EXAMEN INDIVIDUAL NIVEL 2
|
|
|
- María Cristina Salinas Quiroga
- hace 7 años
- Vistas:
Transcripción
1 EXAMEN INDIVIDUAL NIVEL 2
2 OLIMPIADAS ONIET SEGUNDO NIVEL 1ª RONDA (Puntaje Total 200 Pts.) 1. Determine el rango de valores de Vi que mantendrá la corriente del diodo zener entre Izmáx igual a 60 ma y Izmin igual a 0 ma. ( Vz = 20 V) - (10 pts) R Izm = 60 ma D1 20 V RL 1.2k VL - 2 a) Vi min = V Vimax= V b) Vi min = V Vimax= V c) Vi min = V Vimax= V d) Vi min = V Vimax= V 2. Para la red de la figura, se precisan los niveles de VDQ y IDQ. Determine los valores requeridos para RS y RD. (20 pts) a) RD = 6,8 k Rs = 4,25 k b) RD = 3,2 k Rs = 0,425 k c) RD = 2,0 k Rs = 1,425 k d) RD = 3,2 k Rs = 4,8 k
3 3. Si Rf es igual a 1 M, calcule el voltaje de salida de un amplificador sumador para los siguientes datos: (15 pts) V1= 1 V R1= 500 K V2= 2 V R1= 1 M V3= 3 V R1= 1 M a) Vo = - 7 V b) Vo = 7 V c) Vo = - 6 V d) Vo = 6 V 4. Qué porcentaje de la Potencia de Portadora con modulación del 100 %, corresponde a la potencia total de las bandas laterales. (10 pts) a) 25 % b) 50 % c) 90 % d) 40 % 5. La información en una señal AM se encuentra en : (5 pts) a) La Portadora b) En las Bandas laterales c) En la portadora y en las banda laterales d) Ninguna de las anteriores. 6. En un transmisor AM la P T = 600 W ( Potencia total emitida) y la P P = 400 W ( Potencia de Portadora) se pide encontrar, la Potencia de Modulación P M y el índice de modulación porcentual m (15 Pts) a. P M = 100W ; m = 50% b. P M = 100W ; m = 70,7% c. P M = 200W ; m = 100% d. P M = 200W ; m = 81,7%
4 7. Los datos en una memoria de acceso aleatorio ( RAM) se almacenan durante : (5 Pts) a) la operación de lectura b) la operación de habilitación c) la operación de escritura d) la operación de direccionamiento. 8. Una memoria con 256 direcciones tiene (5 Pts) a) 256 líneas de dirección b) 6 líneas de dirección c) 1 línea de dirección d) 8 líneas de direcciones. 9. Una memoria ROM es: (5 Pts) a) Una memoria no volátil b) Una memoria volátil c) Una memoria de lectura escritura d) Una memoria organizada en bytes 10. Calcular la potencia de la señal en dbm que existe en un circuito en donde se tiene una tensión de 8,67 mv sobre una impedancia de 75 ohms. (Adoptar el valor más aproximado) (10Pts) a) -30 dbm b) -39 dbm c) -48 dbm d) -10 dbm 11. Una memoria EEPROM es: (5 Pts) a) Es una memoria que no permite alteración de la información b) El borrado se realiza empleando procedimientos eléctricos c) El borrado se realiza sometiéndola a una exposición de rayos ultravioleta eléctricos d) Ninguna de las anteriores es correcta. 12. Calcular la potencia de la señal en dbm que existe en un circuito en donde se tiene una tensión de 10 mv sobre una impedancia de 300 ohms. (Adoptar la impedancia normalizada de 600 ohms) (15 Pts) a) - 34,77 dbm b) - 39,98 dbm c) 33,54 dbm d) 0 dbm
5 13. Cuál de las siguientes afirmaciones es Incorrecta? (5 Pts) a. El funcionamiento de un fotodiodo se basa en que la luz produce una separación de lagunas y electrones en el interior del semiconductor b. El tiristor es un componente que realiza una rectificación controlada y su funcionamiento puede analizarse como la interconexión adecuada de dos transistores PNP o dos transistores NPN c. El empleo de un Microprocesador involucra dos formas de trabajo separadas: el hardware y el software d. Un LED emite radiación electromagnética que puede ser visible, debido al fenómeno de recombinación entre portadores de carga positivos y negativos 14. Un amplificador con una salida nominal de 40 W se conecta con una bocina de 10 Ω. Calcule la potencia de entrada requerida para lograr la potencia de salida total si la ganancia de potencia es de 25 db. (10 Pts) a. 34,58 mw b. 126,50 mw c. 27,87 mw d. Ninguna de las anteriores 15. Del problema anterior calcule el voltaje de entrada para la salida especificada si la ganancia de voltaje del amplificador es de 40 db (15 Pts) a. 50 mv b. 100 mv c. 200 mv d. Ninguna de las PREGUNTAS ADICIONALES PARA EL DESEMPATE 16. En el circuito de la figura si α = 0.98 y VBE = 0.7 Voltios, calcular el valor de la resistencia R1, para una corriente de emisor 2 ma (20 Pts) a) 22,10 K b) 81,10 K c) 12,10 K d) 31,10 K
6 17. Los diodos LED operan correctamente con : (5 Pts) a) Polarización directa b) Polarización inversa c) Ninguna de las anteriores d) Con polarización directa o Polarización inversa. 18. Una vez medido el periodo de un tren de pulsos, la frecuencia se calcula: (5 Pts) a) Utilizando otro ajuste b) Midiendo el ciclo de trabajo c) Como el reciproco del periodo d) Usando otro tipo de instrumento 19. El número binario se puede escribir en hexadecimal como: (5 Pts) a) AD46716 b) 8C46F16 c) 8D46F16 d) AE46F Si un transmisor de BLU produce un voltaje de 200 V pico a pico en una carga de antena de 150 Cuál es la potencia pico de la envolvente PPE? (15 Pts) a) 24,99 W b) W c) 33,32 W d) ninguna de las anteriores
7 OLIMPIADAS ONIET SEGUNDO NIVEL 2ª RONDA DESEMPATE (Puntaje Total 100 Pts.) 1) El cuadripolo de la figura es un atenuador o amplificador? (10 pts) 2 V 300 ohms? db 4 V 2400 ohms a) Atenuador de -6 db b) Amplificador de 6 db c) Atenuador de -3 db d) Amplificador de 3 db 2) Un decodificador BCD a 7 segmentos tiene 0100 en sus entradas. Las salidas activas son (5 Pts) a) a, c, f, g b) b, c, f, g c) b, c, e, f d) d, d, e, g 3) Se tiene un transmisor de AM modulado al 100 % emitiendo una potencia de 27 w con un ancho de banda de 4khz. La tensión de ruido Vr es igual a 2,45 V. Suponiendo una impedancia de carga Z igual a la unidad, estime la relación S/R en AM ( adoptar el valor más aproximado de las respuestas) (15 Pts) a) 2,20 db b) 4,76 db c) 8,22 db d) 10,11 db 4) Determine ID; VD2 y Vo para el circuito de la figura considerar diodos ideales. (5 Pts) + 12V Si + Vd2 - Si Vo Id 5,6 KΩ a) ID = 2.14 A VD2 = 11.3 V Vo = 11.3 V b) ID = 2.01 A VD2 = 12,2 V Vo = 12,0 V c) ID = 0 A VD2 = 12. V Vo = 0 V d) ID = 2.14 A VD2 = 1,4 V Vo = 1,4 V
8 5) En el siguiente circuito, obtenga la variación de la tensión V CE si la tensión V BB varía de 1v a 1, 5v. (20 Pts) Datos: β = 100 V BE = 0,7v a) 0,5 v b) 1,0 v c) 1,5 v d) 2,6 v 6) Encuentre el valor de R2 siendo R1 = 150Ω para que Vo sea el doble que Vi. (10 Pts) a) 200Ω b) 300Ω c) 150Ω d) 50Ω 7) Determinar la amplificación o atenuación que realiza el bloque 1 en el circuito para obtener los parámetros medidos. ( 15 Pts) ZoA = ZinB = 600 Ω Vi= 1 V Zin=600 Ω Vo= 2 V Zo= 1200 Ω GA=? GB= 3 db a. 6 db b. 3 db c. -6 db d. -3 db
9 8) Si en la combinación de dos transistores bipolares denominada Par Darlington, la ganancia de los transistores es β 1 = 10 ; β 2 = 20, la ganancia total de esta configuración será. (5 Pts) a. 200 b. 210 c. 230 d. 220 T1 T2 9) Indique cuál de las siguientes afirmaciones es falsa sobre los transistores unipolares de efecto de campo. (5 Pts) a. Generan un nivel de ruido menor que los BJT. b. Son dispositivos controlados por la tensión de entrada con una muy baja impedancia de entrada. c. Presentan una pobre respuesta en frecuencia debido a la alta capacidad de entrada. d. Son más estables que los BJT con la temperatura. e. Ninguna de todas las anteriores. 10) Simplifique la siguiente función f(a, B, C, D) = [AB ( C + BD) + A B )] C (10 Pts) a. A C b. B C c. DC d. A C e. AC
Parcial_1_Curso.2012_2013. Nota:
Parcial_1_Curso.2012_2013. 1. El valor medio de una señal ondulada (suma de una señal senoidal con amplitud A y una señal de componente continua de amplitud B) es: a. Siempre cero. b. A/ 2. c. A/2. d.
Electrónica II TRABAJO PRÁCTICO N 3. Configuraciones Amplificadoras del Transistor BJT CUESTIONARIO
TRABAJO PRÁCTICO N 3. Configuraciones Amplificadoras del Transistor BJT CUESTIONARIO 1. Por qué se usa el acoplamiento capacitivo para conectar la fuente de señal al amplificador? 2. Cuál de las tres configuraciones
INDICE. Prologo I: Prologo a la electrónica Avance Breve historia Dispositivos pasivos y activos Circuitos electrónicos
Prologo I: Prologo a la electrónica Avance Breve historia Dispositivos pasivos y activos Circuitos electrónicos INDICE Circuitos discretos e integrados Señales analógicas y digitales Notación 3 Resumen
BJT como amplificador en configuración de emisor común con resistencia de emisor
Práctica 9 BJT como amplificador en configuración de emisor común con resistencia de emisor Índice General 9.1. Objetivos................................ 73 9.2. Introducción teórica..........................
Parcial_2_Curso.2012_2013
Parcial_2_Curso.2012_2013 1. La función de transferencia que corresponde al diagrama de Bode de la figura es: a) b) c) d) Ninguna de ellas. w (rad/s) w (rad/s) 2. Dado el circuito de la figura, indique
Pr.A Boletín de problemas de la Unidad Temática A.I: Características principales y utilización
Pr.A Boletín de problemas de la Unidad Temática A.I: Características principales y utilización Pr.A.1. El diodo 1. Obtener de forma gráfica la corriente que circula por el diodo del siguiente circuito
FUNDAMENTOS DE CLASE 4: TRANSISTOR BJT BIPOLAR JUNCTION TRANSISTOR
FUNDAMENTOS DE ELECTRÓNICA CLASE 4: TRANSISTOR BJT BIPOLAR JUNCTION TRANSISTOR TRANSISTOR Es un tipo de semiconductor compuesto de tres regiones dopadas. Las uniones Base-Emisor y base colector se comportan
1.- Estudiar los diferentes modos de operaci on del BJT de la figura en función de v I (V BE ~ 0.7 V). IB VC VB IE
Ejercicios relativos al transistor bipolar Problemas de transistores BJT en estática 1.- Estudiar los diferentes modos de operaci on del BJT de la figura en función de v I (V BE ~ 0.7 V). IC IB VC VB
Electrónica 2. Práctico 7 Estructura de los Amplificadores Operacionales
Electrónica 2 Práctico 7 Estructura de los Amplificadores Operacionales Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro
Diapositiva 1. El transistor como resistencia controlada por tensión. llave de control. transistor bipolar NPN colector. base de salida.
Diapositiva 1 El transistor como resistencia controlada por tensión transistor bipolar NPN colector llave de control base corriente de salida emisor e b c 2N2222 corriente de entrada 6.071 Transistores
VGD = 0 < Vt = 2 Están en saturación Ecuaciones en el circuito MOSFET de la izquierda Iref = ID:
ESPEJO DE CORRIENTE CON MOSFET Hallar los valores de los voltajes y corrientes en el circuito. VGD = 0 < Vt = 2 Están en saturación Ecuaciones en el circuito MOSFET de la izquierda Iref = ID: Ecuación
Figura 1 Figura 2. b) Obtener, ahora, un valor más preciso de V D para la temperatura T a. V AA
DODOS. Se desea diseñar el circuito de polarización de un diodo emisor de luz (LED) de arseniuro de galio (GaAs) conforme a la figura. La característica - del LED se representa en la figura, en la que
EL TRANSISTOR BIPOLAR
EL TRANSISTOR BIPOLAR POLARIZACIÓN UTILIZANDO UNA FUENTE DE CORRIENTE: EL ESPEJO DE CORRIENTE El transistor Q1 está conectado de forma que actúa como un diodo. La corriente que va a circular por el emisor
INTRODUCCIÓN: OBJETIVOS:
INTRODUCCIÓN: En el desarrollo de esta práctica se observará experimentalmente el comportamiento del transistor bipolar BJT como amplificador, mediante el diseño, desarrollo e implementación de dos amplificadores
Electrónica 2. Práctico 3 Alta Frecuencia
Electrónica 2 Práctico 3 Alta Frecuencia Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic
UNIVERSIDAD POLITECNICA SALESIANA UNIDAD2: SEMICONDUCTORES ING. JUAN M. IBUJÉS VILLACÍS, MBA
UNIVERSIDAD POLITECNICA SALESIANA UNIDAD2: SEMICONDUCTORES ING. JUAN M. IBUJÉS VILLACÍS, MBA Qué es un semiconductor? Es un material con una resistividad menor que un aislante y mayor que un conductor.
TECNOLOGÍA ELECTRÓNICA (Examen de Febrero )
E.U..T.. Curso 99/00 Madrid TECNOLOGÍA ELECTÓNCA (Examen de Febrero 922000) Ejercicio 1 (4 puntos) El diodo de silicio con parámetros S 5 ma y η 2, está conectado al circuito de la figura. eterminar a
CONTENIDO PRESENTACIÓN. Capítulo 1 COMPONENTES SEMICONDUCTORES: EL DIODO... 1
CONTENIDO PRESENTACIÓN Capítulo 1 COMPONENTES SEMICONDUCTORES: EL DIODO... 1 1.1 INTRODUCCIÓN...1 1.2 EL DIODO...2 1.2.1 Polarización del diodo...2 1.3 CARACTERÍSTICAS DEL DIODO...4 1.3.1 Curva característica
1.- Tensión colector emisor V CE del punto Q de polarización. a) 10,0 V b) 8,0 V c) 6,0 V
C. Problemas de Transistores. C1.- En el circuito amplificador de la figura se desea que la tensión en la resistencia R L pueda tomar un valor máximo sin distorsión de 8 V. Asimismo, se desea que dicha
Problemas Tema 6. Figura 6.3
Problemas Tema 6 6.1. Se conecta una fuente de voltaje V s =1mV y resistencia interna R s =1MΩ a los terminales de entrada de un amplificador con una ganancia de voltaje en circuito abierto A v0 =10 4,
Amplificadores de RF
GR Capítulo 7 Amplificadores de RF Parámetros de un amplificador Respuesta lineal Función de transferencia. Banda de trabajo Ganancia Tiempo de retardo Impedancias de entrada y salida Impedancias nominales
Transistor BJT: Fundamentos
Transistor BJT: Fundamentos Lección 05.1 Ing. Jorge Castro-Godínez Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica II Semestre 2013 Jorge Castro-Godínez Transistor BJT 1 / 48 Contenido
PRÁCTICA 3. Simulación de amplificadores con transistores
PRÁCTICA 3. Simulación de amplificadores con transistores 1. Objetivo El objetivo de la práctica es recordar el uso de MicroCap, esta vez en su versión de simulador de circuitos analógicos, analizando
Tema 2 El Amplificador Operacional
CICUITOS ANALÓGICOS (SEGUNDO CUSO) Tema El Amplificador Operacional Sebastián López y José Fco. López Instituto de Microelectrónica Aplicada (IUMA) Universidad de Las Palmas de Gran Canaria 3507 - Las
El BJT en la zona activa
El BJT en la zona activa Electrónica Analógica º Desarrollo de Productos Electrónicos Índice.- Amplificadores con BJT. 2.- Osciladores L con BJT. Electrónica Analógica El BJT en la zona activa 2 .- ircuitos
Capítulo 1. Historia y fundamentos físicos de un transistor.
Capítulo 1. Historia y fundamentos físicos de un transistor. 1.1 Fundamentos del transistor TBJ 1.1.1 Corrientes en un transistor de unión o TBJ El transistor bipolar de juntura, o TBJ, es un dispositivo
PRÁCTICA 13. CIRCUITO AMPLIFICADOR MONOETAPA CON BJT
PRÁCTICA 13. CIRCUITO AMPLIFICADOR MONOETAPA CON BJT 1. Objetivo Se pretende conocer el funcionamiento de un amplificador monoetapa basado en un transistor BJT Q2N2222. 2. Material necesario Se necesita
Test de Fundamentos de Electrónica Industrial (4 puntos). 3º GITI. TIEMPO: 40 minutos May 2013
1) Cual de las siguientes expresiones es correcta A) A+B+B =A+B B) A+B+(A.B )=A C) (A.B)+(A.C)+(B.C)=(A.B)+(B.C) D) A.B =A +B 2) La figura adjunta se corresponde con la estructura interna de un circuito:
PROBLEMAS SOBRE FUENTES REGULADAS
UNIVERSIDAD NACIONAL DE ROSARIO FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA DEPARTAMENTO DE ELECTRÓNICA ELECTRÓNICA III PROBLEMAS SOBRE FUENTES REGULADAS Autores: Francisco S. López, Federico
Base común: Ganancia de corriente
Base común: de corriente La ganancia de corriente se encuentra dividiendo la corriente de salida entre la de entrada. En un circuito de base común, la primera es la corriente de colector (Ic) y la corriente
APLICACIONES NO LINEALES TEMA 3 COMPARADOR
APLICACIONES NO LINEALES TEMA 3 COMPARADOR Es una aplicación sin realimentación. Tienen como misión comparar una tensión variable con otra, normalmente constante, denominada tensión de referencia, entregando
INDICE. XV I. Dispositivos de efecto de campo Capitulo 1. Transistores de unión de efecto de campo
INDICE Prefacio XV I. Dispositivos de efecto de campo Capitulo 1. Transistores de unión de efecto de campo 3 1.1. introducción 1.2. teoría de funcionamiento 5 1.3. parámetros del JFET 1.3.1. notación 11
Transistor BJT. William Shockley, John Bardeen y Walter H. Brattain Nobel de Física en 1956
Transistor BJT William Shockley, John Bardeen y Walter H. Brattain 1947-48 Nobel de Física en 1956 Transistor BJT Tres terminales: Colector Base Emisor BJT: Bipolar Junction Transistor Se suelen usar más
El transistor bipolar es un dispositivo que posee tres capas semiconductoras con sus respectivos contactos llamados; colector(c), base(b) y emisor(e).
FUNDAMENTO TEORICO El transistor bipolar es un dispositivo que posee tres capas semiconductoras con sus respectivos contactos llamados; colector(c), base(b) y emisor(e). La palabra bipolar se deriva del
INSTRUMENTAL Y DISPOSITIVOS ELECTRÓNICOS
INSTRUMENTAL Y DISPOSITIVOS ELECTRÓNICOS TP7 - GUÍA PARA EL TRABAJO PRÁCTICO N O 7 TRANSISTOR BIPOLAR DE UNIÓN (BJT) TEMARIO: Transistores PNP y NPN Circuitos de polarización en cc El transistor como conmutador
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: INGENIERÍA EN TELECOMUNICACIONES, SISTEMAS Y ELECTRÓNICA DENOMINACIÓN DE LA ASIGNATURA: Dispositivos y Circuitos
i = Is e v nv T ANÁLISIS MATEMÁTICO UTILIZANDO LA CARACTERÍSTICA REAL DEL DIODO (APROXIMACIONES SUCESIVAS)
ANÁLISIS MATEMÁTICO UTILIZANDO LA CARACTERÍSTICA REAL DEL DIODO (APROXIMACIONES SUCESIVAS) i Is e v nv T 1 Voltaje térmico VT kt/q k : Constante de Boltzman 1,38 x 10-23 joules/kelvin T temperatura en
Electrónica Analógica 1
Trabajo Práctico 4: El transistor bipolar como amplificador. Modelo equivalente de pequeña señal. Parámetros híbridos. Configuraciones multietapa. Análisis en pequeña señal: método de trabajo La figura
Contenido. Capítulo 2 Semiconductores 26
ROMANOS_MALVINO.qxd 20/12/2006 14:40 PÆgina vi Prefacio xi Capítulo 1 Introducción 2 1.1 Las tres clases de fórmulas 1.5 Teorema de Thevenin 1.2 Aproximaciones 1.6 Teorema de Norton 1.3 Fuentes de tensión
Electrónica 1. Práctico 2 Amplificadores operacionales 2
Electrónica 1 Práctico 2 Amplificadores operacionales 2 Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic
Determinar cuál es la potencia disipada por el transistor, y su temperatura de juntura.
Circuitos Electrónicos II (66.10) Guía de Problemas Nº 3: Amplificadores de potencia de audio 1.- Grafique un circuito eléctrico que realice la analogía del fenómeno que involucra la potencia disipada
SIFeIS. CONCAyNT PLANTA EXTERIOR E IPR. CONCAyNT ELECTRÓNICA
ELECTRÓNICA PLANTA EXTERIOR E IPR GUÍA DE ESTUDIOS DE ELECTRÓNICA PARA IPR Un agradecimiento especial al Co. FRANCISCO HERNANDEZ JUAREZ por la oportunidad y el apoyo para realizar este trabajo, así como
El transistor como dispositivo amplificador: polarización y parámetros de pequeña señal.
Sesión 13 El transistor como dispositivo amplificador: polarización y parámetros de pequeña señal. Componentes y Circuitos Electrónicos José A. Garcia Souto www.uc3m.es/portal/page/portal/dpto_tecnologia_electronica/personal/joseantoniogarcia
PRÁCTICA 6 AMPLIFICADOR MULTIETAPA CONFIGURACION EMISOR COMUN CON AUTOPOLARIZACION.
PRÁCTIC 6 MPLIFICDOR MULTIETP CONFIGURCION EMISOR COMUN CON UTOPOLRIZCION. DESRROLLO 1.- rme el circuito de la siguiente figura y aplique a la señal de entrada una señal sinusoidal de 1 KHz. de frecuencia,
ESCUELA SUPERIOR POLITECNICA DEL LITORAL PROGRAMA DE ESTUDIOS 2. OBJETIVOS
ELECTRÓNICA I UNIDAD ACADÉMICA: CARRERA: ESPECIALIZACIÓN: ÁREA: TIPO DE MATERIA: EJE DE FORMACIÓN: Facultad de Ingeniería en Electricidad y Computación Ingeniería en Electricidad. Ingeniería en Telemática,
EL42A - Circuitos Electrónicos
ELA - Circuitos Electrónicos Clase No. 24: Amplificadores Operacionales (1) Patricio Parada [email protected] Departamento de Ingeniería Eléctrica Universidad de Chile 3 de Noviembre de 2009 ELA -
INDICE. 1. Introducción a los Sistemas de Comunicaciones y sus
INDICE 1. Introducción a los Sistemas de Comunicaciones y sus 15 Limitaciones 1.1. Objetivos 15 1.2. Cuestionario de autoevaluación 15 1.3. Componentes básicos de un sistema de comunicaciones 16 1.4. Varios
Electrónica 2. Práctico 4 Amplificadores de Potencia
Electrónica 2 Práctico 4 Amplificadores de Potencia Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic
Transistor BJT como Amplificador
Transistor BJT como Amplificador Lección 05.2 Ing. Jorge Castro-Godínez Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica II Semestre 2013 Jorge Castro-Godínez Transistor BJT como Amplificador
MÓDULO Nº9 AMPLIFICADORES OPERACIONALES. Explicar que es un amplificador operacional. Entender el funcionamiento de los circuitos básicos con OP AMP.
MÓDULO Nº9 AMPLIFICADORES OPERACIONALES UNIDAD: CONVERTIDORES TEMAS: Introducción a los Amplificadores Operacionales. Definición, funcionamiento y simbología. Parámetros Principales. Circuitos Básicos.
5.- Si la temperatura ambiente aumenta, la especificación de potencia máxima del transistor a) disminuye b) no cambia c) aumenta
Tema 4. El Transistor de Unión Bipolar (BJT). 1.- En un circuito en emisor común la distorsión por saturación recorta a) la tensión colector-emisor por la parte inferior b) la corriente de colector por
EXP204 REGULADOR DE VOLTAJE SERIE
EXP204 REGULADOR DE VOLTAJE SERIE I.- OBJETIVOS. Diseñar un regulador de voltaje serie ajustable Comprobar el funcionamiento del regulador. Medir la resistencia de salida del regulador Medir el por ciento
Índice analítico Capítulo 1 Conceptos y análisis de circuitos básicos en corriente alterna Resistencia puramente óhmica
Índice analítico Capítulo 1 Conceptos y análisis de circuitos básicos en corriente alterna... 1 1.1 Resistencia puramente óhmica... 1 1.2 La bobina en corriente alterna. Reactancia inductiva (XL)... 1
El transistor es un dispositivo no lineal que puede ser modelado utilizando
Modelo de Ebers-Moll para transistores de unión bipolar El transistor es un dispositivo no lineal que puede ser modelado utilizando las características no lineales de los diodos. El modelo de Ebers-Moll
Vce 1V Vce=0V. Ic (ma)
GUIA DE TRABAJOS PRACTICOS P31 Bibliografía de Referencia Transistores y Circuitos Amplificadores * Boylestad, R & Nashelsky, L. Electrónica -Teoría de Circuitos y Dispositivos 10ª. Ed. Pearson Educación,
η = V / Hz b) Calcular la T eq de ruido del cuadripolo Datos: ancho de banda =100 khz, temperatura de trabajo = 300 ºK, k = 1.
2. UIDO Y DISTOSION (Jun.94) 1. a) Calcular la relación s/n a la salida del cuadripolo, si la entrada es v s = 10-3 sin (10 4 t). El ruido propio del cuadripolo a la entrada viene caracterizado por η =
DIODOS Y TRANSISTORES.
INSTITUTO TECNOLÓGICO DE MORELIA Práctica. 3.0.0. DIODOS Y TRANSISTORES. Amplificadores con transistor BJT. Cliente: Ingeniería Electrónica. Autor: Ing. Miguel.Angel Mendoza Mendoza. 26 de Agosto del 2015
Determinar la relación entre ganancias expresada en db (100 ptos).
ELECTRONICA Y TELECOMUNICACIONES Competencia rupal Niel Segunda Instancia PROBLEMA N 1 El personal técnico de una empresa que se dedica a caracterizar antenas se ha propuesto determinar la relación entre
PROBLEMAS DE MICROONDAS: PARÁMETROS S Y ANÁLISIS DE CIRCUITOS DE MICROONDAS
PROBLEMAS DE MICROONDAS: PARÁMETROS S Y ANÁLISIS DE CIRCUITOS DE MICROONDAS PROBLEMA 1 Calcular la matriz S del siguiente cuadripolo: R l 1 l 2 Z 1 Z 2 PROBLEMA 2 Determine la matriz de parámetros ABCD
TECNOLOGÍA 4º ESO IES PANDO
Componentes Electrónicos TECNOLOGÍA 4º ESO IES PANDO Resistencias Fijas Son componentes que presentan una oposición al paso de la corriente eléctrica. Sus principales características son: Valor Nominal:
El transistor sin polarizar
EL TRANSISTOR DE UNIÓN BIPOLAR BJT El transistor sin polarizar El transistor esta compuesto por tres zonas de dopado, como se ve en la figura: La zona superior es el "Colector", la zona central es la "Base"
EL42A - Circuitos Electrónicos Clase No. 5: Circuitos Limitadores y Otras Aplicaciones
EL42A - Circuitos Electrónicos Clase No. 5: Circuitos Limitadores y Otras Aplicaciones Patricio Parada [email protected] Departamento de Ingeniería Eléctrica Universidad de Chile 13 de Agosto de 2009
1] Analizar los símbolos utilizados para BJT y FET. Qué indica cada elemento de los mismos?
CONTENIDOS Tipos de transistores: BJT y FET; p-n-p y n-p-n; JFET y MOSFET. Propiedades. Regiones de trabajo. Configuraciones de uso. Su utilización en circuitos digitales. Resolución: 1] Analizar los símbolos
Seminario de Electrónica II PLANIFICACIONES Actualización: 2ºC/2016. Planificaciones Seminario de Electrónica II
Planificaciones 6666 - Seminario de Electrónica II Docente responsable: VENTURINO GABRIEL FRANCISCO CARLOS 1 de 6 OBJETIVOS Estudiar la física de los semiconductores a partir de un enfoque electrostático.
Electrónica 2. Práctico 4 Amplificadores de Potencia
Electrónica 2 Práctico 4 Amplificadores de Potencia Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic
BJT 1. V γ V BE +V CC =12V. R C =0,6kΩ I C. R B =43kΩ V I I B I E. Figura 1 Figura 2
J 1. n este ejercicio se trata de estudiar el funcionamiento del transistor de la figura 1 para distintos valores de la tensión V I. Para simplificar el análisis se supondrá que la característica de entrada
EVALUACIÓN DE ELECTRÓNICA BÁSICA, 50 PREGUNTAS, TIEMPO = 1 HORA
EVALUACIÓN DE ELECTRÓNICA BÁSICA, 50 PREGUNTAS, TIEMPO = 1 HORA 1. Es un material semiconductor que se ha sometido al proceso de dopado. a) Intrínseco b) Extrínseco c) Contaminado d) Impurificado 2. Material
E.E.T Nº 460 GUILLERMO LEHMANN Departamento de Electrónica. Sistemas electrónicos analógicos y digitales TRABAJO PRÁCTICO
Tema: El amplificador operacional. Objetivo: TRABAJO PRÁCTICO Determinar las limitaciones prácticas de un amplificador operacional. Comprender las diferencias entre un amplificador operacional ideal y
AMPLIFICADORES CON BJT
Tema 5 1.- Introducción. AMPLIFIADORES ON BJT 2.- Modelo de pequeña señal del BJT. 21 2.1.- El cuadripolo y el modelo íbrido. 2.2.- Modelo íbrido de un transistor. 2.3.- Análisis de un circuito amplificador
TEMA 6: Amplificadores con Transistores
TEMA 6: Amplificadores con Transistores Contenidos del tema: El transistor como amplificador. Característica de gran señal Polarización. Parámetros de pequeña señal Configuraciones de amplificadores con
PROBLEMAS DE OSCILADORES DE MICROONDAS
PROBLEMAS DE OSCILADORES DE MICROONDAS Curso 10-11 PROBLEMA 1 (febrero 02) Se pretende diseñar un oscilador a 5 GHz haciendo uso de un diodo Impatt del que sabemos que presenta, alrededor de esta frecuencia,
DIE UPM. Se dispone de una etapa amplificadora conectada a una resistencia de carga R L de valor 1KΩ en paralelo con un condensador C L.
UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES UPM DIE DEPARTAMENTO DE AUTOMÁTICA, INGENIERÍA ELECTRÓNICA E INFORMÁTICA INDUSTRIAL DIVISIÓN DE INGENIERÍA ELECTRÓNICA
CLASE PRÁCTICA 2 RESUELTA. PLAN D PROBLEMAS DE POLARIZACIÓN DEL TRANSISTOR BIPOLAR (BJT)
LASE PRÁTIA RESUELTA. PLAN D PROBLEMAS DE POLARIZAIÓN DEL TRANSISTOR BIPOLAR (BJT) Sumario:. Introducción.. Solución de problemas. 3. onclusiones. Bibliografía:. Rashid M. H. ircuitos Microelectrónicos.
TEMA 2 : DISPOSITIVOS Y COMPONENTES ELECTRÓNICOS
UNIVERSIDAD DE LEON Departamento de Ingeniería Eléctrica y Electrónica TEMA 2 : DISPOSITIVOS Y COMPONENTES ELECTRÓNICOS Electrónica Básica, Industrial e Informática Luis Ángel Esquibel Tomillo EL DIODO
β = 2.4 Para el primer nilo de la portadora, por lo tanto J ELECTRONICA Y TELECOMUNICACIONES Competencia Individual Nivel 2 Segunda Ronda
ELECTONICA Y TELECOMUNICACIONES Competencia Individual Nivel Segunda onda 1. Se transmite un tono utilizando FM. Cuando no hay mensaje, el transmisor emite 100 W sobre 50 ohmios. La desviación de frecuencia
EL42A - Circuitos Electrónicos
EL42A - Circuitos Electrónicos Clase No. 7: Transistores Bipolares Patricio Parada [email protected] Departamento de Ingeniería Eléctrica Universidad de Chile 25 de Agosto de 2009 1 / Contenidos Transistores
Laboratorio Nº3. Procesamiento de señales con transistores
Laboratorio Nº3 Procesamiento de señales con transistores Objetivos iseñar redes de polarización para operar transistores JT y JFT en modo activo, y evaluar la estabilidad térmica de puntos de operación,
EXP203 ARREGLO DARLINGTON
EXP203 ARREGLO DARLINGTON I.- OBJETIVOS. Demostrar el uso de un arreglo darlington en una configuración colectorcomún como acoplador de impedancias. Comprobar el funcionamiento de amplificadores directamente
A.- Electrones fluyendo por un buen conductor eléctrico, que ofrece baja resistencia.
DEPARTAMENTO DE ORIENTACIÓN: TECNOLOGÍA 4E_F Primer trimestre Curso: 2014/2015 TEMA II: ELECTRICIDAD Y ELECTRÓNICA La electrónica forma parte de nuestra vida cotidiana.- Los electrodomésticos, los medios
(600 Ω) (100 v i ) T eq = 1117 o K
2. UIDO Y DISTOSION (Jun.94) 1. a) Calcular la relación s/n a la salida del cuadripolo, si la entrada es = 10-3 sin (10 4 t). El ruido propio del cuadripolo a la entrada viene caracterizado por η = 10-18
INDICE Capítulo 1. Principios del Modelado y Procesamiento de Señal Capítulo 2. Amplificadores Operacionales
INDICE Prólogo XI Prólogo a la Edición en Español XIV Capítulo 1. Principios del Modelado y Procesamiento de Señal 1 1.1. Sinergia hombre computador 3 1.2. Características tensión corriente y transferencia
CAPITULO XIII RECTIFICADORES CON FILTROS
CAPITULO XIII RECTIFICADORES CON FILTROS 13.1 INTRODUCCION En este Capítulo vamos a centrar nuestra atención en uno de los circuitos más importantes para el funcionamiento de los sistemas electrónicos:
El Diodo. Lección Ing. Jorge Castro-Godínez. II Semestre Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica
El Diodo Lección 03.1 Ing. Jorge Castro-Godínez Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica II Semestre 2013 Jorge Castro-Godínez El Diodo 1 / 29 Contenido 1 Modelo del Diodo
DEPARTAMENTO: Electrónica ASIGNATURA: CÓDIGO: PAG.: 1 Electrónica I REQUISITOS: Redes Eléctricas I. (2107)
CÓDIGO: PAG.: 1 I Redes s I. (2107) PROPÓSITOS Esta asignatura es la continuación de los estudios en electrónica que deben cursar los estudiantes del ciclo común en el plan de estudio de y es requisito
Equipos de medida. - Multímetro Digital (DMM) - Medidor vectorial de impedancias
- Multímetro Digital (DMM) - Medidor vectorial de impedancias Equipo para medida digital de magnitudes típicas de: Tensión continua: 1 mv a 1000V Tensión alterna: 10mV a 1000V (10 Hz a 1 Mhz) Intensidad
Circuitos de RF y las Comunicaciones Analógicas. Capítulo VII: Amplificadores de RF de potencia
Capítulo VII: Amplificadores de RF de potencia 109 110 7. Amplificadores RF de potencia 7.1 Introducción El amplificador de potencia (PA) es la última etapa de un trasmisor. Tiene la misión de amplificar
(Ejercicios resueltos)
ESCUELA TECNICA SUPEIO DE INGENIEOS INDUSTIALES Y DE TELECOMUNICACION UNIVESIDAD DE CANTABIA INSTUMENTACION ELECTÓNICA DE COMUNICACIONES (5º Curso Ingeniería de Telecomunicación) Tema VI: eferencias de
PRÁCTICA Nº 1 RESISTENCIAS. LEY DE OHMS. Medida con el polímetro.
PRÁCTICA Nº 1 RESISTENCIAS. LEY DE OHMS. Medida con el polímetro. NOMBRE y APELLIDOS: 1.- CÓDIGO DE COLORES DE RESISTENCIAS. Completa la siguiente tabla: Nº COLOR % 0 NEGRO 1 MARRÓN 1% 2 ROJO 2% 3 NARANJA
RADIOCOMUNICACIÓN. PROBLEMAS TEMA 2 Ruido e interferencias en los sistemas radioeléctricos
RADIOCOMUNICACIÓN PROBLEMAS TEMA 2 Ruido e interferencias en los sistemas radioeléctricos P1.- Un sistema consiste en un cable cuyas pérdidas son 2 db/km seguido de un amplificador cuya figura de ruido
CURSO: SEMICONDUCTORES UNIDAD 4: POLARIZACIÓN - TEORÍA
CURSO: SEMICONDUCTORES UNIDAD 4: POLARIZACIÓN - TEORÍA Hay varias formas de polarizar un transistor, esto es, obtener su punto de operación adecuado (valores de Vcc y de Ic). Se tiene la polarización fija,
Electrónica I. Carrera EMM-0515 3-2-8. a) Relación con otras asignaturas del plan de estudios.
1. DATOS DE LA ASIGNATURA Nombre de la asignatura Carrera Clave de la asignatura Horas teoría-horas práctica-créditos Electrónica I Ingeniería Electromecánica EMM-0515 3-2-8 2. HISTORIA DEL PROGRAMA Lugar
LABORATORIO DE ELECTRÓNICA DE POTENCIA PRÁCTICA N 4
ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica LABORATORIO
Universidad Nacional de Rosario Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ingeniería Electrónica Departamento de Electrónica
Universidad Nacional de Rosario Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ingeniería Electrónica Departamento de Electrónica ELECTRÓNICA III PROBLEMAS RESUELTOS SOBRE CONVERSORES
Práctica 2.- Medida de la resistencia dinámica del diodo de unión. Cálculo del punto Q. El diodo de unión como rectificador.
Práctica 2. Medida de la resistencia dinámica del diodo de unión. Cálculo del punto Q. El diodo de unión como rectificador. A. Objetivos Medir la resistencia dinámica del diodo de unión. Determinación
EL3004-Circutios Electrónicos Analógicos
EL3004-Circutios Electrónicos Analógicos Clase No. 5: Transistores BJT Marcos Diaz Departamento de Ingeniería Eléctrica (DIE) Universidad de Chile Septiembre, 2011 Marcos Diaz (DIE, U. Chile) EL3004-Circuitos
