Semiconductores Extrínsecos
|
|
|
- Raúl Pérez Villanueva
- hace 7 años
- Vistas:
Transcripción
1 Materiales Eléctricos Semiconductores Semiconductores Extrínsecos Puesto que los semiconductores intrínsecos resentan el mismo número de e- de conducción que de h+ no son lo suficientemente flexibles ara la mayor arte de las alicaciones rácticas de los semiconductores. Para aumentar el número de ortadores el rocedimiento más común consiste en introducir, de forma controlada, una cierta cantidad de átomos de imurezas obteniéndose lo que se denomina semiconductor extrínseco o doado. En ellos, la conducción de corriente eléctrica tiene lugar referentemente or uno de los dos tios de ortadores. 1
2 Se uede obtener diferentes semiconductores (diferentes GAPs ) combinando átomos III IV V VI II Si, Ge, GaAs, InP, ZnO IV III-V II-VI IV III-V, II-VI II-VI diamante cinc-blenda wurzita Banda rohibida (Ga) Silicio Germanio GaAs InP ZnO Diamante 1.14 ev 0.67 ev 1.4 ev 1.34 ev 3.37 ev ev Semiconductores tio N Imurezas Donadoras En un cristal de Si se sustituye uno de sus átomos or otro que osee 5 e- de valencia. Dicho átomo encajará sin mayores dificultades en la red cristalina del Si. Cuatro de sus 5 e- de valencia comletarán la estructura de enlaces, quedando el quinto e- débilmente ligado al átomo. A temeratura ambiente, e incluso inferior, este e- se libera con facilidad y uede entonces moverse or la red cristalina, or lo que constituye un ortador. Es imortante señalar que cuando se libera este e-, en la estructura de enlaces no queda ninguna vacante en la que ueda caer otro e- ligado. A estos elementos que tienen la roiedad de ceder e- libres sin crear h+ al mismo tiemo, se les denomina donantes o imurezas donadoras y hacen al semiconductor de tio n or que a dicha temeratura tenemos muchos más e- que h+. En un semiconductor tio n, los e- de conducción son los ortadores mayoritarios (aunque no exclusivos).
3 Si un semiconductor intrínseco se contamina con imurezas tio n, no solo aumenta el número de e-, sino que además, el número de h+ disminuye or debajo del que tenía el semiconductor intrínseco, ya que el gran número de e- resentes aumenta la recombinación de los e- y los h+. Se cumle siemre n* ni Ley de acción de masas Esta ley tiene carácter general, cumliéndose tanto en semiconductores intrínsecos como extrínsecos, ya sean estos últimos de tio n o de tio. Semiconductor Extrínseco tio N Con imurezas Donadoras N D Banda Conducción Banda Valencia Niveles energéticos uestos or las imurezas Donadoras N D 3
4 Semiconductores tio Imurezas Acetoras Cuando sustituimos un átomo de Si or otro que tenga 3 e- de valencia. Dicho átomo no comleta la estructura de enlaces. De ahí que a temeratura ambiente e incluso inferiores, un e- ligado de un átomo vecino ase a ocuar dicha vacante comletando, de esta forma, la estructura de enlaces y creando, al mismo tiemo, un h+. A estos elementos que tienen redisosición ara acetar e ligados se les conoce con el nombre de acetadores o imurezas acetadoras y se dicen que hacen al material de tio ya que éste conduce, fundamentalmente (aunque no de forma exclusiva), mediante los h+. Semiconductor Extrínseco tio P Con imurezas Acetoras N A Banda Conducción Banda Valencia Niveles energéticos uestos or las imurezas Acetoras N A 4
5 DENSIDAD DE CARGAS Finalmente, es de señalar que cuando el átomo donador o acetador, cede o admite e- resectivamente queda cargado ositiva / negativamente. Sin embargo, el ion corresondiente tiene su estructura de enlaces comleta. Es una carga fija que no uede contribuir a la conducción de corriente eléctrica. Por otra arte, el cristal es eléctricamente neutro, es decir, debe haber el mismo número de cargas ositivas y negativas. La neutralidad de carga se debe mantener, Por lo tanto. Puede hacerse un cálculo exacto de la osición del Nivel de Fermi en un Material tio n la osición del Nivel de Fermi Igualmente ara un material tio : E E F F N Ec ktln N E V C D ktln N N V A 5
6 Proiedades Eléctricas del Si Densidad de Corriente J q( nn ) E Ley de Ohm Microscóica Concentración Intrínseca n J E i A T 3 e E kt Go Banda Prohibida. Variación con la temeratura ara Si E T 4 G( ) 1,1 3,6 *10 * Deendencia de la Movilidad con el Camo Eléctrico T Permanece constante si E< 10 3 V/cm en un Si tio n. Para 10 3 <E< 10 4 V/cm, μn varía aroximadamente como E -1/. Para mayores, μn es inversamente roorcional a E y la velocidad del ortador se aroxima al valor constante de 10 7 cm/seg vd E 6
7 Deendencia de la Movilidad con el Camo Eléctrico Deendencia de la resistividad con la Temeratura ara un Semiconductor Intrínseco 7
8 Concentración Deendencia de la resistividad con la Temeratura ara un Semiconductor Extrínseco T 50 K 500 K Tem. de Ionización Tem. Extrínseca de Imurezas Efecto Hall Método de medición: Sea el bloque conductor de la figura, or el cual circula una corriente en x ositiva. Esto significa que, si el material es de tio n, la velocidad de e- tiene dirección x negativa; y si el materiales de tio, los huecos tienen una velocidad en x ositiva. Si se alica un camo magnético B uniforma en z ositiva, las cargas en movimiento exerimentan una fuerza erendicular a su velocidad y al camo B, entonces F=qv x B, en dirección y sentido que deende de q. Como los ortadores n tendrían velocidad ouesta a los de, entonces, tanto si los ortadores son n o, Fres sería en la dirección y ositiva. Esto significa que los ortadores, se acumularían en la caa suerior del bloque, lo que sería una tensión entre la cara 1 y. Si se mide esta tensión negativa, es un semiconductor tio n, de lo contario es tio. 8
9 9
10 10
11 Modulación de la Conductividad LDR Generación y Recombinación 11
12 VARIACION TEMPORAL DE LA CARGA EN UN SEMICONDUCTOR Decrecimiento de la concentración de huecos or segundo debida a la recombinación g = Incremento de la concentración de huecos or segundo debida a la generación térmica d g dt Como ninguna carga uede ser creada ni destruida, deberá haber un incremento or segundo d/dt de la concentración d dt o ' o '( t) d' ' dt En condiciones de equilibrio, la concentración de huecos alcanzará su equilibrio térmico ara un valor o La densidad de ortadores inyectados o excedentes se define como el incremento de la concentración de minoritarios sobre el valor de equilibrio. La velocidad de cambio del exceso de concentración es roorcional a su concentración. El signo menos indica que el cambio es una disminución en el caso de recombinación, y es un aumento cuando la concentración se resarce de una disminución temoral. Debido a la radiación es un instante inicial (a t<=0), hay un exceso de concentración (0)=/-o, y cuando la radiación se elimine, la solución ara t>=0 será: ' ( t) '(0) e t ( o) e t 0 1
13 Difusión Como consecuencia del gradiente de concentración aarece un movimiento de artículas en el sentido contrario al crecimiento del gradiente. Pero estas artículas son cargas or lo tanto es una corriente electrica La constante de roorcionalidad entre el gradiente y la corriente es la constante de Difusión D n y D J n qd n dn J D d La constante de Difusión se relacione con la movilidad or Dn n D V T kt q kt V T 6mV q Relación de Einstein A 300ºK = 7ºC 13
14 Ejemlo de una corriente de Difusión Corriente de Difusión de huecos inyectados Ecuación de Continuidad Se refiere a todos los efectos que sufren las cargas en un semiconductor Puede aarecer variación temoral y esacial de las cargas. Se basa en que ninguna carga uede ser creada o destruida Tio n Suoniendo una barra de semiconductor de área transversal A y un ancho Por un extremo entra una corriente I y or el extremo ouesto sale I+ Di DI uede ser ositivo o negativo Internamente se tiene generación y recombinación 14
15 Ecuación de Continuidad Tio n di q Es el numero de ortadores que desaarecen or unidad de tiemo en el volumen A 1 di 1 qa q dj Disminución de la concentración de huecos or unidad de tiemo en el volumen A debida a la corriente I Ecuación de Continuidad Ecuación de Continuidad que contemla la variación Temoral y Esacial de la carga en el volumen A Tio n t 0 1 q dj 15
16 Ecuación de Continuidad Ecuación de Continuidad que contemla la variación Temoral y Esacial de la carga en el volumen A mas la corriente or camo Eléctrico E Para un SEM Tio N Para un SEM Tio P Ecu. de Cont. alicada sin variación temoral d o D L 1 ( D) d ' ' L x x L ' ( x) k1 L k '( x) '(0) e x L ( x) o 16
17 17 d dn n n n I D D d AqD dn AqD L x o L x e L AqD e L AqD x I ] (0) [ '(0) ) (
TEMA 3 TEORIA DE SEMICONDUCTORES
TEMA 3 TEORIA DE SEMICONDUCTORES PARTÍCULAS CARGADAS 8ÁTOMO Menor artícula de un elemento químico que osee sus roiedades 4ELECTRÓN Partícula elemental del átomo cargada negativamente Masa: m = 9,11 1-31
Física de semiconductores. El diodo
Fundamentos Físicos y Tecnológicos de la Informática Física de semiconductores. El diodo - Clasificación de los materiales. Teoría del electrón libre y teoría de bandas. Semiconductores extrínsecos e intrínsecos.
SEMICONDUCTORES. Semiconductores extrínsecos: estructura cristalina de Ge o Si Si con impurezas en bajo porcentaje de átomos distintos.
Diapositiva 1 Semiconductores extrínsecos: estructura cristalina de Ge o Si Si con impurezas en bajo porcentaje de átomos distintos. Característica: n p n ii Clasificación: Tipo-n Tipo-p Diapositiva 2
TEMA 3 TEORIA DE SEMICONDUCTORES
TEMA 3 TEORIA DE SEMICONDUCTORES (Guía de clases) Asignatura: Dispositivos Electrónicos I Dpto. Tecnología Electrónica CONTENIDO PARTÍCULAS CARGADAS Átomo Electrón Ión Hueco TEORÍA DE LAS BANDAS DE ENERGÍA
La gran mayoría de los dispositivos de estado sólido que actualmente hay en el mercado, se fabrican con un tipo de materiales conocido como
1.- Introducción 2.- Clasificación de los materiales. 3.- Semiconductores intrínsecos. Estructura cristalina. 4.- Semiconductores extrínsecos. Impurezas donadoras y aceptadoras. 4.1.- Semiconductores tipo
Movilidad en semiconductores extrínsecos
Movilidad en semiconductores etrínsecos µ (Movilidad) f(concentracion de Impurezas) f(tipo de Impurezas) μ = μ min + μ MAX μ min 1 + N N r α 1 µ (Movilidad) Dispersión de los portadores en la red Xtalina
TEMA2: Fundamentos de Semiconductores
TEMA2: Fundamentos de Semiconductores Contenidos del tema: Modelos de enlace y de bandas de energía en sólidos: tipos de materiales Portadores de carga en semiconductores Concentración de portadores Procesos
TEMA 2. Semiconductores
TEMA 2 ÍNDICE 2.1. CONDUCTORES, SEMICONDUCTORES Y AISLANTES 2.2. ESTRUCTURA CRISTALINA. MODELO DE ENLACE COVALENTE 2.3. CONCEPTO DE PORTADOR. CONCEPTO DE CAMPO ELÉCTRICO 2.4. MOVILIDAD DE PORTADORES POR
Ecuación Característica del diodo
Ecuación Característica del diodo La ecuación característica del diodo de acuerdo al modelo Shockley es: ( ) con ; k = Constante de Boltzmann, q = Carga del electrón y T = temperatura. En este documento
TEMA 1.1 SEMICONDUCTORES TEMA 1 SEMICONDUCTORES. DIODO. FUNDAMENTOS DE ELECTRÓNICA
TEMA 1.1 SEMICONDUCTORES TEMA 1 SEMICONDUCTORES. DIODO. FUNDAMENTOS DE ELECTRÓNICA 17 de febrero de 2015 TEMA 1.1 SEMICONDUCTORES Introducción. Metales, aislantes y semiconductores Modelo enlace covalente
Metal Cu Al Peso específico 8,9 g/cm 3 2,7 g/cm 3 Peso atómico 64 g/mol 27 g/mol Número de electrones libres 1 e - /átomo 3 e - /átomo
1. La densidad específica del tungsteno es de 18,8 g/cm 3 y su peso atómico es 184. La concentración de electrones libres es 1,23 x 10 23 /cm 3.Calcular el número de electrones libres por átomo. 2. Dadas
Distribución y Transporte de Portadores de Carga
Distribución y Transporte de Portadores de Carga Lección 01.2 Ing. Jorge Castro-Godínez Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica II Semestre 2013 Jorge Castro-Godínez Distribución
ESTRUCTURA DEL ÁTOMO
ESTRUCTURA DEL ÁTOMO BANDAS DE VALENCIA Y DE CONDUCCIÓN MECANISMOS DE CONDUCCIÓN EN UN SEMICONDUCTOR SEMICONDUCTORES *Semiconductor *Cristal de silicio *Enlaces covalentes. Banda de valencia *Semiconductor
Distribución y Transporte de Portadores de Carga
Distribución y Transporte de Portadores de Carga Lección 01.2 Ing. Jorge Castro-Godínez EL2207 Elementos Activos Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica I Semestre 2014 Jorge
Física de semiconductores
Física de semiconductores Clasificación de los materiales En función de su conductividad se clasifican en: Conductores Semiconductores Aislantes Sin embargo la conductividad está sujeta a la influencia
INTRODUCCIÓN A LOS SEMICONDUCTORES.
Tema 1 INTRODUCCIÓN A LOS SEMICONDUCTORES. 1.- Introducción 2.- Clasificación de los materiales. 3.- Semiconductores intrínsecos. Estructura cristalina. 4.- Semiconductores extrínsecos. Impurezas donadoras
Semiconductores. La característica común a todos ellos es que son tetravalentes
Semiconductores Un semiconductor es un dispositivo que se comporta como conductor o como aislante dependiendo del campo eléctrico en el que se encuentre. Elemento Grupo Electrones en la última capa Cd
Clase Física de semiconductores (I) Marzo de Índice de temas:
86.03/66.25 - Dispositivos Semiconductores - 1 o Cuat. 2015 Clase 2-1 Clase 2 1 - Física de semiconductores (I) Marzo de 2015 Índice de temas: 1. Modelo de enlace del Silicio: electrones y huecos 2. Generación
Sistemas de comunicaciones vía Fibra Óptica II
Sistemas de comunicaciones vía Fibra Óptica II UNIVERSIDAD TECNOLOGICAS DE LA MIXTECA INGENIERÍA EN ELECTRÓNICA NOVENO SEMESTRE DICIEMBRE 2005 M.C. MARIBEL TELLO BELLO TRANSMISORES DE FIBRA ÓPTICA TRANSMISORES
MATERIALES ELECTRICOS JUNTURA PN
MATERIALES ELECTRICOS JUNTURA PN Consideremos por separado un Semiconductor Tipo N y un semiconductor tipo P. Analicemos el Diagrama de Bandas de cada uno por separado. El semiconductor Tipo N tendrá una
INTRODUCCIÓN A LOS SEMICONDUCTORES.
Tema 1 INTRODUCCIÓN A LOS SEMICONDUCTORES. 1.- Introducción 2.- Clasificación de los materiales. 3.- Semiconductores intrínsecos. Estructura cristalina. 4.- Semiconductores extrínsecos. Impurezas donadoras
Sesión 7 Fundamentos de dispositivos semiconductores
Sesión 7 Fundamentos de dispositivos semiconductores Componentes y Circuitos Electrónicos Isabel Pérez / José A García Souto www.uc3m.es/portal/page/portal/dpto_tecnologia_electronica/personal/isabelperez
Propiedades de los Materiales. Propiedades eléctricas de los Materiales.
Propiedades de los Materiales. Propiedades eléctricas de los Materiales. Conductividad Eléctrica. Es la medida de la capacidad que tiene un material de la capacidad que tiene un material para conducir
CLASIFICACIÓN DE LOS MATERIALES POR SU CONDUCTIVIDAD. Mg. Ing. Ana María Echenique
CLASIFICACIÓN DE LOS MATERIALES POR SU CONDUCTIVIDAD Mg. Ing. Ana María Echenique CONCEPTO DE ELECTRÓNICA Laelectrónica,esunaramadelafísicaquetieneuncampodeaplicaciónmuy amplio Es el campo de la Bioingeniería,
CAPITULO II. DISPOSITIVOS SEMICONDUCTORES.
CAPITULO II. DISPOSITIVOS SEMICONDUCTORES. Tema 4. SEMICONDUCTORES. Las características físicas que permiten distinguir entre un aislante, un semiconductor y un metal, están determinadas por la estructura
TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA. FÍSICA DE SEMICONDUCTORES
TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA. FÍSICA DE SEMICONDUCTORES TTEEMAA 11: :: IINTTRRODUCCCCIIÓN AA LLAA EELLEECCTTRRÓNIICCAA... FFÍÍSSIICCAA DEE SSEEMIICCONDUCCTTORREESS 11 1) Cuál de los siguientes
Dispositivos Electrónicos
Dispositivos Electrónicos AÑO: 2010 TEMA 3: PROBLEMAS Rafael de Jesús Navas González Fernando Vidal Verdú E.T.S. de Ingeniería Informática Ingeniero Técnico en Informática de Sistemas: Curso 1º Grupo
CAPÍTULO 2. DISPOSITIVOS ELECTRÓNICOS Y FOTÓNICOS
CAPÍTULO 2. DISPOSITIVOS ELECTRÓNICOS Y FOTÓNICOS TEMA 4. PRINCIPIOS FÍSICOS DE LOS SEMICONDUCTORES. 4.1 INTRODUCCIÓN Las características físicas que permiten distinguir entre un aislante, un semiconductor
GUIA DIDACTICA DE ELECTRONICA N º6 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S.
1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA DECIMO SEGUNDO 6 DOCENTE(S) DEL AREA:NILSON YEZID VERA CHALA COMPETENCIA: USO Y APROPIACION DE LA TECNOLOGIA NIVEL DE COMPETENCIA: INTERPRETATIVA
GUIA DIDACTICA DE ELECTRONICA N º6 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA ONCE SEGUNDO 6
1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA ONCE SEGUNDO 6 DOCENTE(S) DEL AREA:NILSON YEZID VERA CHALA COMPETENCIA: USO Y APROPIACION DE LA TECNOLOGIA NIVEL DE COMPETENCIA: INTERPRETATIVA
4.- PROPIEDADES ELÉCTRICAS DE LOS SÓLIDOS FÍSICA DEL ESTADO SÓLIDO II
4.- DE LOS SÓLIDOS FÍSICA DEL ESTADO SÓLIDO II 4. Propiedades eléctricas de los sólidos Semiconductores extrínsecos. Dieléctricos. Ferroelectricidad. Piezoelectricidad. Semiconductores Extrínsecos Semiconductores
4.- PROPIEDADES ELÉCTRICAS DE LOS SÓLIDOS FÍSICA DEL ESTADO SÓLIDO II
4.- DE LOS SÓLIDOS FÍSICA DEL ESTADO SÓLIDO II 4. Propiedades eléctricas de los sólidos Conductividad eléctrica. Metales, semiconductores y aislantes. Semiconductores intrínsecos y extrínsecos. Dieléctricos.
TECNOLOGIA Y COMPONENTES ELECTRONICOS Y FOTONICOS PROBLEMAS DE SEMICONDUCTORES
1 er CURSO I. T. TLCOMUNICACIÓN CURSO 29-21 TCNOLOGIA Y COMPONNTS LCTRONICOS Y FOTONICOS PROBLMAS D SMICONDUCTORS 1.- Para un semiconductor especial a T=3 K, se sabe que G =1,45 e, N C =1, 1 18 cm -3,
Tema 20 Propiedades eléctricas de los materiales.
Tema 20 Propiedades eléctricas de los materiales. Las propiedades eléctricas miden la respuesta del material cuando se le aplica un campo eléctrico. Conductividad eléctrica R i = V ; R= resistencia del
TEMA 6: SEMICONDUCTORES
6.3 Semiconductores extrínsecos Aquel semiconductor sin defectos cristalinos pero con impurezas añadidas (semiconductor dopado) Tipos de impurezas: Dadoras: Aquellas impurezas con 1 electrón de más en
Electrónica y Semiconductores. Importancia
Electrónica y Semiconductores Importancia Materia de vanguardia Constantes cambios y avances Miniaturización La electrónica es la responsable del avance tecnológico humano de los últimos tiempos 1 Historia
Introducción a la Teoría de semiconductores y nivel de Fermi. Trabajo compilado por Willie R. Córdova Eguívar
Introducción a la Teoría de semiconductores y nivel de Fermi Trabajo compilado por Willie R. Córdova Eguívar Conducción en los semiconductores Los semiconductores son materiales que ocupan una posición
Copyright The McGraw-Hill Companies, Inc. Queda prohibida su reproducción o visualización sin permiso del editor.
Electrónica Tema 1 Semiconductores Contenido Consideraciones previas: Fuentes de corriente Teorema de Thevenin Teorema de Norton Conductores y Semiconductores Unión p-n Fundamentos del diodo 2 Fuente de
Tema 1: Teoría de Semiconductores INDICE
INDICE 1. Semiconductor intrínseco 2. Conducción por huecos (h + ) y electrones (e - ) 3. Semiconductor extrínseco: material tipo N (MTN) y tipo P (MTP) 4. Deriva y difusión de portadores 5. La unión P-N:
Principios Básicos Materiales Semiconductores
Principios Básicos Materiales Semiconductores Definición De Semiconductor Los semiconductores son materiales cuya conductividad varía con la temperatura, pudiendo comportarse como conductores o como aislantes.
Propiedades eléctricas
Capítulo 5 del temario (cap( cap.. 13 del libro de texto) Conductividad eléctrica en metales Ley de Ohm (microscópica y macroscópica) velocidad de deriva electrónica y resistividad Aislantes Propiedades
Introducción a la Electrónica de Dispositivos
Universidad de Oviedo Área de Tecnología Electrónica Introducción a la Electrónica de Dispositivos Materiales semiconductores La unión PN y los diodos semiconductores Transistores Departamento de Ingeniería
UNIVERSIDAD DE LEON. Departamento de Ingeniería Eléctrica y Electrónica TEMA 1 TEORÍA GENERAL DE SEMICONDUCTORES
UNIVERSIDAD DE LEON Departamento de Ingeniería Eléctrica y Electrónica TEMA 1 TEORÍA GENERAL DE SEMICONDUCTORES Electrónica Básica, Industrial e Informática Luis Ángel Esquibel Tomillo Introducción Para
1.1 Definición de semiconductor
Índice 1.- Introducción 1.1- Definición 1.2-Modelo de bandas de energía 1.3- Materiales intrínseco y extrínseco 2.-Tipos de materiales semiconductores 2.1- Estequiométricos (aislantes) 2.2- Imperfecciones
Semiconductores. Lección Ing. Jorge Castro-Godínez. II Semestre Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica
Semiconductores Lección 01.1 Ing. Jorge Castro-Godínez Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica II Semestre 2013 Jorge Castro-Godínez Semiconductores 1 / 54 Contenido Semiconductores
UNIDAD 2 Semiconductores
UNIDAD 2 Semiconductores Semiconductores Material capaz de conducir la electricidad mejor que un material aislante, pero no tan bien como un metal, entonces se puede decir que se encuentra a la mitad entre
Teniendo en cuenta que si el voltaje se mide en Volts y la corriente en Amperes las unidades de resistencia resultan ser
Ley de Ohm La resistencia se define como la razón entre la caída de tensión, entre los dos extremos de una resistencia, y la corriente que circula por ésta, tal que 1 Teniendo en cuenta que si el voltaje
Introducción a los Detectores. Basado en la exposición de Johanna Morales Adaptado por Martín Pérez Comisso Radioquímica 2013
Introducción a los Detectores Basado en la exposición de Johanna Morales Adaptado por Martín Pérez Comisso Radioquímica 2013 ALFA α BETA β GAMMA γ NEUTRÓN Papel Cobre Plomo Hormigón Detectores de radiación
Introducción a los Semiconductores
Introducción a los Semiconductores Un semiconductor es un elemento material cuya conductividad eléctrica puede considerarse situada entre las de un aislante y la de un conductor, considerados en orden
Conductividad eléctrica
Propiedades eléctricas La conductividad eléctrica (σ) es una propiedad física intrínseca de los materiales que proporciona información sobre la cantidad de carga que se conduce a través de un conductor.
IEO-394 Semiconductores. Juan E. Martínez P. Docente. UdeA
IEO-394 Semiconductores Juan E. Martínez P. Docente. UdeA Bandas de Energía Y Corrientes de Portadores en Semiconductores. PARTICION DE LOS NIVELES DE ENERGIA A medida que se traen juntos N átomos Cada
El Diodo TEMA 3. ÍNDICE 3.1. LA UNIÓN P-N EN EQUILIBRIO 3.2. POLARIZACIÓN DIRECTA E INVERSA 3.3. ECUACIÓN DEL DIODO IDEAL
TEMA 3 El Diodo El Diodo ÍNDICE 3.1. LA UNIÓN P-N EN EQUILIBRIO 3.2. POLARIZACIÓN DIRECTA E INVERSA 3.3. ECUACIÓN DEL DIODO IDEAL 3.4. FENÓMENOS DE AVALANCHA Y ZENER 3.5. OTROS TIPOS DE DIODOS. MODELOS
Teniendo en cuenta que si el voltaje se mide en Volts y la corriente en Amperes las unidades de resistencia resultan ser
Ley de Ohm La resistencia eléctrica de un resistor se define como la razón entre la caída de tensión, entre los extremos del resistor, y la corriente que circula por éste, tal que Teniendo en cuenta que
Bandas de Energía. Materiales Eléctricos. Teoría de Bandas 05/07/2012
Materiales Eléctricos Teoría de Bandas Bandas de Energía Cuando los átomos forman un cristal, se observa que los niveles de energía de los electrones más interiores no se ven afectados apreciablemente
SEMICONDUCTORES (parte 2)
Estructura del Silicio y del Germanio SEMICONDUCTORES (parte 2) El átomo de Silicio (Si) contiene 14 electrones dispuestos de la siguiente forma: 2 electrones en la primer capa (capa completa), 8 electrones
Semiconductores. Lección Ing. Jorge Castro-Godínez
Semiconductores Lección 01.1 Ing. Jorge Castro-Godínez EL2207 Elementos Activos Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica I Semestre 2014 Jorge Castro-Godínez Semiconductores
ELEN 3311 Electrónica I Prof. C. González Rivera Capítulo 1
ELEN 3311 Electrónica I - 1 - I. Sección 1.1, 1.: Materiales Semiconductores y la Junta p-n A. Estructura atómica Un estudio de los materiales, incluyendo su estructura atómica, es indispensable al estudiar
Apuntes: Energía Solar Fotovoltaica (ESF) Módulo 2: PRINCIPIO FÍSICO DE LOS DISPOSITIVOS FOTOVOLTAICOS
Apuntes: Energía Solar Fotovoltaica (ESF) Módulo 2: PRICIPIO FÍSICO DE LOS DISPOSITIVOS FOTOVOLTAICOS Prof. Rafael Martín Lamaison 5 de Marzo de 2004 COTEIDO Introducción: conceptos básicos Átomos Electrones
SEMICONDUCTORES. Silicio intrínseco
Tema 3: El Diodo 0 SEMICONDUCTORES Silicio intrínseco 1 SEMICONDUCTORES Conducción por Huecos A medida que los electrones se desplazan a la izquierda para llenar un hueco, el hueco se desplaza a la derecha.
Física del Estado Sólido Práctico 8 Estructura Electrónica de Bandas y Semiconductores
Física del Estado Sólido Práctico 8 Estructura Electrónica de Bandas y Semiconductores 1. Origen de las Bandas de Energía Considere un potencial cristalino unidimensional y sinusoidal U(x) = U 0 cos( π
TEMA 4 (Parte III) EL ENLACE QUÍMICO. METÁLICO
TEMA 4 (Parte III) EL ENLACE QUÍMICO. METÁLICO Mª PILAR RUIZ OJEDA BORJA MUÑOZ LEOZ Contenidos: 1. Introducción 2. Propiedades de los metales 3. Teoría del mar de electrones 4. Teoría de bandas: 4.1. Conductores
ELECTRONICA GENERAL. Tema 2. Teoría del Diodo.
Tema 2. Teoría del Diodo. 1.- En un diodo polarizado, casi toda la tensión externa aplicada aparece en a) únicamente en los contactos metálicos b) en los contactos metálicos y en las zonas p y n c) la
EL-2207 ELEMENTOS ACTIVOS
EL-2207 ELEMENTOS ACTIVOS Información General Curso: Código: Tipo de curso: Créditos/Horas por semana: Requisito: Correquisito: Suficiencia: Asistencia: Consulta: Evaluación: Elementos Activos EL-2207
SEMICONDUCTORES (parte 2)
Estructura del licio y del Germanio SEMICONDUCTORES (parte 2) El átomo de licio () contiene 14 electrones dispuestos de la siguiente forma: 2 electrones en la primer capa (capa completa), 8 electrones
FIZ Física Contemporánea
FIZ1111 - Física Contemporánea Interrogación N o 3 17 de Junio de 2008, 18 a 20 hs Nombre completo: hrulefill Sección: centering Buenas Malas Blancas Nota Table 1. Instrucciones - Marque con X el casillero
Operación y Modelado del Transistor MOS para el Diseño Analógico
Operación y Modelado del Transistor MOS para el Diseño Analógico Rev. 1.2 Curso CMOS AD. Fernando Silveira Instituto de Ingeniería Eléctrica F. Silveira Univ. de la República, Montevideo, Uruguay Curso
A su vez, una molécula está compuesta por átomos. Cada uno de ellos posee unas propiedades diferentes en el interior de la molécula que constituyen.
Constitución de la materia. Supongamos que cualquier sustancia de la naturaleza la dividimos en partes cada vez más pequeñas, conservando cada una de ellas las propiedades de la sustancia inicial. Si seguimos
Comportamiento Electrónico de los Materiales. Tema 2. Electrones en Sólidos. Teoría de Bandas de Energía.
Comportamiento Electrónico de los Materiales Tema. Electrones en Sólidos. Teoría de Bandas de Energía. .1 Teoría de Bandas de Energía..1.1 Partículas en interacción con objetos múltiples. Molécula de Hidrógeno.
Tema 1: Electrones, energía, átomos y sólidos
Tema 1: Electrones, energía, átomos y sólidos K. Kano: cap. 1 y cap. El modelo de Bohr Mecánica cuántica. Dualidad onda corpúsculo. Ecuación de Schrödinger en un átomo hidrogenoide. Números cuánticos Formación
TEMA 1.2 UNIÓN PN. DIODO. TEMA 1 SEMICONDUCTORES. DIODO. FUNDAMENTOS DE ELECTRÓNICA
TEMA 1.2 UNIÓN PN. DIODO. TEMA 1 SEMICONDUCTORES. DIODO. FUNDAMENTOS DE ELECTRÓNICA 09 de octubre de 2014 TEMA 1.2 UNIÓN PN. DIODO. Introducción. Unión PN en equilibrio térmico Unión PN polarizada Modelos
Primer laps0 MES I LA CARGA ELÉCTRICA
1 Primer laps0 MES I LA CARGA ELÉCTRICA La electricidad y el magnetismo son dos aspectos diferentes de una sola interacción, la electromagnética, la cual constituye una de las interacciones fundamentales
T( K) >500 N ioi /N* n i (cm -3 ) 0 1E5 7E7 7E7 7E7 7E7 1E10 6E12 3E14 1E19
Ejercicios relativos al semiconductor 1. Se dispone de una muestra de material semiconductor del que se conocen los siguientes datos a temperatura ambiente: kt = 0,025 ev n i = 1,5 10 10 cm -3 N A = 10
LABORATORIO DE TRANSFERENCIA DE CALOR CONDUCCIÓN UNIDIMENSIONAL
LABORATORIO DE TRANSFERENCIA DE CALOR CONDUCCIÓN UNIDIMENSIONAL 1 OBJETIVOS o Comrobar el fenómeno de transferencia de calor or conducción, tanto en dirección axial como en dirección radial, sin desconocer
Si un material tipo P y otro de tipo N se juntan mecánicamente para formar un único cristal, esa juntura se llama juntura PN o diodo de juntura.
CURSO: SEMICONDUCTORES UNIDAD 1: EL DIODO - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA 1. INTRODUCCIÓN Los dispositivos de estado sólido, tales como los diodos de juntura y los transistores se fabrican de
UD6.- TEORIA DE SEMICONDUCTORES EL DIODO
UD6. TEORIA DE SEMICONDUCTORES EL DIODO Centro CFP/ES CONSTITUCIÓN INTERNA DE LA MATERIA Moléculas y Átomos 1 CONSTITUCIÓN INTERNA DE LA MATERIA Clasificación de los cuerpos CONSTITUCIÓN INTERNA DE LA
Tema 4º. Corriente eléctrica
Tema 4º Corriente eléctrica Programa Corriente y densidad de corriente eléctrica. La ecuación de continuidad. Corriente de conducción. Ley de Ohm. Propiedades de conducción en los materiales: Conductores,
AMPLIFICADOR DIFERENCIAL BÁSICO CON EL AMPLIFICADOR OPERACIONAL IDEAL
AMPLIFICADOR DIFERENCIAL BÁSICO CON EL AMPLIFICADOR OPERACIONAL IDEAL Vo = A( v + i vi ) Realimentación negativa Con A =, el voltaje de salida distinto de cero implica v i + = vi = vi Entonces: V 2 v i
DIODO. Definición: Dispositivo Semiconductor Dos terminales Permite la Circulación de corriente ( I ) en un solo sentido
DIODO Definición: Dispositivo Semiconductor Dos terminales Permite la Circulación de corriente ( I ) en un solo sentido Símbolo y convenciones V - I: V F - - V R I F I R DIODO Ideal vs. Semiconductor DIODO
CELDAS FOTOVOLTAICAS. Juntura p-n (cont.) Corriente
Juntura p-n (cont.) Corriente Los portadores minoritarios pueden generarse térmicamente o por efecto fotoeléctrico. Una vez generados en la zona de vaciamiento (o en sus inmediaciones y alcanzan dicha
FUNDAMENTO DE ELECTRÓNICA
FUNDAMENTO DE ELECTRÓNICA REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA EDUCACIÓN SUPERIOR INSTITUTO UNIVERSITARIO EXPERIMENTAL DE TECNOLOGÍA DE LA VICTORIA LA VICTORIA EDO. ARAGUA
5. Semiconductores y la unión P-N
5. Semiconductores y la unión P-N Thomas Zimmer, Universidad de Burdeos, Francia Resumen Resultados del aprendizaje... 1 Antecedentes físicos de los semiconductores... 1 El cristal de Silicio... 1 Las
