CAPÍTULO 7. Etapas en cascada
|
|
|
- Vanesa Tebar Crespo
- hace 7 años
- Vistas:
Transcripción
1 CAPÍTULO 7 Etapas en cascada Resumen El tema de este capítulo son las etapas en cascada, abarcando su análisis y diseño de etapas en cascada. Incluye un método alternativo, en el que se tienen en cuenta los parámetros híbridos y r e. Se desarrollan ejercicios que contienen dos transistores, en los cuales se encuentra y se calcula el valor de todos sus componentes. Palabras clave: acople, desacople, ganancia total, ganancia individual. Cómo citar este capítulo? / How to cite this chapter? W. Celis, Etapas en cascada, en Electrónica sin barreras, Bogotá, Colombia: Ediciones Universidad Cooperativa de Colombia, 2018, pp DOI:
2 Chapter 7 Stages in Cascade Resumen The subject of this chapter is stages in cascade, covering their analysis and design. It includes an alternative method that considers hybrid and r e parameters. Exercises containing two transistors and in which the value of all their components is found and calculated are done. Keywords: coupling, decoupling, total gain, individual gain.
3 Etapas en cascada / Introducción Entre las ramas importantes de la electrónica están las comunicaciones, y es allí donde es necesario acoplar varias etapas en cascada para amplificar la señal de entrada. Objetivo Conocer y desarrollar la teoría y la técnica que permiten acoplar etapas en cascada. 7.2 Análisis de etapas en cascada Supongamos que se tienen conectadas varias etapas amplificadoras con transistores, como se muestra en la figura 7.1: Figura 7.1 Etapas en cascada. Fuente: [2] Cada etapa tiene su respectiva ganancia: Si el voltaje de entrada es: V i = 10μV Entonces, se pueden calcular los siguientes voltajes:
4 244 \ ELECTRÓNICA SIN BARRERAS Como estamos interesados en hallar la ganancia total de voltaje del sistema, se aplica la fórmula de ganancia total así: Se observa que: De este resultado se concluye que cuando hay varias etapas amplificadoras en cascada, la ganancia total es igual a la multiplicación de todas las ganancias individuales. De igual manera: El signo negativo hace referencia a que alguna etapa puede ser inversora o no inversora. Ahora tomemos dos transistores en cascada, como se muestra en la figura 7.2, cuya entrada es una señal alterna. En ese circuito, se van a hallar los siguientes parámetros: Z i, Z o, A Vt. A partir del circuito de la figura 7.2, se muestra la manera técnica de cómo se calculan estos parámetros por medio del análisis. Figura 7.2 Dos etapas en cascada. Fuente: Elaboración propia
5 Etapas en cascada / 245 Primer paso: Llevar las fuentes de dc a tierra, como se muestra en la figura 7.3: Figura 7.3 Circuito con fuentes dc a tierra. Fuente: Elaboración propia Segundo paso: Reemplazar los transistores por su circuito h o r e equivalente, como se muestra en la figura 7.4: Figura 7.4 Circuito con parámetros híbridos. Fuente: Elaboración propia Del análisis correspondiente al circuito híbrido equivalente se obtienen los siguientes cálculos: Impedancia de entrada Z i : (7.1) Impedancia de salida Z 0 : (7.2) Ganancia de voltaje del transistor 1: (7.3)
6 246 \ ELECTRÓNICA SIN BARRERAS Ganancia de voltaje del transistor de salida 2: (7.4) Ejemplo: Para el circuito de la figura 7.5, se pide hallar: A VT, Z i, Z 0, V 0, si V i = 25μV. Figura 7.5 Ejercicio de aplicación. Fuente: Elaboración propia
7 Etapas en cascada / 247 Ahora se toman dos transistores en cascada con resistencia de emisor sin condensador de desacople en emisor, cuya entrada es una señal alterna, y en ese circuito se hallan los siguientes parámetros: Z i, Z 0, A VT (figura 7.6). Figura 7.6 Transistores en cascada sin condensador de desacople. Fuente: Elaboración propia
8 248 \ ELECTRÓNICA SIN BARRERAS Primer paso: Llevar las fuentes de dc a tierra, como se muestra en la figura 7.7: Figura 7.7 Circuito con fuentes dc a tierra. Fuente: Elaboración propia Segundo paso: Reemplazar los transistores por su circuito h o r e equivalente, como se observa en la figura 7.8: Figura 7.8 Circuito con parámetros híbridos. Fuente: Elaboración propia Del análisis correspondiente al circuito híbrido equivalente se obtienen los siguientes cálculos: (7.5) (7.6) (7.7) (7.8)
9 Etapas en cascada / 249 (7.9) (7.10) (7.11) (7.12) 7.3 Diseño de etapas en cascada Se desea acoplar dos etapas con los siguientes requerimientos: A V1 = - 10, A V2 = - 10, como se muestra en la figura 7.9: Figura 7.9 Circuito con dos etapas en cascada diseño. Fuente: Elaboración propia Se comienzan los cálculos del circuito a partir de la segunda etapa (también se puede a partir de la primera). Se escoge V CC = 20V, se asume el valor de I C2 = 2mA. Se toma V C2 = V CC 2 para que no haya recorte de señal.
10 250 \ ELECTRÓNICA SIN BARRERAS Para la segunda etapa se tiene: Para la primera etapa se tiene: Se asume V C1 = 10V, I C1 = 2mA
11 Etapas en cascada / 251 El circuito queda configurado como se ve en la figura 7.10: Figura 7.10 Circuito con valores hallados. Fuente: Elaboración propia Prueba: Para la segunda etapa se tiene: Para la primera etapa se tiene: Conclusión: El circuito cumple con los requerimientos exigidos tanto desde el punto de vista de dc, como de ac. A continuación, se presenta un análisis muy similar para etapas en cascada. 7.4 Diseño de etapas en cascada método alternativo Presentamos una forma sencilla y original de efectuar el cálculo de todos los componentes para acoplar dos etapas en cascada y con ello amplificar la señal de entrada. Esto es necesario en la mayoría de las aplicaciones de electrónica y para circuitos de comunicaciones es fundamental el conocimiento de esta técnica.
12 252 \ ELECTRÓNICA SIN BARRERAS Como ejercicio se propone diseñar dos etapas en cascada (ver figura 7.11). La primera que tenga una ganancia de cuatro veces y la segunda una ganancia de cinco veces para una ganancia total de A V = 20. Figura 7.11 Circuito con dos etapas en cascada para diseño. Fuente: Elaboración propia Comenzamos el diseño a partir de la segunda etapa. Se asume: Del circuito se tiene que: Si se utiliza la fórmula de ganancia para el segundo transistor, se obtiene: Luego se halla:
13 Etapas en cascada / 253 Como: El circuito híbrido del segundo transistor es como se muestra en la figura 7.12: Figura 7.12 Circuito híbrido del segundo transistor. Fuente: Elaboración propia Ahora procedemos a desarrollar la primera etapa: Se asume el valor de:
14 254 \ ELECTRÓNICA SIN BARRERAS De donde: R L = Impedancia de acople. Ahora: Se hallan las resistencias del puente de base: Para hallar el valor del condensador de acople:
15 Etapas en cascada / 255 Nota: Z C2 es la impedancia vista por el condensador de acople. Según el criterio para hallar la capacitancia del condensador, se aplica: Al despejar C, se tiene que: Finalmente, el circuito queda con los siguientes valores (figura 7.13): Figura 7.13 Circuito con los valores del diseño. Fuente: Elaboración propia Prueba:
16 256 \ ELECTRÓNICA SIN BARRERAS Se observa que el circuito cumple con los requerimientos exigidos tanto desde el punto de vista de dc como de ac; además, se muestra con este diseño que los criterios para diseñar son muchos y dependen del correcto juicio del diseñador. 7.5 Taller propuesto capítulo 7 Diseñar la siguiente red de modo que: Figura 7.14 Ejercicio taller
Respuesta en frecuencia del transistor, realimentación y osciladores
CAPÍTULO 8 Respuesta en frecuencia del transistor, realimentación y osciladores Resumen En este capítulo se habla de la respuesta a bajas frecuencias del transistor, y respuesta en alta frecuencia del
Circuitos equivalentes del transistor para señales pequeñas, análisis a pequeña señal del transistor
CAPÍTULO 6 Circuitos equivalentes del transistor para señales pequeñas, análisis a pequeña señal del transistor Resumen Este capítulo analiza los circuitos equivalentes del transistor para señales pequeñas.
MODELOS DE PEQUEÑA SEÑAL: EL MODELO HÍBRIDO π Se eliminan las fuentes DC. El modelo también aplica para transistores pnp sin cambio de polaridades
MODELOS DE PEQUEÑA SEÑAL: EL MODELO HÍBRIDO π Se eliminan las fuentes DC El modelo también aplica para transistores pnp sin cambio de polaridades CORRIENTE DE EMISOR Y RESISTENCIA DE ENTRADA POR EL EMISOR
MODELOS DE PEQUEÑA SEÑAL: EL MODELO HÍBRIDO π Se eliminan las fuentes DC. El modelo también aplica para transistores pnp sin cambio de polaridades
MODELOS DE PEQUEÑA SEÑAL: EL MODELO HÍBRIDO π Se eliminan las fuentes DC El modelo también aplica para transistores pnp sin cambio de polaridades MODELOS DE PEQUEÑA SEÑAL: EL MODELO T Se eliminan las fuentes
Transistores de efecto de campo (fet)
CAPÍTULO 5 Transistores de efecto de campo (fet) Resumen En este capítulo se habla de los transistores de efecto de campo (FET). Se empieza por explicar sus características, construcción y funcionamiento.
DISEÑO DE UNCIRCUITO AMPLIFICADOR MONOETAPA EMISOR COMUN, EN AUTOPOLARIZACION CON ACOPLAMIENTO CAPACITIVO PARA MES.
PRACTICA 2 DISEÑO DE UNCIRCUITO AMPLIFICADOR MONOETAPA EMISOR COMUN, EN AUTOPOLARIZACION CON ACOPLAMIENTO CAPACITIVO PARA MES. Objetivo: El objetivo de esta práctica es que conozcamos el funcionamiento
EL TRANSISTOR BIPOLAR
EL TRANSISTOR BIPOLAR POLARIZACIÓN UTILIZANDO UNA FUENTE DE CORRIENTE: EL ESPEJO DE CORRIENTE El transistor Q1 está conectado de forma que actúa como un diodo. La corriente que va a circular por el emisor
Electrónica 1. Práctico 5 Transistores 1
Electrónica 1 Práctico 5 Transistores 1 Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic Circuits,
Circuitos lineales con amplificador operacional Guía 6 1/7
1/7 ELECTRÓNICA ANALÓGICA II Guía de problemas Nº 6 Circuitos lineales con amplificador operacional Problemas básicos 1. Para el circuito de la figura 1 determine las siguientes cantidades. a) La tensión
AMPLIFICADORES DE PEQUEÑA SEÑAL
AMPLIFICADORES DE PEQUEÑA SEÑAL Fuentes y Amplificadores 710199M Ing. Jorge Antonio Tenorio Melo 1 INTRODUCCION El amplificador es uno de los bloques funcionales más importantes de los sistemas electrónicos.
Amplificador en Emisor Seguidor con Autopolarización
Practica 3 Amplificador en Emisor Seguidor con Autopolarización Objetivo El objetivo de la práctica es el diseño y análisis de un amplificador colector común (emisor seguidor). Además se aplicara una señal
Electrónica 1. Práctico 5 Transistores 1
Electrónica 1 Práctico 5 Transistores 1 Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic Circuits,
1.- En el circuito de la figura 5.1 la impedancia de salida Ro es. Figura 5.1
Tema 5. Amplificadores con BJT 1.- En el circuito de la figura 5.1 la impedancia de salida Ro es RC 1 hre R c 1 Figura 5.1 2.- En el circuito de la figura 5.1 la impedancia de entrada es igual a R1 h ie
CAPÍTULO 4. El transistor
CAPÍTULO 4 El transistor Resumen El tema central de este capítulo es el transistor. Se inicia explicando la construcción del transistor y el análisis de corrientes. Posteriormente, se explica la amplificación
Electrónica Analógica 1
Trabajo Práctico 4: El transistor bipolar como amplificador. Modelo equivalente de pequeña señal. Parámetros híbridos. Configuraciones multietapa. Análisis en pequeña señal: método de trabajo La figura
TRANSISTORES DE EFECTO DE CAMPO
Máster en Mecatrónica EU4M Master in Mechatronic and MicroMechatronic ystems TRANITORE E EFECTO E CAMPO Fundamentos de Ingeniería Eléctrica Contenidos Funcionamiento Tipos de transistores FET Curvas características
DOS TRANSISTORES. AMPLIFICADOR CON UN TRANSISTOR NPN Y OTRO PNP. a) Polarización. β = 100 y Vbe 0 0,7V.
DOS TRANSISTORES AMPLIFICADOR CON UN TRANSISTOR NPN Y OTRO PNP. a) Polarización. β = 100 y Vbe 0 0,7V. En primer lugar se calcula el Thevenin equivalente del circuito de base de Q1 y todas las variables
Práctica #2 Amplificador Diferencial BJT y FET
Universidad de San Carlos de Guatemala Facultad de Ingeniería Escuela de Mecánica Eléctrica Laboratorio de Electrónica Electrónica 2 Vacaciones diciembre 2016 Práctica #2 Amplificador Diferencial BJT y
LABORATORIO DE DISPOSITIVOS ELECTRÓNICOS PRÁCTICA N 6
LABORATORIO DE DISPOSITIVOS ELECTRÓNICOS 1. TEMA PRÁCTICA N 6 ANÁLISIS AC Y DC DE UN TRANSISTOR BIPOLAR DE JUNTURA EN CONFIGURACIÓN EMISOR COMÚN, BASE COMÚN Y COLECTOR COMÚN 2. OBJETIVOS 2.1. Analizar
EL42A - Circuitos Electrónicos
ELA - Circuitos Electrónicos Clase No. 24: Amplificadores Operacionales (1) Patricio Parada [email protected] Departamento de Ingeniería Eléctrica Universidad de Chile 3 de Noviembre de 2009 ELA -
CONFIGURACIONES ESPECIALES: AMPLIFICADORES EN CASCADA
CONFIGUACIONES ESPECIALES: AMPLIFICADOES EN CASCADA 1 AMPLIFICADO EN CASCADA TEMA 8 Amplificador construido a partir de una serie de amplificadores, donde cada amplificador envía su salida a la entrada
INTRODUCCIÓN: OBJETIVOS:
INTRODUCCIÓN: En el desarrollo de esta práctica se observará experimentalmente el comportamiento del transistor bipolar BJT como amplificador, mediante el diseño, desarrollo e implementación de dos amplificadores
PRACTICA 1 CIRCUITO AMPLIFICADOR EN EMISOR COMÚN CON POLARIZACIÓN FIJA. Objetivo:
PRACTICA 1 CIRCUITO AMPLIFICADOR EN EMISOR COMÚN CON POLARIZACIÓN FIJA Objetivo: Comprender el comportamiento de un transistor en un amplificador. Diseñando y comprobando las diferentes configuraciones
Diodo semiconductor con corriente alterna
CAPÍTULO 3 Diodo semiconductor con corriente alterna Resumen Este capítulo inicia con las aplicaciones del diodo en AC, a través de la rectificación de media onda y rectificación de onda completa, con
EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO
EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO FORMA DE PRESENTACIÓN DE LAS ECUACIONES DEL MOSFET DE ENRIQUECIMIENTO Se define Para la región triodo (zona ohmica) VGS
Práctica 3. Diseño de un Transistor BJT en el Punto de Operación
Práctica 3. Diseño de un Transistor BJT en el Punto de Operación Universidad de San Carlos de Guatemala Facultad de Ingeniería Escuela de Mecánica Electrica Laboratorio de Electrónica Electrónica 1 Primer
Práctica 3. Diseño de un Transistor BJT en el Punto de Operación
Práctica 3. Diseño de un Transistor BJT en el Punto de Operación Universidad de San Carlos de Guatemala Facultad de Ingeniería Escuela de Mecánica Electrica Laboratorio de Electrónica Electrónica 1 Auxiliar:
Electrónica 2. Práctico 3 Alta Frecuencia
Electrónica 2 Práctico 3 Alta Frecuencia Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic
El amplificador operacional
Tema 7 El amplificador operacional Índice 1. Introducción... 1 2. El amplificador diferencial... 2 3. El amplificador operacional... 5 3.1. Configuración inversora... 7 3.2. Configuración no inversora...
Tema 3: Amplificadores de pequeña señal
Tema 3: Amplificadores de pequeña señal Índice 1 Conceptos de amplificación 2 Amplificadores monoetapa con transistores bipolares 3 Amplificadores monoetapa con transistores de efecto campo 4 Amplificadores
Transistor BJT; Respuesta en Baja y Alta Frecuencia
Transistor BJT; Respuesta en Baja y Alta Frecuencia Universidad de San Carlos de Guatemala, Facultad de Ingeniería, Escuela de Mecánica Eléctrica, Laboratorio de Electrónica 2, Primer Semestre 2017, Aux.
PARAMETROS DEL CIRCUITO DE CRUCE POR CERO PARA CIRCUITOS DE POTENCIA
PARAMETROS DEL CIRCUITO DE CRUCE POR CERO PARA CIRCUITOS DE POTENCIA En este documento se dará a conocer las bases suficientes que se deben tener en cuenta para el manejo del cruce por cero en los diferentes
EXAMEN DE ELECTRÓNICA ANALÓGICA 2º ELECTRONICOS
1 a PARTE DEL EXAMEN.- PREGUNTAS DE TEORÍA: 1) Propiedades dinámicas de la unión PN. Describa clara y concisamente el concepto de resistencia dinámica (incremental) de una unión PN. Demuestre cual es su
1.- Tensión colector emisor V CE del punto Q de polarización. a) 10,0 V b) 8,0 V c) 6,0 V
C. Problemas de Transistores. C1.- En el circuito amplificador de la figura se desea que la tensión en la resistencia R L pueda tomar un valor máximo sin distorsión de 8 V. Asimismo, se desea que dicha
CIRCUITOS DE CORRIENTE ALTERNA CON NUMEROS COMPLEJOS
CIRCUITOS DE CORRIENTE ALTERNA CON NUMEROS COMPLEJOS CIRCUITO R-L-C CONECTADO EN SERIE. Debido a que la impedancia (Z) es un termino general que se puede referir a una resistencia, una reactancia o combinación
BJT como amplificador en configuración de emisor común con resistencia de emisor
Práctica 9 BJT como amplificador en configuración de emisor común con resistencia de emisor Índice General 9.1. Objetivos................................ 73 9.2. Introducción teórica..........................
Circuitos con fuentes independientes de corriente y resistencias, circuitos R, I
MÉTODO DE LOS NUDOS Es un método general de análisis de circuitos que se basa en determinar los voltajes de todos los nodos del circuito respecto a un nodo de referencia. Conocidos estos voltajes se pueden
Informe de la Práctica 3: El Transistor BJT Como Amplificador - Pequeña Señal
Informe de la Práctica 3: El Transistor BJT Como Amplificador - Pequeña Señal Jose Alberto Ruiz, Mauricio Escobar. Laboratorio Electrónica Análoga II, Escuela de Mecatrónica, Facultad de Minas Universidad
Ejercicios Retroalimentación (feedback).
Ejercicios Retroalimentación (feedback). Ejercicio 12: Retroalimentación en circuitos con AO. Un Amplificador Inversor se realiza con dos resistencias de precisión, R 1 =100KΩ y R 2 = 200 KΩ, y tiene una
GANANCIA EN CIRCUITOS AMPLIFICADORES. LAURA MAYERLY ÁLVAREZ JIMÉNEZ ( ) MARÍA ALEJANDRA MEDINA OSPINA ( ) RESUMEN
GANANCIA EN CIRCUITOS AMPLIFICADORES. LAURA MAYERLY ÁLVAREZ JIMÉNEZ (20112007038) MARÍA ALEJANDRA MEDINA OSPINA (20112007050) RESUMEN Observar la amplificación del transistor mediante un análisis y diseño
Pr.A Boletín de problemas de la Unidad Temática A.I: Características principales y utilización
Pr.A Boletín de problemas de la Unidad Temática A.I: Características principales y utilización Pr.A.1. El diodo 1. Obtener de forma gráfica la corriente que circula por el diodo del siguiente circuito
Parámetros híbridos. Electrónica Analógica I. Bioingeniería
Parámetros híbridos Electrónica Analógica I. Bioingeniería Concepto de modelado Un modelo es la combinación de elementos de circuito, adecuadamente seleccionados, que se aproximan mejor al comportamiento
Practica 1 BJT y FET Amplificador de 2 Etapas: Respuesta en Baja y Alta Frecuencia
Universidad de San Carlos de Guatemala Facultad de Ingeniería Escuela de Mecánica Eléctrica Laboratorio de Electrónica Electrónica 2 Primer Semestre 2015 Auxiliar: Edvin Baeza Practica 1 BJT y FET Amplificador
Electrónica 1. Práctico 2 Amplificadores operacionales 2
Electrónica 1 Práctico 2 Amplificadores operacionales 2 Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic
EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO
EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO FORMA DE PRESENTACIÓN DE LAS ECUACIONES DEL MOSFET DE ENRIQUECIMIENTO Se define Para la región triodo (zona ohmica) VGS
Tema 1.0 Amplificador diferencial basado en transistores BJT
Tema 1.0 Amplificador diferencial basado en transistores BJT Particularmente este arreglo, establece un antecedente importante en el estudio de amplificadores operacionales; ya que representa una etapa
AMPLIFICACIÓN: ESTRUCTURAS BÁSICAS
1 DISPOSITIVOS ELECTRÓNICOS II Dispositivos Electrónicos II CURSO 2010-11 Temas 4,5 4,5 AMPLIFICACIÓN: ESTRUCTURAS BÁSICAS Miguel Ángel Domínguez Gómez Camilo Quintáns Graña PARTAMENTO TECNOLOGÍA ELECTRÓNICA
COLECCIÓN DE EJERCICIOS TEORÍA DE CIRCUITOS I
COLECCÓN DE EJECCOS TEOÍA DE CCUTOS ngeniería de Telecomunicación Centro Politécnico Superior Curso 9 / Aspectos Fundamentales de la Teoría de Circuitos Capítulo Problema.. (*) En cada uno de los dispositivos
UNIVERSIDAD FRANCISCO DE PAULA SANTANDER
OBJETIVOS 1. Evaluar e interpretar características fundamentales de transistores BJT. 2. Obtener la ganancia del circuito a partir del modelo en pequeña señal del transistor BJT. 3. Observar como varían
Electrónica 2. Práctico 7 Estructura de los Amplificadores Operacionales
Electrónica 2 Práctico 7 Estructura de los Amplificadores Operacionales Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro
CAPITULO XII PUENTES DE CORRIENTE ALTERNA
CAPITULO XII PUENTES DE CORRIENTE ALTERNA 2. INTRODUCCION. En el Capítulo IX estudiamos el puente de Wheatstone como instrumento de medición de resistencias por el método de detección de cero. En este
OSCILADORES POR ROTACIÓN DE FASE
OSILADOES PO OTAIÓN DE FASE Un ejemplo de un circuito oscilador que sigue el desarrollo básico de un circuito retroalimentado es el oscilador de rotación de fase. En la figura 05 se muestra una versión
Parcial_1_Curso.2012_2013. Nota:
Parcial_1_Curso.2012_2013. 1. El valor medio de una señal ondulada (suma de una señal senoidal con amplitud A y una señal de componente continua de amplitud B) es: a. Siempre cero. b. A/ 2. c. A/2. d.
DOS TRANSISTORES. AMPLIFICADOR CON UN TRANSISTOR NPN Y OTRO PNP. a) Polarización. β = 100 y Vbe 0 0,7V.
DOS TRANSISTORES AMPLIFICADOR CON UN TRANSISTOR NPN Y OTRO PNP. a) Polarización. β = 100 y Vbe 0 0,7V. En primer lugar se calcula el Thevenin equivalente del circuito de base de Q1 y todas las variables
Transistor BJT; Respuesta en Baja y Alta Frecuencia
Transistor BJT; Respuesta en Baja y Alta Frecuencia Universidad de San Carlos de Guatemala, Facultad de Ingeniería, Escuela de Mecánica Eléctrica, Laboratorio de Electrónica 2, Segundo Semestre 206, Aux.
DEPARTAMENTO: Electrónica ASIGNATURA: CÓDIGO: PAG.: 1 Electrónica I REQUISITOS: Redes Eléctricas I. (2107)
CÓDIGO: PAG.: 1 I Redes s I. (2107) PROPÓSITOS Esta asignatura es la continuación de los estudios en electrónica que deben cursar los estudiantes del ciclo común en el plan de estudio de y es requisito
UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERIA ELECTRÓNICA E INFORMÁTICA SÍLABO
SÍLABO ASIGNATURA: CIRCUITOS ELECTRONICOS 1 CÓDIGO: IEE307 1. DATOS GENERALES 1.1. DEPARTAMENTO ACADÉMICO : Ing. Electrónica e Informática 1.2. ESCUELA PROFESIONAL : Ingeniería Electrónica 1.3. CICLO DE
Vce 1V Vce=0V. Ic (ma)
GUIA DE TRABAJOS PRACTICOS P31 Bibliografía de Referencia Transistores y Circuitos Amplificadores * Boylestad, R & Nashelsky, L. Electrónica -Teoría de Circuitos y Dispositivos 10ª. Ed. Pearson Educación,
1. PRESENTANDO A LOS PROTAGONISTAS...
Contenido Parte 1. PRESENTANDO A LOS PROTAGONISTAS... 1 1. Un primer contacto con la instrumentación... 3 1.1 Introducción... 3 1.2 Conceptos de tierra y masa. Riesgos eléctricos... 4 1.2.1 La conexión
PROGRAMA INSTRUCCIONAL ELECTRONICA I
UNIVERSIDAD FERMIN TORO VICE RECTORADO ACADEMICO UNIVERSIDAD FACULTAD DE INGENIERIA ESCUELA DE MANTENIMIENTO MECÁNICO ESCUELA DE TELECOMUNICACIONES ESCUELA DE ELÉCTRICA ESCUELA DE COMPUTACIÓN PROGRAMA
INDICE. Prologo I: Prologo a la electrónica Avance Breve historia Dispositivos pasivos y activos Circuitos electrónicos
Prologo I: Prologo a la electrónica Avance Breve historia Dispositivos pasivos y activos Circuitos electrónicos INDICE Circuitos discretos e integrados Señales analógicas y digitales Notación 3 Resumen
Universidad de Carabobo Facultad de Ingeniería Departamento de Electrónica y Comunicaciones Electrónica I Prof. César Martínez Reinoso
Guía de Ejercicios Parte III. Transistores BJT 1. Para el circuito que se presenta a continuación, todos los transistores son exactamente iguales, Q1=Q2=Q3=Q4 y poseen una ganancia de corriente β=200.
Electrónica 2. Práctico 7 Estructura de los Amplificadores Operacionales
Electrónica 2 Práctico 7 Estructura de los Amplificadores Operacionales Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro
VGD = 0 < Vt = 2 Están en saturación Ecuaciones en el circuito MOSFET de la izquierda Iref = ID:
ESPEJO DE CORRIENTE CON MOSFET Hallar los valores de los voltajes y corrientes en el circuito. VGD = 0 < Vt = 2 Están en saturación Ecuaciones en el circuito MOSFET de la izquierda Iref = ID: Ecuación
1º Escuela Técnica Superior de Ingeniería de Telecomunicación TECNOLOGÍA Y COMPONENTES ELECTRÓNICOS Y FOTÓNICOS. PROBLEMAS de transistores MOS
1º Escuela écnica Superior de Ingeniería de elecomunicación ECNOLOGÍA Y COMPONENES ELECRÓNICOS Y FOÓNICOS 4 PROBLEMAS de transistores MOS EJERCICIOS de diodos: ECNOLOGÍA Y COMPONENES ELECRÓNICOS Y FOÓNICOS
MODELOS DE PEQUEÑA SEÑAL: EL MODELO HÍBRIDO π Se eliminan las fuentes DC. El modelo también aplica para transistores pnp sin cambio de polaridades
MODELOS DE PEQUEÑA SEÑAL: EL MODELO HÍBRIDO π Se eliminan las fuentes DC El modelo también aplica para transistores pnp sin cambio de polaridades MODELOS DE PEQUEÑA SEÑAL: EL MODELO T Se eliminan las fuentes
Verificar experimentalmente la operación teórica del oscilador basado en el puente de Wien.
Electrónica II. Guía 6 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales, aula 3.21 (Edificio 3, 2da planta). OSCILADOR DE PUENTE DE WIEN
El amplificador operacional
Tema 8 El amplificador operacional Índice 1. Introducción... 1 2. El amplificador diferencial... 2 3. El amplificador operacional... 4 3.1. Configuración inversora... 5 3.2. Configuración no inversora...
AMPLIFICADOR DRAIN COMÚN
AMPLIFICADOR DRAIN COMÚN * Circuito equivalente con el modelo π incluyendo ro * Ganancia de voltaje Se define Rp = RC//RL//r Es menor que 1 La salida está en fase con la entrada Resistencia de entrada
Electrónica 1. Práctico 2 Amplificadores operacionales 2
Electrónica 1 Práctico 2 Amplificadores operacionales 2 Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic
Nº07: PREAMPLIFICADOR DE RF BANDA ANCHA HF
1 Nº07: PREAMPLIFICADOR DE RF BANDA ANCHA HF INTRODUCCION Joan Borniquel Ignacio, EA3-EIS, 30-11-98. Sant Cugat del Vallés (Barcelona) [email protected] Para poder hacer mediciones o análisis de comportamiento
ESCUELA SUPERIOR POLITECNICA DEL LITORAL PROGRAMA DE ESTUDIOS 2. OBJETIVOS
ELECTRÓNICA I UNIDAD ACADÉMICA: CARRERA: ESPECIALIZACIÓN: ÁREA: TIPO DE MATERIA: EJE DE FORMACIÓN: Facultad de Ingeniería en Electricidad y Computación Ingeniería en Electricidad. Ingeniería en Telemática,
AVERÍAS DE UNA FUENTE DE ALIMENTACIÓN LINEAL
AVERÍAS DE UNA FUENTE DE ALIMENTACIÓN LINEAL Tensión de red baja (V1) Tensión de red alta (V1) Cable de red en circuito abierto Fusible de entrada o c.a. en circuito abierto Interruptor en circuito abierto
CIRCUITOS DE CORRIENTE DIRECTA Y LEYES DE KIRCHHOFF
CIRCUITOS DE CORRIENTE DIRECTA Y LEYES DE KIRCHHOFF M. Orozco, M. Orozco, S. Rodríguez, M. Bedoya, D. Vergara, Escuela de ingeniería, Universidad Pontificia Bolivariana, Medellín, Colombia. RESUMEN Este
Christian Marcelo Cajamarca Bueno.
Resumen En el siguiente informe se detalla al transistor BJT como amplificador en configuración base común viendo sus diferentes características en este modo y en los distintos circuitos propuestos, realizando
= = Amplificador inversor. Considere el amplificador operacional de la figura Obtengamos el voltaje de salida
Amplificadores operacionales. Los amplificadores operacionales, también conocidos como amp ops, se usan con frecuencia para amplificar las señales de los circuitos Los amp ops también se usan con frecuencia
Tecnología Electrónica
Universidad de Alcalá Departamento de Electrónica Tecnología Electrónica Ejercicios Versión: 2017-02-15 Capítulos 3 y 4: Transistores: modelos en pequeña señal y configuraciones básicas de amplificación
**** Lea completamente esta guía antes de realizar la práctica ****
1. OBJETIVOS ESCUELA DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA ÁREA: INFORMÁTICA INDUSTRIAL ASIGNATURA: LABORATORIO DE ELECTRÓNICA I PRÁCTICA 4 ANÁLISIS DEL TRANSISTOR BJT EN PEQUEÑA SEÑAL **** Lea completamente
Examen convocatoria Enero Ingeniería de Telecomunicación
Examen convocatoria Enero 2010 ELECTRÓNICA DE COMUNICACIONES Ingeniería de Telecomunicación Apellidos Nombre N o de matrícula o DNI Grupo Firma Electrónica de Comunicaciones Examen. Convocatoria del 26
6.071 Prácticas de laboratorio 3 Transistores
6.071 Prácticas de laboratorio 3 Transistores 1 Ejercicios previos, semana 1 8 de abril de 2002 Leer atentamente todas las notas de la práctica antes de asistir a la sesión. Esta práctica es acumulativa
CURSO: ELECTRÓNICA BÁSICA UNIDAD 1: EL AMPLIFICADOR TEORÍA PROFESOR: JORGE POLANÍA INTRODUCCIÓN
CURSO: ELECTRÓNICA BÁSICA UNIDAD 1: EL AMPLIFICADOR TEORÍA PROFESOR: JORGE POLANÍA INTRODUCCIÓN Los amplificadores son sistemas electrónicos que tienen como función amplificar una señal de entrada de voltaje
