Máquinas Eléctricas I - G862
|
|
|
- Miguel Giménez Ruiz
- hace 7 años
- Vistas:
Transcripción
1 Máquinas Eléctricas I - G862 Documentación de la prác2ca de laboratorio «Máquinas Síncronas» Miguel Ángel Rodríguez Pozueta Departamento de Ingeniería Eléctrica y Energé5ca Este tema se publica bajo Licencia: Crea5ve Commons BY- NC- SA 4.0
2 2015, Miguel Angel Rodríguez Pozueta Universidad de Cantabria (España) Departamento de Ingeniería Eléctrica y Energética This work is licensed under the Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License. To view a copy of this license, visit /licenses/by-nc-sa/ 4.0/ or send a letter to Creative Commons, PO Box 1866, Mountainn View, CA 94042, USA. Está permitida la reproducción total o parcial de este documento bajo la licencia Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Unported que incluye, entre otras, la condición inexcusable dee citar su autoría (Miguel Angel Rodríguez Pozueta - Universidad de Cantabria) y su carácter gratuito. Puede encontrar más documentación gratuita en la página web del autor: //personales.unican.es/rodrigma/primer/publicaciones.htm
3 UNIVERSIDAD DE CANTABRIA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA PRÁCTICA DE LABORATORIO: MÁQUINAS SÍNCRONAS Miguel Angel Rodríguez Pozueta 1.- CIRCUITO A MONTAR En esta práctica se utilizará un grupo de máquinas acopladas al mismo eje. Una es la máquina síncrona (de 4 polos salientes) a estudiar y la otra es una máquina de corriente continua shunt, que actúa como motor cuando la máquina síncrona funciona como generador y como freno si la máquina síncrona funciona como motor. Además, también se acoplará al grupo una tacodinamo o un encoder para medir la velocidad de giro. Los circuitos eléctricos de las máquinas síncrona y de corriente continua se muestran en las figuras de las páginas finales de este texto. El inductor de la máquina síncrona está alimentado con corriente continua mediante una fuente de tensión variable, la cual, junto con un reóstato Rrege conectado en serie, permite regular su corriente de excitación. El inducido, conectado en triángulo, se puede conectar a la red mediante el interruptor I1 o a una carga mediante el interruptor I2. No se deben cerrar los dos interruptores simultáneamente. Existe una serie de aparatos de medida en el inducido de la máquina síncrona que permiten realizar varias medidas y ensayos: un amperímetro (para medir la corriente de línea en el inducido), un fasímetro (para medir su factor de potencia), un voltímetro (para medir la tensión de línea en el inducido) y dos vatímetros monofásicos (para medir las potencias activa y reactiva). El fasímetro utilizado es monofásico y tal como se conecta permite medir el factor de potencia de un sistema trifásico equilibrado. Uno de los vatímetros monofásicos (el recorrido por la corriente de la fase S) está conectado de tal manera que mide la potencia reactiva si la carga es equilibrada. Mediante este aparato la potencia reactiva de la carga se calcula así: -1-
4 UNIVERSIDAD DE CANTABRIA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Q 3 K W Q E donde QE es la lectura realizada sobre el vatímetro, medida en divisiones de su escala, y KW es su constante de medida (medida en W/división). El otro vatímetro monofásico está conectado de tal manera que mide la potencia activa cuando la carga es equilibrada. Mediante este aparato la potencia activa de la carga se calcula así: P 3 K W P E donde PE es la lectura realizada sobre el vatímetro, medida en divisiones de su escala, y KW es su constante de medida (medida en W/división). Otros aparatos de medida conectados al inducido de la máquina síncrona y a la red permiten realizar la maniobra de sincronización de la máquina para acoplarla a la red. Estos aparatos son voltímetros y frecuencímetros de la máquina y de la red, voltímetro de cero (que mide la diferencia entre tensiones homólogas de la máquina y de la red) y sincronoscopios. 2.- DESIGNACIÓN DE BORNES La norma UNE EN ha introducido una serie de modificaciones en el marcado de los bornes de los devanados de las máquinas eléctricas rotativas. Según esta norma, cada devanado, fase de devanado o circuito auxiliar se identifica con una o dos letras y sus bornes se designan por esta letra más un subíndice numérico. Los bornes extremos se identifican con el subíndice 1 en el principio del devanado y con el subíndice 2 en el final. -2-
5 UNIVERSIDAD DE CANTABRIAA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Así, en el devanado inducido de una máquina síncrona trifásica (usualmente ubicado en el estator) las tres fases se denominan con las letras U, V y W. Por lo tanto, los bornes del devanado serán U1, V1 y W1 en los principios de las fases y U2, V2 V y W2 en los finales (Fig. 1a y tabla I). Antiguamente se utilizaban las letras U, V y W para los l principios y X, Y y Z para los finales (Fig. 1b y tabla I). Tabla I: Denominación de los extremos de las fases de un devanado trifásico NORMATIVA ACTUAL Fases Principios Finales L1 U1 U2 L2 V1 V2 W L3 W1 W2 NORMATIVA ANTERIO OR Fases R S T Principios U V W Finales X Y Z a) b) Fig. 1: Denominación de loss bornes de un devanado inducido trifásico: a) denominación actual (UNE EN ); b) denominación antigua -3-
6 UNIVERSIDAD DE CANTABRIAA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Por otra parte, los extremos del devanado inductor de unaa máquina síncrona (alimentado con corriente continua y usualmente ubicado en el rotor) se designan F1 y F2 (Fig. 2a). Antiguamente se utilizaban las letras I y K (Fig. 2b) para designar los extremos de este devanado. En los circuitos representados en las figuras del final de este texto se ha utilizado la designación antigua. El lector puede adaptar estas figuras a la designación actual teniendo en cuenta las Figs. 1 y 2 y la Tabla I. a) b) Fig. 2: Devanado inductor de una máquina síncrona: a) denominación actual (UNE EN ); b) denominación antigua 3.- MEDIDAS Y ENSAYOS Se empezará midiendo la resistencia de cada una de las tres fases del devanado inducido de la máquina síncrona utilizando un polímetro o un puentee de Wheatstone. Las medidas se realizan en frío, por lo que las resistencias durante el funcionamif iento de la máquina se calcularán afectando de un coeficiente de temperatura K a los valores medidos. El valor que se usará como resistencia del inducido será la media de la resistencia de sus tres fases. A continuación, se pondrá en marcha el motor de corriente continua y se dejará a la máquina síncrona actuando como alternador aislado (sin conectar en paralelo con ningúnn otro ni con la red) ). Esto permitirá observar los efectos de variar la corriente de excitación y de la velocidad en esta forma de funcionamiento de la máquina síncrona. -4-
7 UNIVERSIDAD DE CANTABRIAA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Se continuará realizando los ensayos de vacío, de cortocircuito y dee carga reactiva (o de factor de potencia nulo) de la máquina síncrona. El ensayo de vacío see realizará dos veces; una aumentando la excitación desdee cero y otra bajando la excitación desde su valor máximo hasta cero. La curva de vacío que se utilizará será la media entre las dos obtenidas para eliminar el efecto de la histéresiss magnética. Los ensayos de cortocircuito y de cargaa reactiva se realizarán a la intensidad asignada. Seguidamentee a esta máquina síncrona funcionando como alternador aislado a través del interruptor I2 se le conectarán cargas de tipo resistivo, inductivo y capacitivo paraa observar el efecto de la reacción de inducido. Fig. 3: Característica de vacío y recta de entrehierroo -5-
8 UNIVERSIDAD DE CANTABRIAA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Con los resultados de los ensayos anteriores se puede representar la característica de vacío junto con la recta de entrehierro (Fig. 3), dibujar el triángulo dee Potier (ver la Fig. 4) para una intensidad de inducido igual a la asignada -lo que permite determinar la reactanciaa de dispersión X (realmente lo que se obtiene es la reactanciaa de Potier XP que tiene un valor casi igual a X ) y la f.m.m. longitudinal Fd-, obtener la corriente de excitación Ie0 -que proporciona la tensión asignada en vacío- y calcular la reactancia síncrona longitudinal Xd (noo saturada y saturada (ver las Figs. 5 y 6) para un valor de Ie igual a Ie0) ). En estos cálculos se trabajará con valores de tensión e intensidad de fase, por lo que hay que tener presente la forma de conexión de la máquina. En el cálculo de la reactancia síncrona longitudinal se tendrá en cuenta la resistencia del inducido medida al principio de la práctica. Fig. 4: Obtención del triángulo de Potier -6-
9 UNIVERSIDAD DE CANTABRIAA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Fig. 5: Obtención de la reactancia síncrona no saturada en un máquina de rotor cilíndrico (Para una máquina de polos salientes este método sirve para calcular Xd (no sat)) Fig. 6: Obtención de la reactancia síncrona saturada en un máquina de rotor cilíndrico (Para una máquina de polos salientes s este método sirve para calcular c Xd) -7-
10 UNIVERSIDAD DE CANTABRIAA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA -8-
11 UNIVERSIDAD DE CANTABRIAA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA -9-
12 UNIVERSIDAD DE CANTABRIAA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA -10-
13 UNIVERSIDAD DE CANTABRIA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Práctica de Laboratorio: MÁQUINAS SÍNCRONAS Nombre del alumno Asignatura Fecha de realización de la práctica Grupo de prácticas: ********************************************************************************************************************* Datos de la placa de características de la máquina síncrona Referencia Tensión asignada VNL (V) Velocidad asignada n1 = nn (rpm) Frecuencia asignada f (Hz) Intensidad asignada INL (A) Intensidad de excitación asignada IeN (ma) Características de los aparatos de medida empleados: Tipo de aparato Magnitud que mide Referencia Sistema indicador Clase de precisión Alcances Nº de divisiones de la escala Ctes. de medida -H.1-
14 (Recuerde que la magnitudes en negrita se obtienen durante el ensayo y las sin negrita se obtienen por cálculo a partir de los resultados de las medidas) Resistencia del inducido Coeficiente de corrección por temperatura = K = RR = RS = RT = R K R R R 3 R S T Ensayo de vacío Tipo de conexión: Velocidad = rpm VNL = V E 0L E 0L E 2 0L (E0 se obtiene de E0L teniendo en cuenta la forma de conexión del inducido durante el ensayo) Ie E0L E0L E0 (ma) (V) (V) (V) -H.2-
15 Ejemplo de característica de vacío (1) y de recta de entrehierro de un alternador síncrono Ensayo de cortocircuito Tipo de conexión: Velocidad = rpm Ie = = ma cortol = A Ic Ico rto = A Ensayo de carga reactiva o de factor de potencia nulo Tipo de conexión: Velocidad = rpm Ie = = ma L = A IL L = V VL I = A V = V -H.3-
16 Reacción de inducido Velocidad = rpm Ie = ma Vacío IL (A) 0 VL (V) Carga resistiva Carga inductiva Carga capacitiva Triángulo de Potier Para I = A se obtiene que: Fd = ma X I = V X = Ohms (Fd es la fuerza magnetomotriz (f.m.m.) del inducido según el eje longitudinal (eje d) cuando la corriente según el eje d en cada fase del inducido tiene un valor eficaz igual a I). Reactancias síncronas longitudinales Para Ie0 = ma se tiene que: E0c = V E0 = V Icorto = A (Relación entre las intensidades de cortocircuito (Icorto e I corto) correspondientes a dos valores I' distintos de la corriente de excitación I e (Ie e I e): I' e corto Icorto ) Ie Z no sat 0c = sat d E I corto E Z 0 d = I corto X d 2 2 no sat Z no sat R = d X d 2 2 sat Z sat R = d -H.4-
17 Observaciones: -H.5-
Máquinas Eléctricas I - G862
Máquinas Eléctricas I - G862 Documentación de la prác2ca de laboratorio «Máquinas Síncronas» Miguel Ángel Rodríguez Pozueta Departamento de Ingeniería Eléctrica y Energé5ca Este tema se publica bajo Licencia:
ALTERNADORES SÍNCRONOS AISLADOS
DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA DOCUMENTACIÓN DE LA PRÁCTICA DE LABORATORIO: ALTERNADORES SÍNCRONOS AISLADOS Miguel Angel Rodríguez Pozueta 2015, Miguel Angel Rodríguez Pozueta Universidad
UNIVERSIDAD DE CANTABRIA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA DOCUMENTACIÓN DE LA PRÁCTICA DE LABORATORIO: MÁQUINAS SÍNCRONAS
DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA DOCUMENTACIÓN DE LA PRÁCTICA DE LABORATORIO: MÁQUINAS SÍNCRONAS Miguel Angel Rodríguez Pozueta 2018, Miguel Angel Rodríguez Pozueta Universidad de Cantabria
Máquinas Eléctricas I - G862
Máquinas Eléctricas I - G862 Tema 4. Máquinas Síncronas. Problemas propuestos Miguel Ángel Rodríguez Pozueta Departamento de Ingeniería Eléctrica y Energé5ca Este tema se publica bajo Licencia: Crea5ve
Máquinas Eléctricas II
Máquinas Eléctricas II Tema 3. Máquinas síncronas. Problemas propuestos Miguel Ángel Rodríguez Pozueta Departamento de Ingeniería Eléctrica y Energé5ca Este tema se publica bajo Licencia: Crea5ve Commons
Máquinas Eléctricas I - G862
Máquinas Eléctricas I - G862 Tema 4. Máquinas Síncronas. Problemas propuestos Miguel Ángel Rodríguez Pozueta Departamento de Ingeniería Eléctrica y Energé5ca Este tema se publica bajo Licencia: Crea5ve
Máquinas Eléctricas II
Máquinas Eléctricas II Tema 4. Máquinas asíncronas o de inducción. Problemas propuestos Miguel Ángel Rodríguez Pozueta Departamento de Ingeniería Eléctrica y Energé5ca Este tema se publica bajo Licencia:
Máquinas Eléctricas II
Máquinas Eléctricas II Tema 2. Máquinas de corriente con4nua. Problemas propuestos Miguel Ángel Rodríguez Pozueta Departamento de Ingeniería Eléctrica y Energé5ca Este tema se publica bajo Licencia: Crea5ve
Máquinas Eléctricas I - G862
Máquinas Eléctricas I - G862 Documentación de la prác2ca de laboratorio «Máquinas Asíncronas o de Inducción» Miguel Ángel Rodríguez Pozueta Departamento de Ingeniería Eléctrica y Energé5ca Este tema se
Máquinas Eléctricas I - G862
Máquinas Eléctricas I - G862 Proto%po de Examen Final. Teoría y Problemas Miguel Ángel Rodríguez Pozueta Departamento de Ingeniería Eléctrica y Energé5ca Este tema se publica bajo Licencia: Crea5ve Commons
MÁQUINAS DE CORRIENTE CONTINUA
DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA DOCUMENTACIÓN DE LA PRÁCTICA DE LABORATORIO: MÁQUINAS DE CORRIENTE CONTINUA Miguel Angel Rodríguez Pozueta 2018, Miguel Angel Rodríguez Pozueta Universidad
TRANSFORMADORES TRIFÁSICOS CON CARGAS DESEQUILIBRADAS
DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA TRANSFORMADORES TRIFÁSICOS CON CARGAS DESEQUILIBRADAS Miguel Angel Rodríguez Pozueta Doctor Ingeniero Industrial 2016, Miguel Angel Rodríguez Pozueta Universidad
Máquinas Eléctricas I - G862
Máquinas Eléctricas I - G862 Tema 3. Máquinas Asíncronas o de Inducción. Problemas propuestos Miguel Ángel Rodríguez Pozueta Departamento de Ingeniería Eléctrica y Energé5ca Este tema se publica bajo Licencia:
Máquinas Eléctricas II
Máquinas Eléctricas II Tema 1. Transformadores. Problemas propuestos Miguel Ángel Rodríguez Pozueta Departamento de Ingeniería Eléctrica y Energé5ca Este tema se publica bajo Licencia: Crea5ve Commons
Máquinas Eléctricas II
Máquinas Eléctricas II Proto%po de Examen Final. Teoría y Problemas Miguel Ángel Rodríguez Pozueta Departamento de Ingeniería Eléctrica y Energé5ca Este tema se publica bajo Licencia: Crea5ve Commons BY-
APELLIDOS: NOMBRE: TEORÍA (Responder Razonadamente)
CURSO 12-13. 2º PARCIAL, 22 de Enero de 2.013. Curso de Adaptación al Grado en Tecnologías Industriales. Asignatura: MAQUINAS Y ACCIONAMIENTOS ELECTRICOS TEORÍA (Responder Razonadamente) 1.- La máquina
TRANSFORMADORES TRIFÁSICOS CON CARGAS MONOFÁSICAS
UNVESDAD DE CANTABA DEPATAMENTO DE NGENEÍA ELÉCTCA Y ENEGÉTCA TANSFOMADOES TFÁSCOS CON CAGAS MONOFÁSCAS Miguel Angel odríguez Pozueta Doctor ngeniero ndustrial 216, Miguel Angel odríguez Pozueta Universidad
Máquinas Eléctricas I - G862
Máquinas Eléctricas - G862 Tema 4. Máquinas Síncronas. Problemas resueltos Miguel Ángel Rodríguez Pozueta Departamento de ngeniería Eléctrica y Energé5ca Este tema se publica bajo Licencia: Crea5ve Commons
Máquinas Eléctricas I - G862
Máquinas Eléctricas - G862 Tema 4. Máquinas Síncronas. Problemas resueltos Miguel Ángel Rodríguez Pozueta Departamento de ngeniería Eléctrica y Energé5ca Este tema se publica bajo Licencia: Crea5ve Commons
UD. 4 MAQUINAS ELECTRICAS ELECTROTECNIA APLICADA A LA INGENIERIA MECÁNICA
ELECTROTECNIA APLICADA A LA INGENIERIA MECÁNICA UD. 4 MAQUINAS ELECTRICAS Descripción: Principios de electromagnetismo y funcionamiento y aplicaciones de las diferentes máquinas eléctricas. 1 Tema 4.3.
Máquinas Eléctricas I - G862
Máquinas Eléctricas I - G862 Tema 5. Máquinas eléctricas de Corriente Con7nua. Problemas propuestos Miguel Ángel Rodríguez Pozueta Departamento de Ingeniería Eléctrica y Energé5ca Este tema se publica
Universidad de Costa Rica
Universidad de Costa Rica Facultad de Ingeniería Escuela de Ingeniería Eléctrica IE-0615 Laboratorio Máquinas Eléctricas II Reporte 4: La Máquina Síncrona Polos Lisos. Ignacio Picado Vargas A94781 Zúrika
UNIVERSIDAD VERACRUZANA. FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA. ZONA XALAPA.
UNIVERSIDAD VERACRUZANA. FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA. ZONA XALAPA. LABORATORIO DE MÁQUINAS ELÉCTRICAS. RESPONSABLE Mtro. OSCAR MANUEL LÓPEZ YZA. NOMBRE: MATRÍCULA: MATERIA:Motores y Generadores
UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL AVELLANEDA DTO. DE ELÉCTRICA. Cátedra: Máquinas Eléctricas II
NIVERSIDAD TECNOLOGICA NACIONAL FACLTAD REGIONAL AVELLANEDA DTO. DE ELÉCTRICA Cátedra: Máquinas Eléctricas II TRABAJO PRÁCTICO N 2 Características Internas y Externas de Máquinas Sincrónicas - Triángulo
La curva de magnetización de un motor de corriente continua con excitación en paralelo es la siguiente, a 2000 r.p.m:
Examen de Máquinas Eléctricas I. 5 de febrero de 2002. Ingeniería Técnica Industrial. Universidad de La Laguna. Problema 1 (1.5 puntos) La curva de magnetización de un motor de corriente continua con excitación
EXAMEN DE SISTEMAS ELÉCTRICOS
NOMBRE: TEST DE TRANSFORMADORES Y MÁQUINAS 1ª PREGUNTA RESPUESTA A 50 Hz, un transformador tiene unas pérdidas por histéresis de 3 kw siendo las pérdidas totales en el hierro de 5 kw. Si la frecuencia
III Examen Parcial Máquinas Eléctricas I (06/07/04)
III Examen Parcial Máquinas Eléctricas I (06/07/04) A una máquina de inducción se le realizan las siguientes pruebas: Vacío Vo = 416 V Io = 38 A Po = 800 W Cortocircuito Vcc = 170 V Icc = 188 A Pcc = 32000
Máquinas eléctricas de corriente alterna. Capítulo 3 Máquina Síncrona
Universidad Carlos III de Madrid Dept. Ingenería eléctrica Máquinas eléctricas de corriente alterna Capítulo 3 Máquina Síncrona David Santos Martín CAPÍTULO 3 Máquina Síncrona 3.1.- Introducción 3.2.-
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS MATERIA: ELECTROTECNIA OFICIALES DE GRADO (MODELO DE EXAMEN) Curso 2013-2014 INSTRUCCIONES GENERALES Y
RECOMENDACIONES PARA REALIZAR PRÁCTICAS EN UN LABORATORIO ELÉCTRICO
UNIVERSIDAD DE CANTABRIA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA RECOMENDACIONES PARA REALIZAR PRÁCTICAS EN UN LABORATORIO ELÉCTRICO Miguel Angel Rodríguez Pozueta Doctor Ingeniero Industrial
Universidad de Costa Rica Escuela de Ingeniería Eléctrica IE Máquinas Eléctricas II Grupo N 54 - Subgrupo N 03 I Ciclo 2016
Universidad de Costa Rica Escuela de Ingeniería Eléctrica IE 0615 - Máquinas Eléctricas II Grupo N 54 - Subgrupo N 03 I Ciclo 2016 Reporte 4: La Máquina Síncrona Polos Lisos. Generador Bajo Carga Mauricio
Máquinas Eléctricas I - G862
Máquinas Eléctricas I - G862 Tema 0. Lista de Símbolos Miguel Ángel Rodríguez Pozueta Departamento de Ingeniería Eléctrica y Energé5ca Este tema se publica bajo Licencia: Crea5ve Commons BY- NC- SA 4.0
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
OPCIÓN A Dos pilas iguales de fuerza electromotriz 1,5 V y resistencia interna 0,1 Ω. a) Si se asocian en serie y se conectan a una resistencia exterior, la intensidad que circula es de 3 A, cuál es el
Determinación de Parámetros de la Máquina Síncrona
de la Máquina Síncrona Dr. Irvin López García Departamento de Energía, Área de Ingeniería Energética y Electromagnética 2 Universidad Autónoma Metropolitana, Unidad Azcapotzalco (UAM-A) Laboratorio de
PRÓLOGO A LA SEGUNDA EDICIÓN... VII PRÓLOGO A LA TERCERA EDICIÓN... XI
PRÓLOGO A LA SEGUNDA EDICIÓN... VII PRÓLOGO A LA TERCERA EDICIÓN... XI I. FUNDAMENTOS DE ELECTROMAGNETISMO E INTRODUCCIÓN AL ESTUDIO DE LOS CIRCUITOS MAGNÉTICOS EN LAS MÁQUINAS ELÉCTRICAS... 1 I.1. PLANTEAMIENTO
PROBLEMAS DE MOTORES CORRIENTE CONTINUA
Departamento de Ingeniería Rural de la UPM PROBLEMAS DE MOTORES CORRIENTE CONTINUA Prf. Dr. José Andrés Sancho Llerandi Problema nº 1 Suponiendo que el flujo de una dínamo con excitación independiente
Bloque II: 5- Motores de corriente alterna (Motores trifásicos)
Bloque II: 5- Motores de corriente alterna (Motores trifásicos) 1.- Introducción: Corriente alterna y red trifásica Se denomina corriente alterna a la corriente eléctrica en la que la magnitud y dirección
Electrotecnia. Proves d accés a la universitat. Serie 2. Convocatòria Primera parte. Ejercicio 1
Proves d accés a la universitat Convocatòria 2015 Electrotecnia Serie 2 La prueba consta de dos partes de dos ejercicios cada una. La primera parte es común y la segunda tiene dos opciones (A y B). Resuelva
MEDICIONES ELÉCTRICAS I
1- Para medir la impedancia de entrada de un circuito lineal se realiza el montaje de la Fig. 1. El generador de funciones se ajusta para que entregue en vacío una señal sinusoidal de 2 V. de tensión pico.
Práctica 6: Máquina Síncrona. Conocer y determinar el papel de cada componente de la máquina síncrona.
IEE 1. Objetivos Clave: 1131073 Área de Ingeniería Energética y Electromagnética 2 Prof. Dr. Irvin López García e-mail: [email protected] Práctica 6: Máquina Síncrona Conocer y determinar el papel de
Electrotecnia. Proves d accés a la universitat. Serie 3. Convocatòria Primera parte
Proves d accés a la universitat Convocatòria 2016 Electrotecnia Serie 3 La prueba consta de dos partes de dos ejercicios cada una. La primera parte es común y la segunda tiene dos opciones (A y B). Resuelva
9. En la siguiente conexión: a) V L = V f b) V f = V L / 3 c) I L = I f / 3 d) ninguna de las anteriores es cierta. b) V f 3= V L c) I f = I L / 3
1. Un alternador a) es una maquina rotativa de corriente continua b) es una máquina estática de corriente alterna c) es una máquina rotativa de corriente alterna d) ninguna de las anteriores es correcta
Modelado y Simulación de Máquinas de Inducción Simétricas
Universidad de Sevilla Escuela Superior de Ingenieros Departamento de Ingeniería Eléctrica Proyecto Fin de Carrera Modelado y Simulación de Máquinas de Inducción Simétricas José Manuel Ortiz Ruiz Directores:
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A
OPCIÓN A Una batería con una tensión a circuito abierto E=100 V tiene una resistencia interna Rin=25 Ω y se conecta a una resistencia R=590 Ω junto a un voltímetro y un amperímetro como indica la figura.
Código: Titulación: INGENIERO TÉCNICO INDUSTRIAL (ELECTRICIDAD) Curso: 2
ASIGNATURA: MÁQUINAS ELÉCTRICAS Código: 127212004 Titulación: INGENIERO TÉCNICO INDUSTRIAL (ELECTRICIDAD) Curso: 2 Profesor(es) responsable(s): Dr. FRANCISCO DE ASÍS RUZ VILA JUAN JOSÉ ORTUÑO LÓPEZ Departamento:
CONCEPTOS BÁSICOS GENERADORES
CONCEPTOS BÁSICOS 1. Los dos cables de alimentación de un motor tienen una longitud de 3 m y están separados entre sí por 5 mm. Calcula la fuerza que se ejercen entre sí cuando por los cables circula una
F.E.M.S INDUCIDAS EN LOS DEVANADOS DE LAS MÁQUINAS ELÉCTRICAS
UNIVERSIDAD DE CANTABRIA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA F.E.M.S INDUCIDAS EN LOS DEVANADOS DE LAS MÁQUINAS ELÉCTRICAS Miguel Ángel Rodríguez Pozueta Doctor Ingeniero Industrial 009,
TECNOLOGÍA ELÉCTRICA. UNIDAD DIDÁCTICA 3 CONCEPTOS BÁSICOS A RETENER Y PROBLEMAS RESUELTOS
TECNOLOGÍA ELÉCTRICA. UNIDAD DIDÁCTICA 3 CONCEPTOS BÁSICOS A RETENER Y PROBLEMAS RESUELTOS 1.- CARACTERÍSTICAS DE LA MÁQUINA SÍNCRONA Las máquinas síncronas son máquinas eléctricas cuya velocidad de rotación
Contenido. Acerca del autor... Prólogo... Agradecimientos...
Contenido Acerca del autor... Prólogo... Agradecimientos... xiii xv xix Capítulo 1: CIRCUITOS MAGNÉTICOS Y CONVERSIÓN DE ENERGÍA...... 1 1.1. Introducción.................................... 1 1.2. Materiales
Z = 35 + j 18,31 (39,5 27,6 Ω) Y = 0, j 0,0117 S I = 2,53 2,38 A U AB = 50,6 2,38 V U BC = 25,17-87,6 V U CD = 37,95 2,38 V U DE = 71,5 92,4 V
CIRCUITOS CON EXCITACIÓN SENOIDAL Ejercicio 101: Para el circuito de la figura con U AE = 100 30,, Calcule: La impedancia de cada elemento y la total. La corriente y las tensiones parciales. Dibujar el
2.- Qué es lo que hay que hacer para invertir el sentido de giro de un motor trifásico con rotor en jaula de ardilla?
Curso: 1 - Prueba: 1 - Fecha 15/2/2010 SEP-Cuestionario 3- pagina 1 de 5 1.- Dependiendo del sistema de corriente de la red de alimentación, cuales son los tipos de motores eléctricos. Cuál de ellos es
Máquinas Asincrónicas (Parte 2.1)
UNIVERSIDAD NACIONAL DE MAR DEL PLATA Máquinas Eléctricas (342) Curso: Ingeniería Mecánica Máquinas Asincrónicas (Parte 2.1) Prof. Justo José Roberts Introducción Parte 1 Principio de funcionamiento de
Taller de Máquinas Eléctricas
INSTITUTO DE INGENIERÍA ELÉCTRICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE LA REPÚBLICA Taller de Máquinas Eléctricas Práctica: Alternador Curso 2014 Índice 1. Objetivos de la práctica 3 2. Descripción de
PRÁCTICA Nº 3: MÁQUINAS ROTATIVAS TEMA IV: Máquinas rotativas OBJETIVOS:
PRÁCTICA Nº 3: MÁQUINAS ROTATIVAS TEMA IV: Máquinas rotativas OBJETIVOS: Conocer y utilizar los equipos de laboratorio. Analizar el comportamiento de un motor asíncrono trifásico en vacío. Analizar el
Cuestiones de laboratorio Supone el 30% de la nota del laboratorio de máquinas eléctricas. Utilizar la PRIMERA columna de la hoja de respuestas.
DEPARTAMENTO DE INGENIERÍA ELÉCTRICA 0m 3º IEM. Máquinas Eléctricas 12 diciembre 2014 Prueba ordinaria Modelo A Duración: 3 horas PRIMERA PARTE: CUESTIONES (duración: 1 hora) Esta primera parte consta
Sea un motor de inducción con las siguientes indicaciones en su placa de características:
Examen de Máquinas Eléctricas I. 3 de febrero de 2004. Ingeniería Técnica Industrial. Universidad de La Laguna. Sea un motor de inducción con las siguientes indicaciones en su placa de características:
INDICE Capítulo 1. Conversión de Energía Capítulo 2. Inductancia Capítulo 3. Transformador
INDICE Capítulo 1. Conversión de Energía 1 1.1. Fuerza en un capacitor 2 1.2. El Toroide 5 1.3. Circuitos magnéticos en serie y paralelo 7 1.4. Otros sistemas comunes de unidades magnéticas 8 1.5. Materiales
Examen Febrero Electrotécnica 2 30 de Enero de 2017 IIE - Facultad de Ingeniería - Universidad de la República
Examen Febrero 2017 - Electrotécnica 2 30 de Enero de 2017 IIE - Facultad de Ingeniería - Universidad de la República Poner nombre y cédula en todas la hojas. Utilizar hojas separadas para cada ejercicio
MÁQUINAS ELÉCTRICAS-OPENLAB kw
ESTE SISTEMA ESTÁ CONSTITUIDO POR UN CONJUNTO DE COMPONENTES Y MÓDULOS ADECUADOS PARA EL ENSAMBLAJE DE MÁQUINAS ELÉCTRICAS ROTANTES, TANTO PARA CORRIENTE DIRECTA COMO PARA CORRIENTE ALTERNA. LOS ESTUDIANTES
UNIVERSIDAD DE CANTABRIA. Departamento de Ingeniería Eléctrica y Energética
ENSAYOS DE UN MOTOR ASINCRONO TRIFASICO Datos del motor a ensayar: Referencia del motor a ensayar: Tipo de motor según NEMA: Potencia nominal: kw Velocidad nominal: r.p.m. Tensión nominal: / V Frecuencia
MÁQUINAS ELÉCTRICAS II. (CÓDIGO )
CURSO ACADÉMICO: 2009/2010 PROGRAMA DE LA ASIGNATURA MÁQUINAS ELÉCTRICAS II. (CÓDIGO 307110202) CENTRO: E.U.INGENIERÍA TÉCNICA INDUSTRIAL. TITULACIÓN: INGENIERO TÉCNICO INDUSTRIAL EN ELECTRICIDAD TEMPORALIDAD:
EJERCICIOS PROPUESTOS DE MAQUINAS ELECTRICAS TEMA-2 (TRANSFORMADORES)
EJERCICIO Nº1 EJERCICIOS PROPUESTOS DE MAQUINAS ELECTRICAS TEMA-2 (TRANSFORMADORES) Un transformador monofásico de 10KVA, relación 500/100V, tiene las siguientes impedancias de los devanados: Ω y Ω. Al
CIDEAD. 2º Bachillerato. Electrotecnia Tema 12.- Sistemas trifásicos.
Desarrollo del tema.1. Concepto de sistemas polifásicos. 2. Conexión de las fuentes en estrella y en triángulo. 3. La conexión de los receptores. 4. Conexión en estrella y triángulo en receptores. 5. Resolución
Convocatòria Electrotecnia. Proves d accés a la universitat. Serie 1. Primera parte
Proves d accés a la universitat Electrotecnia Serie 1 La prueba consta de dos partes de dos ejercicios cada una. La primera parte es común y la segunda tiene dos opciones (A y B). Resuelva los ejercicios
I 1 H 1 " SJBLIOT~ Acerca del autor... Prólogo... Agradecimientos...
Contenido u :..:1. F CU1 SJBLIOT~ I 1 H 1 " Acerca del autor.......................................................... Prólogo................................ Agradecimientos..........................................................
Máquinas Eléctricas I - G862
Máquinas Eléctricas I - G86 Tema 3. Máquinas Asíncronas o de Inducción Miguel Ángel Rodríguez Pozueta Departamento de Ingeniería Eléctrica y Energé5ca Este tema se publica bajo Licencia: Crea5ve Commons
ARMÓNICOS EN LAS CORRIENTES DE VACÍO, EN LOS FLUJOS Y EN LAS TENSIONES DE TRANSFORMADORES
DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA ARMÓNICOS EN LAS CORRIENTES DE VACÍO, EN LOS FLUJOS Y EN LAS TENSIONES DE TRANSFORMADORES Miguel Angel Rodríguez Pozueta Doctor Ingeniero Industrial 2016,
MÁQUINAS ELÉCTRICAS-OPENLAB kw
ESTE SISTEMA ESTÁ CONSTITUIDO POR UN CONJUNTO DE COMPONENTES Y MÓDULOS ADECUADOS PARA EL ENSAMBLAJE DE MÁQUINAS ELÉCTRICAS ROTANTES, TANTO PARA CORRIENTE DIRECTA COMO PARA CORRIENTE ALTERNA. LOS ESTUDIANTES
MEDICIONES ELÉCTRICAS I
1- Para medir la impedancia de entrada de un circuito lineal se realiza el montaje de la Fig. 1. El generador de funciones se ajusta para que entregue en vacío una señal sinusoidal de 2 V. de tensión pico.
PERFIL DE MATERIA ELECTROTECNIA
PERFIL DE MATERIA Fecha: Octubre-2017 Página 1 de 13 PERFIL DE MATERIA ELECTROTECNIA CFGM INSTALACIONES ELECTRICAS Y AUTOMÁTICAS 2017/2018 1. CONTENIDOS MÍNIMOS 1. La electricidad. Conceptos - Generación
Electrotecnia General Tema 42 TEMA 42 ACOPLAMIENTO DE GENERADORES
TEMA 42 ACOPLAMIENTO DE GENERADORES 42.1 INTRODUCCIÓN. Una central de producción de energía eléctrica consiste en un conjunto de máquinas capaces de transformar energía mecánica, de cualquier tipo, en
TITULACIÓN: INGENIERO TÉCNICO DE MINAS
Ríos Rosas, 21 28003 MADRID. UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE MINAS ------- TITULACIÓN: INGENIERO TÉCNICO DE MINAS ESPECIALIDAD EN: RECURSOS ENERGÉTICOS COMBUSTIBLES
Circuitos Trifásicos con receptores equilibrados
FACULTAD DE INGENIERIA U.N.M.D.P. DEPARTAMENTO DE INGENIERIA ELECTRICA. ASIGNATURA: Electrotecnia 2 (Plan 2004) CARRERA: Ingeniería Eléctrica y Electromecánica Circuitos Trifásicos con receptores equilibrados
a las pruebas de circuito abierto y cortocircuito a los generadores sincrónicos,
Electricidad avanzada ENTREGA 1 Pruebas de circuito abierto y cortocircuito en los generadores sincrónicos La máquina sincrónica es hoy por hoy, la más ampliamente utilizada para convertir grandes cantidades
Práctica 7: Sincronización de un generador a la red eléctrica y principios fundamentales del motor síncrono
IEE 1. Objetivos Clave: 1131073 Área de Ingeniería Energética y Electromagnética 2 Prof. Víctor Manuel Jiménez Mondragón e-mail: [email protected] Práctica 7: Sincronización de un generador a la red eléctrica
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E
PRUEBS DE CCESO L UNIERSIDD L.O.G.S.E CURSO 2004-2005 - CONOCTORI: ELECTROTECNI EL LUMNO ELEGIRÁ UNO DE LOS DOS MODELOS Criterios de calificación.- Expresión clara y precisa dentro del lenguaje técnico
2.- Qué es lo que hay que hacer para invertir el sentido de giro de un motor trifásico con rotor en jaula de ardilla?
Curso: 1 - Prueba: 1 - Fecha 15/2/2010 1.- Dependiendo del sistema de corriente de la red de alimentación, cuales son los tipos de motores eléctricos. Cuál de ellos es el más utilizado? Por qué? RESPUESTA:
TECNOLOGÍA ELÉCTRICA. UNIDAD DIDÁCTICA 4 CONCEPTOS BÁSICOS A RETENER Y PROBLEMAS RESUELTOS
TECNOLOGÍA ELÉCTRICA. UNIDAD DIDÁCTICA 4 CONCEPTOS BÁSICOS A RETENER Y PROBLEMAS RESUELTOS.- CARACTERÍSTICAS DE LA MÁQUINA ASÍNCRONA O DE INDUCCIÓN Las principales características de estas máquinas son:
MÁQUINAS SÍNCRONAS. Fig. 9.1
MÁQUINAS SÍNCRONAS 229. ALTERNADOR Es una máquina eléctrica que transforma la energía mecánica en energía eléctrica bajo la forma de corriente alterna. 230. PRODUCCIÓN DE UNA FUERZA ELECTROMOTRIZ ALTERNA
Circuitos trifásicos equilibrados
GUIA DE PROBLEMAS Nº 5 Circuitos trifásicos equilibrados PROBLEMA Nº 1: Un generador trifásico suministra un total de 1800 W, con una corriente de línea de 10 A, a una carga trifásica equilibrada conectada
Problemas resueltos. Enunciados
Problemas resueltos. Enunciados Problema 1. Un motor de c.c (excitado según el circuito del dibujo) tiene una tensión en bornes de 230 v., si la fuerza contraelectromotriz generada en el inducido es de
Facultad de Ingeniería. Escuela de Eléctrica. Asignatura CONVERSIÓN DE LA
Tema: GENERADORES SINCRONOS EN PARALELO. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura CONVERSIÓN DE LA ENERGIA ELECTROMECÁNICA II. I. OBJETIVOS. Desarrollar un circuito de generadores y obtener
MÁQUINAS ELÉCTRICAS LABORATORIO No. 6
Nivel: Departamento: Facultad de Estudios Tecnológicos. Eléctrica. Materia: Maquinas Eléctricas I. Docente de Laboratorio: Lugar de Ejecución: Tiempo de Ejecución: G u í a d e L a b o r a t o r i o N o.
Circuitos Trifásicos con receptores equilibrados
FACULTAD DE INGENIERIA U.N.M.D.P. DEPARTAMENTO DE INGENIERIA ELECTRICA. ASIGNATURA: Electrotecnia 2 (Plan 2004) CARRERA: Ingeniería Eléctrica y Electromecánica Circuitos Trifásicos con receptores equilibrados
BOLETÍN DE PROBLEMAS SISTEMAS MONOFÁSICOS
Dpto. de Ingeniería Eléctrica E.T.S. de Ingenieros Industriales Universidad de Valladolid TECNOLOGÍA ELÉCTRICA Ingeniero Químico Curso 2004/2005 BOLETÍN DE PROBLEMAS SISTEMAS MONOFÁSICOS Problema 1 Calcular
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A
OPCIÓN A Hallar el valor que ha de tener la fuerza electromotriz, ε del generador intercalado en el circuito de la figura, para que el potencial del punto A sea 9 voltios. Para conseguir crear una inducción
Tema 1. Sistemas trifásicos
Tema 1. Sistemas trifásicos Desde que Emilio ha empezado a estudiar la electricidad, cada vez está más sorprendido. Primero fue la corriente continua, después la alterna y ahora resulta, que la forma más
65.48 LABORATORIO DE LAS INSTALACIONES ELECTRCAS
65.48 LBOOIO DE L INLIONE ELE GUI DE EJEIIO DEPMENO DE ELEOENI 1) Hallar el valor medio y eficaz de la siguiente onda I () 5 1 2 3 t ( useg) 2) Hallar el valor medio y eficaz de la siguiente onda U (v)
Conversión de Energía Electromecánica II. Objetivos Específicos. Introduccion Teorica. Te ma: GENERADOR SINCRONO TRIFASICO.
Te ma: GENERADOR SINCRONO TRIFASICO. Objetivos Específicos Introduccion Teorica Que el estudiante adquiera destreza en la conexión y operación del generador síncrono trifásico. Demostrar experimentalmente
MÁQUINAS ASÍNCRONAS O DE INDUCCIÓN
DOCUMENTACIÓN DE LA PRÁCTICA DE LABORATORIO: MÁQUINAS ASÍNCRONAS O DE INDUCCIÓN 1.- CONEXIONADO DE LOS MOTORES TRIFÁSICOS DE INDUCCIÓN a) b) c) Fig. 1: Caja de bornes de un motor asíncrono trifásico: a)
Máquinas Eléctricas I - G862
Máquinas Eléctricas I - G862 Documentación de la prác2ca de laboratorio «Transformadores Monofásicos» Miguel Ángel Rodríguez Pozueta José Carlos Lavandero González Departamento de Ingeniería Eléctrica
