TEMA 2. Semiconductores
|
|
|
- Lorenzo Cortés Cuenca
- hace 9 años
- Vistas:
Transcripción
1 TEMA 2
2 ÍNDICE 2.1. CONDUCTORES, SEMICONDUCTORES Y AISLANTES 2.2. ESTRUCTURA CRISTALINA. MODELO DE ENLACE COVALENTE 2.3. CONCEPTO DE PORTADOR. CONCEPTO DE CAMPO ELÉCTRICO 2.4. MOVILIDAD DE PORTADORES POR CAMPO Y POR CONCENTRACIÓN 2.5. MATERIALES INTRÍNSECOS Y EXTRÍNSECOS 2.6. EJERCICIOS RESUELTOS Y PROPUESTOS. 2
3 OBJETIVOS: 1. Conocer los principios físicos en los que se basa la tecnología actual de fabricación de circuitos integrados. 2. Conocer los fundamentos de la conducción eléctrica en los sólidos y las características especiales que presentan los materiales semiconductores. BIBLIOGRAFÍA: 1.- Fernández Ramos J. Díaz Lafuente J.L., Romero Sánchez J. Dispositivos Electrónicos para Estudiantes de Informática. Universidad de Málaga/Manuales, Daza Márquez A., López García J. 'Ejercicios de Dispositivos Electrónicos'. Universidad de Málaga/Manuales,
4 2.1. CONDUCTORES, SEMICONDUCTORES Y AISLANTES La materia está constituida por átomos, con sus electrones distribuidos en órbitas o capas, cada una de las cuales puede contener un número máximo permitido de electrones (P. exclusión de Pauli). La capa más externa con electrones es la capa de valencia y es determinante para las propiedades eléctricas y químicas de los elementos. Un electrón en la capa de valencia tiene una energía de la banda de valencia (Ev) Para que el electrón escape de la atracción del núcleo, es necesario que adquiera una energía mínima (Eg) para situarse en la banda de conducción (Ec). Así, Eg = Ec - Ev 4
5 2.1. CONDUCTORES, SEMICONDUCTORES Y AISLANTES Estructura de bandas de energía. (a) aislante (b) semiconductor (c ) conductor 5
6 2.1. CONDUCTORES, SEMICONDUCTORES Y AISLANTES En un buen aislante, las bandas de valencia y de conducción están muy separadas. Por tanto, para liberar pocos electrones que contribuyan a la conducción se necesita gran cantidad de energía. Por ejemplo, el diamante con Eg 6 ev. En un buen conductor, a la temperatura ambiente, las bandas de valencia y de conducción se solapan. Por tanto, se necesita muy poca energía para mantener corrientes eléctricas bastante intensas. Los semiconductores se caracterizan por tener una Eg 1 ev. siendo, 1 ev = qv = (1 602x10-19 C). (1 V.) = 1 602x10-19 J. 6
7 2.2. ESTRUCTURA CRISTALINA. MODELO DE ENLACE COVALENTE Silicio: Eg = 1.21 ev Germanio: Eg = ev Silicio: (14 electrones) 1s 2 2s 2 p 6 3s 2 p 2 La capa de valencia está incompleta, debe ganar o perder 4 electrones. Cuando dos átomos de silicio están próximos, la fuerza de enlace entre átomos vecinos hace que cada electrón de valencia sea compatible por uno de sus cuatro vecinos más próximos. ENLACE COVALENTE 7
8 2.3. CONCEPTO DE PORTADOR. CONCEPTO DE CAMPO ELÉCTRICO A temperatura ambiente, algunos enlaces covalentes se rompen debido al suministro de energía térmica al cristal, y es posible la conducción. Cada enlace covalente roto crea un par electrón-hueco, el electrón con carga negativa y el hueco con carga positiva (portadores) Cuando aparece un hueco, el electrón de valencia del átomo vecino deja su enlace covalente y llena el hueco, esto produce un nuevo hueco. Así, el hueco se mueve efectivamente en dirección contraria al electrón. (campo eléctrico) En un semiconductor puro (intrínseco), el número de huecos (p) es igual al número de electrones libres (n) (n=p=ni=pi) ni, pi son las concentraciones intrínsecas de portadores 8
9 2.4. MOVILIDAD DE PORTADORES POR CAMPO Y POR CONCENTRACIÓN El semiconductor en equilibrio, estudiado anteriormente, proporciona un marco de referencia para el estudio de fenómenos más complejos, como el movimiento de sus portadores, que ocurren cuando el semiconductor sale fuera del estado de equilibrio. Existen tres tipos de causas fundamentales que provocan el movimiento de los portadores: Arrastre, Difusión y Generación - Recombinación. Aunque el estudio se hace por separado, estos procesos son simultáneos dando lugar su estudio a ecuaciones diferenciales que habría que particularizar para cada caso concreto. 9
10 FENÓMENOS DE ARRASTRE Son movimientos de partículas cargadas en respuesta a un campo eléctrico aplicado. La fuerza que actúa sobre el portador debido al campo eléctrico acelera la partícula, aceleración que frecuentemente es interrumpida por los sucesivos choques con átomos del cristal, aunque el movimiento neto siempre es en la dirección del campo. 10
11 FENÓMENOS DE DIFUSIÓN Difusión es el proceso por el cual los portadores, como consecuencia del movimiento térmico aleatorio, tienden a redistribuirse desde las regiones de alta concentración hacia las regiones de baja concentración, obtiéndose una distribución uniforme de partículas. (Fick) Las densidades de corriente de difusión son directamente proporcionales a los gradientes de concentración La constante de proporcionalidad se llama constante de difusión. Jpd = - q Dp p y Jnd = q Dn n Considerando simultáneamente los fenómenos de arrastre y difusión, la densidad de corriente total puede expresarse como sigue: J = Jp + Jn = Jpa + Jpd + Jna + Jpa = = q ( p µp + n µn ) E + q ( Dn n - Dp p )
12 FENÓMENOS DE GENERACIÓN-RECOMBINACIÓN Generación es el proceso por el cual se crean portadores, y Recombinación aquel por el cual se destruyen. En un semiconductor intrínseco (n = p) en equilibrio, la agitación térmica genera continuamente nuevos pares electrón - hueco y otros pares desaparecen por recombinación. Si por una causa externa se produce un incremento de portadores en el cristal, al desaparecer la perturbación ese incremento va desapareciendo por recombinación hasta lograr de nuevo el equilibrio. La variación de la concentración de portadores por ese proceso es directamente proporcional al exceso de portadores y la constante de proporcionalidad es la inversa del tiempo de vida medio de dicho portador. dp / dt = - p / τp y dn / dt = - n / τn Se define la longitud de difusión (Lp y Ln) de los portadores minoritarios, como la distancia media que un portador minoritario puede recorrer en un mar de portadores mayoritarios antes de ser aniquilado por recombinación
ESTRUCTURA DEL ÁTOMO
ESTRUCTURA DEL ÁTOMO BANDAS DE VALENCIA Y DE CONDUCCIÓN MECANISMOS DE CONDUCCIÓN EN UN SEMICONDUCTOR SEMICONDUCTORES *Semiconductor *Cristal de silicio *Enlaces covalentes. Banda de valencia *Semiconductor
CAPITULO II. DISPOSITIVOS SEMICONDUCTORES.
CAPITULO II. DISPOSITIVOS SEMICONDUCTORES. Tema 4. SEMICONDUCTORES. Las características físicas que permiten distinguir entre un aislante, un semiconductor y un metal, están determinadas por la estructura
INTRODUCCIÓN A LOS SEMICONDUCTORES.
Tema 1 INTRODUCCIÓN A LOS SEMICONDUCTORES. 1.- Introducción 2.- Clasificación de los materiales. 3.- Semiconductores intrínsecos. Estructura cristalina. 4.- Semiconductores extrínsecos. Impurezas donadoras
La gran mayoría de los dispositivos de estado sólido que actualmente hay en el mercado, se fabrican con un tipo de materiales conocido como
1.- Introducción 2.- Clasificación de los materiales. 3.- Semiconductores intrínsecos. Estructura cristalina. 4.- Semiconductores extrínsecos. Impurezas donadoras y aceptadoras. 4.1.- Semiconductores tipo
UNIVERSIDAD DE LEON. Departamento de Ingeniería Eléctrica y Electrónica TEMA 1 TEORÍA GENERAL DE SEMICONDUCTORES
UNIVERSIDAD DE LEON Departamento de Ingeniería Eléctrica y Electrónica TEMA 1 TEORÍA GENERAL DE SEMICONDUCTORES Electrónica Básica, Industrial e Informática Luis Ángel Esquibel Tomillo Introducción Para
TEMA 3 TEORIA DE SEMICONDUCTORES
TEMA 3 TEORIA DE SEMICONDUCTORES (Guía de clases) Asignatura: Dispositivos Electrónicos I Dpto. Tecnología Electrónica CONTENIDO PARTÍCULAS CARGADAS Átomo Electrón Ión Hueco TEORÍA DE LAS BANDAS DE ENERGÍA
Movilidad en semiconductores extrínsecos
Movilidad en semiconductores etrínsecos µ (Movilidad) f(concentracion de Impurezas) f(tipo de Impurezas) μ = μ min + μ MAX μ min 1 + N N r α 1 µ (Movilidad) Dispersión de los portadores en la red Xtalina
TEMA2: Fundamentos de Semiconductores
TEMA2: Fundamentos de Semiconductores Contenidos del tema: Modelos de enlace y de bandas de energía en sólidos: tipos de materiales Portadores de carga en semiconductores Concentración de portadores Procesos
Sesión 7 Fundamentos de dispositivos semiconductores
Sesión 7 Fundamentos de dispositivos semiconductores Componentes y Circuitos Electrónicos Isabel Pérez / José A García Souto www.uc3m.es/portal/page/portal/dpto_tecnologia_electronica/personal/isabelperez
TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA. FÍSICA DE SEMICONDUCTORES
TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA. FÍSICA DE SEMICONDUCTORES TTEEMAA 11: :: IINTTRRODUCCCCIIÓN AA LLAA EELLEECCTTRRÓNIICCAA... FFÍÍSSIICCAA DEE SSEEMIICCONDUCCTTORREESS 11 1) Cuál de los siguientes
Dispositivos Electrónicos
Dispositivos Electrónicos AÑO: 2010 TEMA 3: PROBLEMAS Rafael de Jesús Navas González Fernando Vidal Verdú E.T.S. de Ingeniería Informática Ingeniero Técnico en Informática de Sistemas: Curso 1º Grupo
CLASIFICACIÓN DE LOS MATERIALES POR SU CONDUCTIVIDAD. Mg. Ing. Ana María Echenique
CLASIFICACIÓN DE LOS MATERIALES POR SU CONDUCTIVIDAD Mg. Ing. Ana María Echenique CONCEPTO DE ELECTRÓNICA Laelectrónica,esunaramadelafísicaquetieneuncampodeaplicaciónmuy amplio Es el campo de la Bioingeniería,
TEMA 6: SEMICONDUCTORES
6.3 Semiconductores extrínsecos Aquel semiconductor sin defectos cristalinos pero con impurezas añadidas (semiconductor dopado) Tipos de impurezas: Dadoras: Aquellas impurezas con 1 electrón de más en
Sistemas de comunicaciones vía Fibra Óptica II
Sistemas de comunicaciones vía Fibra Óptica II UNIVERSIDAD TECNOLOGICAS DE LA MIXTECA INGENIERÍA EN ELECTRÓNICA NOVENO SEMESTRE DICIEMBRE 2005 M.C. MARIBEL TELLO BELLO TRANSMISORES DE FIBRA ÓPTICA TRANSMISORES
GUIA DIDACTICA DE ELECTRONICA N º6 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S.
1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA DECIMO SEGUNDO 6 DOCENTE(S) DEL AREA:NILSON YEZID VERA CHALA COMPETENCIA: USO Y APROPIACION DE LA TECNOLOGIA NIVEL DE COMPETENCIA: INTERPRETATIVA
GUIA DIDACTICA DE ELECTRONICA N º6 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA ONCE SEGUNDO 6
1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA ONCE SEGUNDO 6 DOCENTE(S) DEL AREA:NILSON YEZID VERA CHALA COMPETENCIA: USO Y APROPIACION DE LA TECNOLOGIA NIVEL DE COMPETENCIA: INTERPRETATIVA
Ecuación Característica del diodo
Ecuación Característica del diodo La ecuación característica del diodo de acuerdo al modelo Shockley es: ( ) con ; k = Constante de Boltzmann, q = Carga del electrón y T = temperatura. En este documento
TEMA 1.1 SEMICONDUCTORES TEMA 1 SEMICONDUCTORES. DIODO. FUNDAMENTOS DE ELECTRÓNICA
TEMA 1.1 SEMICONDUCTORES TEMA 1 SEMICONDUCTORES. DIODO. FUNDAMENTOS DE ELECTRÓNICA 17 de febrero de 2015 TEMA 1.1 SEMICONDUCTORES Introducción. Metales, aislantes y semiconductores Modelo enlace covalente
UNIDAD 2 Semiconductores
UNIDAD 2 Semiconductores Semiconductores Material capaz de conducir la electricidad mejor que un material aislante, pero no tan bien como un metal, entonces se puede decir que se encuentra a la mitad entre
TEMA 3 TEORIA DE SEMICONDUCTORES
TEMA 3 TEORIA DE SEMICONDUCTORES PARTÍCULAS CARGADAS 8ÁTOMO Menor artícula de un elemento químico que osee sus roiedades 4ELECTRÓN Partícula elemental del átomo cargada negativamente Masa: m = 9,11 1-31
Bandas de Energía. Materiales Eléctricos. Teoría de Bandas 05/07/2012
Materiales Eléctricos Teoría de Bandas Bandas de Energía Cuando los átomos forman un cristal, se observa que los niveles de energía de los electrones más interiores no se ven afectados apreciablemente
Tema 1: Teoría de Semiconductores INDICE
INDICE 1. Semiconductor intrínseco 2. Conducción por huecos (h + ) y electrones (e - ) 3. Semiconductor extrínseco: material tipo N (MTN) y tipo P (MTP) 4. Deriva y difusión de portadores 5. La unión P-N:
Introducción a la Teoría de semiconductores y nivel de Fermi. Trabajo compilado por Willie R. Córdova Eguívar
Introducción a la Teoría de semiconductores y nivel de Fermi Trabajo compilado por Willie R. Córdova Eguívar Conducción en los semiconductores Los semiconductores son materiales que ocupan una posición
TEMA 5: INTROD. AL ESTADO SÓLIDO
5.3 Electrones libres en metales: modelo de Drude Se pretende explicar las propiedades de los metales a partir de diferentes modelos (5.3: Drude y 5.4: bandas) Propiedades de los metales: Todos, excepto
Clase Física de semiconductores (I) Marzo de Índice de temas:
86.03/66.25 - Dispositivos Semiconductores - 1 o Cuat. 2015 Clase 2-1 Clase 2 1 - Física de semiconductores (I) Marzo de 2015 Índice de temas: 1. Modelo de enlace del Silicio: electrones y huecos 2. Generación
Electrónica y Semiconductores. Importancia
Electrónica y Semiconductores Importancia Materia de vanguardia Constantes cambios y avances Miniaturización La electrónica es la responsable del avance tecnológico humano de los últimos tiempos 1 Historia
Semiconductores. La característica común a todos ellos es que son tetravalentes
Semiconductores Un semiconductor es un dispositivo que se comporta como conductor o como aislante dependiendo del campo eléctrico en el que se encuentre. Elemento Grupo Electrones en la última capa Cd
Física de semiconductores
Física de semiconductores Clasificación de los materiales En función de su conductividad se clasifican en: Conductores Semiconductores Aislantes Sin embargo la conductividad está sujeta a la influencia
Copyright The McGraw-Hill Companies, Inc. Queda prohibida su reproducción o visualización sin permiso del editor.
Electrónica Tema 1 Semiconductores Contenido Consideraciones previas: Fuentes de corriente Teorema de Thevenin Teorema de Norton Conductores y Semiconductores Unión p-n Fundamentos del diodo 2 Fuente de
Introducción a los Semiconductores
Introducción a los Semiconductores Un semiconductor es un elemento material cuya conductividad eléctrica puede considerarse situada entre las de un aislante y la de un conductor, considerados en orden
Thompson (1898) Rutherford (1911) Bohr (1913) Schrödinger (1926) NUMEROS CUANTICOS
Thompson (1898) Modelo Atómico Rutherford (1911) Bohr (1913) Propiedad corpuscular de las onda (PLANCK) Propiedad ondulatoria de las partículas (De Broglie) Schrödinger (1926) Números cuánticos 1 NUMEROS
TEMA 4 (Parte III) EL ENLACE QUÍMICO. METÁLICO
TEMA 4 (Parte III) EL ENLACE QUÍMICO. METÁLICO Mª PILAR RUIZ OJEDA BORJA MUÑOZ LEOZ Contenidos: 1. Introducción 2. Propiedades de los metales 3. Teoría del mar de electrones 4. Teoría de bandas: 4.1. Conductores
Semiconductores. Lección Ing. Jorge Castro-Godínez
Semiconductores Lección 01.1 Ing. Jorge Castro-Godínez EL2207 Elementos Activos Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica I Semestre 2014 Jorge Castro-Godínez Semiconductores
21/03/2017. Modelo Atómico. Donde se ubican en el Átomo E L E C T R O N E S. Modelo Atómico. Que energía tienen. Como interactúan
Modelo Atómico 1 Modelo Atómico E L E C T R O N E S Donde se ubican en el Átomo Que energía tienen Como interactúan 2 1 Thompson (1898): Esfera uniforme de materia con carga (+) en la cual se encuentran
CAPÍTULO 2. DISPOSITIVOS ELECTRÓNICOS Y FOTÓNICOS
CAPÍTULO 2. DISPOSITIVOS ELECTRÓNICOS Y FOTÓNICOS TEMA 4. PRINCIPIOS FÍSICOS DE LOS SEMICONDUCTORES. 4.1 INTRODUCCIÓN Las características físicas que permiten distinguir entre un aislante, un semiconductor
Tema 1: Electrones, energía, átomos y sólidos
Tema 1: Electrones, energía, átomos y sólidos K. Kano: cap. 1 y cap. El modelo de Bohr Mecánica cuántica. Dualidad onda corpúsculo. Ecuación de Schrödinger en un átomo hidrogenoide. Números cuánticos Formación
Semiconductores. Lección Ing. Jorge Castro-Godínez. II Semestre Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica
Semiconductores Lección 01.1 Ing. Jorge Castro-Godínez Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica II Semestre 2013 Jorge Castro-Godínez Semiconductores 1 / 54 Contenido Semiconductores
Conductividad eléctrica
Propiedades eléctricas La conductividad eléctrica (σ) es una propiedad física intrínseca de los materiales que proporciona información sobre la cantidad de carga que se conduce a través de un conductor.
Comportamiento Electrónico de los Materiales. Tema 2. Electrones en Sólidos. Teoría de Bandas de Energía.
Comportamiento Electrónico de los Materiales Tema. Electrones en Sólidos. Teoría de Bandas de Energía. .1 Teoría de Bandas de Energía..1.1 Partículas en interacción con objetos múltiples. Molécula de Hidrógeno.
1 1 ESTRUCTURA ATÓMICA
2 INTRODUCCIÓN A LOS SEMICONDUCTORES 11 ESTRUCTURA ATÓMICA Toda la materia está compuesta por átomos, y todos los átomos se componen de electrones, protones y neutrones. En esta sección aprenderá sobre
IEO-394 Semiconductores. Juan E. Martínez P. Docente. UdeA
IEO-394 Semiconductores Juan E. Martínez P. Docente. UdeA Bandas de Energía Y Corrientes de Portadores en Semiconductores. PARTICION DE LOS NIVELES DE ENERGIA A medida que se traen juntos N átomos Cada
INTRODUCCIÓN A LOS SEMICONDUCTORES.
Tema 1 INTRODUCCIÓN A LOS SEMICONDUCTORES. 1.- Introducción 2.- Clasificación de los materiales. 3.- Semiconductores intrínsecos. Estructura cristalina. 4.- Semiconductores extrínsecos. Impurezas donadoras
Distribución y Transporte de Portadores de Carga
Distribución y Transporte de Portadores de Carga Lección 01.2 Ing. Jorge Castro-Godínez Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica II Semestre 2013 Jorge Castro-Godínez Distribución
El Diodo TEMA 3. ÍNDICE 3.1. LA UNIÓN P-N EN EQUILIBRIO 3.2. POLARIZACIÓN DIRECTA E INVERSA 3.3. ECUACIÓN DEL DIODO IDEAL
TEMA 3 El Diodo El Diodo ÍNDICE 3.1. LA UNIÓN P-N EN EQUILIBRIO 3.2. POLARIZACIÓN DIRECTA E INVERSA 3.3. ECUACIÓN DEL DIODO IDEAL 3.4. FENÓMENOS DE AVALANCHA Y ZENER 3.5. OTROS TIPOS DE DIODOS. MODELOS
Propiedades de los Materiales. Propiedades eléctricas de los Materiales.
Propiedades de los Materiales. Propiedades eléctricas de los Materiales. Conductividad Eléctrica. Es la medida de la capacidad que tiene un material de la capacidad que tiene un material para conducir
Distribución y Transporte de Portadores de Carga
Distribución y Transporte de Portadores de Carga Lección 01.2 Ing. Jorge Castro-Godínez EL2207 Elementos Activos Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica I Semestre 2014 Jorge
Apuntes: Energía Solar Fotovoltaica (ESF) Módulo 2: PRINCIPIO FÍSICO DE LOS DISPOSITIVOS FOTOVOLTAICOS
Apuntes: Energía Solar Fotovoltaica (ESF) Módulo 2: PRICIPIO FÍSICO DE LOS DISPOSITIVOS FOTOVOLTAICOS Prof. Rafael Martín Lamaison 5 de Marzo de 2004 COTEIDO Introducción: conceptos básicos Átomos Electrones
EC 1113 CIRCUITOS ELECTRÓNICOS
EC 1113 CIRCUITOS ELECTRÓNICOS PRESENTACIÓN PERSONAL SECCIÓN 1 Prof. María Isabel Giménez de Guzmán Correo electrónico: [email protected] HORARIO Y UBICACIÓN SECCIÓN Martes: 9:30 a 11:30 am ELE 218 Jueves:
SEMICONDUCTORES. Semiconductores extrínsecos: estructura cristalina de Ge o Si Si con impurezas en bajo porcentaje de átomos distintos.
Diapositiva 1 Semiconductores extrínsecos: estructura cristalina de Ge o Si Si con impurezas en bajo porcentaje de átomos distintos. Característica: n p n ii Clasificación: Tipo-n Tipo-p Diapositiva 2
Tema 20 Propiedades eléctricas de los materiales.
Tema 20 Propiedades eléctricas de los materiales. Las propiedades eléctricas miden la respuesta del material cuando se le aplica un campo eléctrico. Conductividad eléctrica R i = V ; R= resistencia del
Semiconductores Extrínsecos
Materiales Eléctricos Semiconductores Semiconductores Extrínsecos Puesto que los semiconductores intrínsecos resentan el mismo número de e- de conducción que de h+ no son lo suficientemente flexibles ara
Operación y Modelado del Transistor MOS para el Diseño Analógico
Operación y Modelado del Transistor MOS para el Diseño Analógico Rev. 1.2 Curso CMOS AD. Fernando Silveira Instituto de Ingeniería Eléctrica F. Silveira Univ. de la República, Montevideo, Uruguay Curso
ELEN 3311 Electrónica I Prof. C. González Rivera Capítulo 1
ELEN 3311 Electrónica I - 1 - I. Sección 1.1, 1.: Materiales Semiconductores y la Junta p-n A. Estructura atómica Un estudio de los materiales, incluyendo su estructura atómica, es indispensable al estudiar
A su vez, una molécula está compuesta por átomos. Cada uno de ellos posee unas propiedades diferentes en el interior de la molécula que constituyen.
Constitución de la materia. Supongamos que cualquier sustancia de la naturaleza la dividimos en partes cada vez más pequeñas, conservando cada una de ellas las propiedades de la sustancia inicial. Si seguimos
1.1 Definición de semiconductor
Índice 1.- Introducción 1.1- Definición 1.2-Modelo de bandas de energía 1.3- Materiales intrínseco y extrínseco 2.-Tipos de materiales semiconductores 2.1- Estequiométricos (aislantes) 2.2- Imperfecciones
Tema 2: Enlace y propiedades de los materiales
En la mayoría de moléculas, los enlaces entre los átomos que las constituyen no es mediante la interacción coulombiana que hemos analizado en el caso del enlace iónico. Se necesita tener en cuenta el llamado
Contactos semiconductor - semiconductor
Contactos semiconductor semiconductor Lección 02.2 Ing. Jorge CastroGodínez EL2207 Elementos Activos Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica I Semestre 2014 Jorge CastroGodínez
Tema 3: COMPONENTES NO LINEALES: DIODOS
Tema 3: COMPOETES O LIEALES: DIODOS Mª del Carmen Coya Párraga Fundamentos de Electrónica 1 Índice: 3.1) Introducción a los elementos de circuitos no lineales: Propiedades básicas. Análisis gráfico con
Tema 7 Estructura de los materiales.
Tema 7 Estructura de los materiales. Metales. Todos los metales son materiales cristalinos, es decir, sus átomos están ordenados siguiendo un patrón definido. Esquema de la estructura de un metal Poseen
MATERIALES ELECTRICOS JUNTURA PN
MATERIALES ELECTRICOS JUNTURA PN Consideremos por separado un Semiconductor Tipo N y un semiconductor tipo P. Analicemos el Diagrama de Bandas de cada uno por separado. El semiconductor Tipo N tendrá una
ELECTRONICA GENERAL. Tema 2. Teoría del Diodo.
Tema 2. Teoría del Diodo. 1.- En un diodo polarizado, casi toda la tensión externa aplicada aparece en a) únicamente en los contactos metálicos b) en los contactos metálicos y en las zonas p y n c) la
AMPLIFICADOR DIFERENCIAL BÁSICO CON EL AMPLIFICADOR OPERACIONAL IDEAL
AMPLIFICADOR DIFERENCIAL BÁSICO CON EL AMPLIFICADOR OPERACIONAL IDEAL Vo = A( v + i vi ) Realimentación negativa Con A =, el voltaje de salida distinto de cero implica v i + = vi = vi Entonces: V 2 v i
DETECTORES SEMICONDUCTORES ÁNGEL MANUEL LEMA FULGENCIO SAMUEL RODRIGO RUBIO
DETECTORES SEMICONDUCTORES ÁNGEL MANUEL LEMA FULGENCIO SAMUEL RODRIGO RUBIO DETECTORES SEMICONDUCTORES Funcionamiento. Tipos de detectores. Propiedades generales. Detectores semiconductores. FUNCIONAMIENTO
Física de semiconductores. El diodo
Fundamentos Físicos y Tecnológicos de la Informática Física de semiconductores. El diodo - Clasificación de los materiales. Teoría del electrón libre y teoría de bandas. Semiconductores extrínsecos e intrínsecos.
SEMICONDUCTORES. Silicio intrínseco
Tema 3: El Diodo 0 SEMICONDUCTORES Silicio intrínseco 1 SEMICONDUCTORES Conducción por Huecos A medida que los electrones se desplazan a la izquierda para llenar un hueco, el hueco se desplaza a la derecha.
Si un material tipo P y otro de tipo N se juntan mecánicamente para formar un único cristal, esa juntura se llama juntura PN o diodo de juntura.
CURSO: SEMICONDUCTORES UNIDAD 1: EL DIODO - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA 1. INTRODUCCIÓN Los dispositivos de estado sólido, tales como los diodos de juntura y los transistores se fabrican de
Introducción a los Detectores. Basado en la exposición de Johanna Morales Adaptado por Martín Pérez Comisso Radioquímica 2013
Introducción a los Detectores Basado en la exposición de Johanna Morales Adaptado por Martín Pérez Comisso Radioquímica 2013 ALFA α BETA β GAMMA γ NEUTRÓN Papel Cobre Plomo Hormigón Detectores de radiación
DIODO. Definición: Dispositivo Semiconductor Dos terminales Permite la Circulación de corriente ( I ) en un solo sentido
DIODO Definición: Dispositivo Semiconductor Dos terminales Permite la Circulación de corriente ( I ) en un solo sentido Símbolo y convenciones V - I: V F - - V R I F I R DIODO Ideal vs. Semiconductor DIODO
Principios Básicos Materiales Semiconductores
Principios Básicos Materiales Semiconductores Definición De Semiconductor Los semiconductores son materiales cuya conductividad varía con la temperatura, pudiendo comportarse como conductores o como aislantes.
Práctica 1 del DIODOS. Objetivos Identificar y btener la curva característica del diodo
Práctica 1 del DIODOS. Objetivos Identificar y btener la curva característica del diodo Material y equipo Diodo 1N4148, Protoboard, fuente de voltaje DC, Manual ECG, Volmetro Marco Teórico 1. TEORIA DEL
Materiales utilizados en diseños electrónicos
Materiales utilizados en diseños electrónicos Unión Metálica Se producen cuando se unen átomos que tienen electronegatividad baja y cercana (metales), ninguno de los átomos atrae con gran fuerza los electrones
4.- PROPIEDADES ELÉCTRICAS DE LOS SÓLIDOS FÍSICA DEL ESTADO SÓLIDO II
4.- DE LOS SÓLIDOS FÍSICA DEL ESTADO SÓLIDO II 4. Propiedades eléctricas de los sólidos Conductividad eléctrica. Metales, semiconductores y aislantes. Semiconductores intrínsecos y extrínsecos. Dieléctricos.
Incidencia de Anestesia General en Operación Cesárea: Registro de Tres Años. Castillo Alvarado, Frencisco Miguel. CAPÍTULO III
CAPÍTULO III ESTADÍSTICA DE LOS PORTADORES DE CARGA DEL SEMICONDUCTOR 1. Introducción. Cada material suele presentar varias bandas, tanto de conducción (BC) como de valencia (BV), pero las más importantes
TEMA 1.2 UNIÓN PN. DIODO. TEMA 1 SEMICONDUCTORES. DIODO. FUNDAMENTOS DE ELECTRÓNICA
TEMA 1.2 UNIÓN PN. DIODO. TEMA 1 SEMICONDUCTORES. DIODO. FUNDAMENTOS DE ELECTRÓNICA 09 de octubre de 2014 TEMA 1.2 UNIÓN PN. DIODO. Introducción. Unión PN en equilibrio térmico Unión PN polarizada Modelos
Metal Cu Al Peso específico 8,9 g/cm 3 2,7 g/cm 3 Peso atómico 64 g/mol 27 g/mol Número de electrones libres 1 e - /átomo 3 e - /átomo
1. La densidad específica del tungsteno es de 18,8 g/cm 3 y su peso atómico es 184. La concentración de electrones libres es 1,23 x 10 23 /cm 3.Calcular el número de electrones libres por átomo. 2. Dadas
Código de colores. Resistencias
Resistencias La función de las resistencias es oponerse al paso de la comente eléctrica.su magnitud se mide en ohmios ( ) y pueden ser variables o fijas. El valor de las resistencias variables puede ajustarse
Física de Semiconductores Curso 2007
Física de Semiconductores Curso 007 Ing. Electrónica- P00 Ing. Electrónica/Electricista P88 3er. Año, V cuat. Trabajo Práctico Nro. 3: Bloque Sólidos: Semiconductores intrínsecos Objetivos: Estudiar las
La electricidad es una forma de energía que proviene del átomo. Las sustancias se componen de unos elementos pequeñísimos, llamados átomos, o de una
La electricidad es una forma de energía que proviene del átomo. Las sustancias se componen de unos elementos pequeñísimos, llamados átomos, o de una combinación de átomos que son las moléculas y los compuestos.
UD6.- TEORIA DE SEMICONDUCTORES EL DIODO
UD6. TEORIA DE SEMICONDUCTORES EL DIODO Centro CFP/ES CONSTITUCIÓN INTERNA DE LA MATERIA Moléculas y Átomos 1 CONSTITUCIÓN INTERNA DE LA MATERIA Clasificación de los cuerpos CONSTITUCIÓN INTERNA DE LA
UNIVERSIDAD POLITECNICA SALESIANA UNIDAD2: SEMICONDUCTORES ING. JUAN M. IBUJÉS VILLACÍS, MBA
UNIVERSIDAD POLITECNICA SALESIANA UNIDAD2: SEMICONDUCTORES ING. JUAN M. IBUJÉS VILLACÍS, MBA Qué es un semiconductor? Es un material con una resistividad menor que un aislante y mayor que un conductor.
Fundamentación de la adecuación curricular de Física III a las necesidades de IACI. Relación con Electrónica Analógica I
1 Fundamentación de la adecuación curricular de Física III a las necesidades de IACI. Relación con Electrónica Analógica I En el campo de la Ingeniería en Automatización y Control, es común el desarrollo
1. Introducción a los Semiconductores. Electrónica Analógica
1. Introducción a los Semiconductores Electrónica Analógica Introducción a los Semiconductores Temas: Estructura atómica Aislantes, conductores y semiconductores Corriente en semiconductores Semiconductores
