción electromagnética Coeficiente de inducción mutua P. Abad Liso J. Aguarón de Blas 12 de junio de 2013 Resumen En este informe se hará un sucinto resumen de la práctica 3.1 realizada
PRÁCTICA NÚMERO 4 LEY DE INDUCCIÓN DE FARADAY
PRÁCTICA NÚMERO 4 LEY DE INDUCCIÓN DE FARADAY I. Objetivo. Estudiar la ley de inducción de Faraday. II. Material. 1. Una bobina de 400 vueltas y otra de 800 vueltas. 2. Un transformador de 6.3 Volts y
Circuitería Básica, Leyes de Kirchhoff y Equivalente Thévenin
Circuitos de Corriente Continua Circuitería Básica, Leyes de Kirchhoff y Equivalente Thévenin 1. OBJETIVOS - Estudiar las asociaciones básicas de elementos resistivos en corriente continua: conexiones
Documento No Controlado, Sin Valor
TÉCNICO SUPERIOR UNIVERSITARIO EN ENERGÍAS RENOVABLES ÁREA CALIDAD Y AHORRO DE ENERGÍA EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ELECTRICIDAD Y MAGNETISMO 1. Competencias Plantear y solucionar problemas
PRÁCTICA NÚMERO 6. ESTUDIO DE UN CIRCUITO RLC EN CORRIENTE ALTERNA.
PRÁCTCA NÚMERO 6. ESTUDO DE UN CRCUTO RLC EN CORRENTE ALTERNA. 6.. Análisis Teórico del Circuito. En las prácticas anteriores se ha analizado el comportamiento del circuito RLC cuando este es alimentado
MARCOS OMAR CRUZ ORTEGA 08/12/2009
Física II (Inductancia Magnética) Presentado por: MARCOS OMAR CRUZ ORTEGA (Actual alumno de Ing. en Sistemas Computacionales) 08/12/2009 Tabla de contenido 1 Introducción... 3 2 El campo magnético... 4
TÉCNICO SUPERIOR UNIVERSITARIO EN MECATRÓNICA ÁREA AUTOMATIZACIÓN EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ELECTRICIDAD Y MAGNETISMO
TÉCNICO SUPERIOR UNIVERSITARIO EN MECATRÓNICA ÁREA AUTOMATIZACIÓN EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ELECTRICIDAD Y MAGNETISMO 1. Competencias Plantear y solucionar problemas con base en los principios
Page 1 of 5 Departamento: Dpto Ing. Electrica y Electro Nombre del curso: ELECTROMAGNETISMO CON LABORATORIO Clave: 003880 Academia a la que pertenece: Electromagnetismo Requisitos: Ninguno Horas Clase:
R=mv/qBvmax=AAAωF=kxB=µoI/2πd; ;ertyuied3rgfghjklzxc;e=mc 2
E=hf;p=mv;F=dp/dt;I=Q/t;Ec=mv 2 /2; TEMA 4: ELECTROMAGNETISMO F=KQq/r 2 ;L=rxp;x=Asen(ωt+φo);v=λf c 2 =1/εoµo;A=πr 2 ;T 2 =4π 2 /GMr 3 ;F=ma; L=dM/dtiopasdfghjklzxcvbvv=dr/dt; M=rxF;sspmoqqqqqqqqqqqp=h/λ;
BLOQUE II CONCEPTOS Y FENÓMENOS ELECTROMAGNÉTICOS
PARTAMENTO 1.- Un núcleo toroidal tiene arrolladas 500 espiras por las que circulan 2 Amperios. Su circunferencia media tiene una longitud de 50 cm. En estas condiciones la inducción magnética B total
Electricidad Inducción electromagnética Inducción causada por un campo magnético variable
P3.4.3.1-2 Electricidad Inducción electromagnética Inducción causada por un campo magnético variable Medición de la tensión de inducción en un lazo conductor con un campo magnético variable Descripción
Electromagnetismo con laboratorio
Universidad de Sonora División de Ciencia Exactas y Naturales Departamento de Física Licenciatura en Física Electromagnetismo con laboratorio Eje formativo: Requisitos: Básico Fluidos y fenómenos térmicos
Módulo 7: Fuentes del campo magnético
7/04/03 Módulo 7: Fuentes del campo magnético Campo magnético creado por cargas puntuales en movimiento Cuando una carga puntual q se mueve con velocidad v, se produce un campo magnético B en el espacio
MAGNETISMO. Martín Carrera Rubín 2ª
MAGNETISMO Martín Carrera Rubín 2ª 1. Introducción 2. Hipótesis 3. Materiales 4. Procedimientos 5. Análisis de los resultados 6. Conclusión Esta práctica de magnetismo podemos distinguir varios puntos
Laboratorio de Fundamentos Físicos de la Ingeniería LEY DE OHM
Departamento de Física Aplicada E.T.S. Ingeniería Industrial U.C.L.M. Laboratorio de Fundamentos Físicos de la Ingeniería LEY DE OHM El objetivo fundamental de esta práctica es el conocimiento experimental
Objetivos: Introducción al uso de inductancias. Estudio de una aplicación práctica, los transformadores.
Guía 0 : El Transformador Objetivos: Introducción al uso de inductancias. Estudio de una aplicación práctica, los transformadores. Introducción: En 83 Michael Faraday descubrió que el cambio del flujo
TEMA 7. Máquinas rotativas de corriente continua. Principio y descripción CONSTITUCIÓN DE UNA MÁQUINA DE CORRIENTE CONTINUA.
TEMA 7. Máquinas rotativas de corriente continua. Principio y descripción. CONTENIDO: 7.1.- Constitución de una máquina de corriente continua. 7.2.- Principio de funcionamiento. 7.3.- Tipos de excitación.
FISICA II Escuela Politécnica de Ingeniería de Minas y Energía PRÁCTICA Nº 7
PRÁCTICA Nº 7 Ley de Ohm, resistencias en serie y en derivación A.- Ley de Ohm A.1.- Objetivo.- Comprobar la ley de Ohm en un circuito sencillo de corriente continua. A.2.- Descripción.- Cuando en un circuito
PRÁCTICA 6. AMPLIFICADOR OPERACIONAL: INVERSOR, INTEGRADOR y SUMADOR
PRÁCTICA 6. AMPLIFICADOR OPERACIONAL: INVERSOR, INTEGRADOR y SUMADOR 1. Objetivo El objetivo de esta práctica es el estudio del funcionamiento del amplificador operacional, en particular de tres de sus
PRÁCTICA 13 Campo magnético
PRÁCTICA 13 Campo magnético Objetivos Generales 1. Investigar cómo son las líneas de inducción del campo magnético B debido a las siguientes configuraciones: a) Un alambre conductor recto. b) Una espira.
1º E.U.I.T.I.Z. Curso Electricidad y Electrometría. Problemas resueltos tema 6 1/17
1º E.U.I.T.I.Z. Curso 2004 05. Electricidad y Electrometría. Problemas resueltos tema 6 1/17 4.- Calcular el vector inducción magnética, B, en el punto O, creado por una corriente eléctrica de intensidad
Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común. Magnetismo
Nombre: Campo magnético Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común Guía 14 Magnetismo Fecha: Un imán genera en su entorno un campo magnético que es el espacio perturbado por
Laboratorio de Electricidad PRACTICA - 3 LEY DE OHM. PROPIEDADES DE LOS CIRCUITOS DE RESISTENCIAS SERIE Y PARALELO
Laboratorio de lectricidad PCIC - 3 LY D OHM. POPIDDS D LOS CICUIOS D SISNCIS SI Y PLLO I - Finalidades 1.- Comprobar experimentalmente la ley de Ohm. 2.- Comprobar experimentalmente que en un circuito
