Detección Multiusuario para DS-CDMA basado en SVM

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Detección Multiusuario para DS-CDMA basado en SVM"

Transcripción

1 9 Otra técnica basada en el aprendizaje y más conocida que la anterior es la basada en. Vamos a realizar una pequeña comparativa teórica de sobre ambas técnicas de clasificación. Estudiaremos los conceptos básicos de las Redes Neuronales para poder comprender mejor sus diferencias. Una red neuronal [17] puede verse como una máquina designada para modelar la forma en que el cerebro humano realiza una determinada tarea. Para lograr este objetivo, una red neuronal está formada por un conjunto de unidades de procesamiento interconectadas llamadas neuronas. Cada neurona recibe como entrada un conjunto de señales discretas o continuas, las pondera e integra, y transmite el resultado a las neuronas conectadas a ella. Cada conexión entre dos neuronas tiene una determinada importancia asociada denominada peso sináptico o, simplemente, peso. En los pesos se guarda la mayor parte del conocimiento que la red neuronal tiene sobre el problema en cuestión. El proceso mediante el cual se ajustan estos pesos para lograr un determinado objetivo se denomina aprendizaje o entrenamiento y el procedimiento concreto utilizado para ello se conoce como algoritmo de aprendizaje o algoritmo de entrenamiento. El ajuste de pesos es la principal forma de aprendizaje de las redes neuronales, aunque hay otras formas posibles como la modificación de la topología de la propia red neuronal. El aprendizaje de una Red Neuronal consiste en la auto-reorganización de los pesos de las conexiones que la forman, es decir, una red ha aprendido ha resolver un problema cuando encuentra una combinación de pesos que convierte los datos de entrada en los datos de salida deseados Este aprendizaje puede llevarse a cabo de dos maneras, por lo que existen dos tipos básicos de aprendizaje: Supervisado. El aprendizaje supervisado se caracteriza por el hecho de que enseña a la red a obtener una salida predeterminada, es decir, se da una entrada y una salida objetivo (salida deseada) y se intenta que la salida de la red se parezca a la salida objetivo. No supervisado. El aprendizaje no supervisado se basa en la propia organización de la red para organizar datos, es decir, se introducen datos de entrada, pero no una salida objetivo, por lo que la red organiza los datos atendiendo a sus características comunes(agrupa los datos en conjuntos, esto se conoce también como "clustering"). Página 105 de 162

2 Muchas redes neuronales se diseñan para encontrar un hiperplano que separe las muestras de las distintas clases. Normalmente se comienza con un hiperplano aleatorio que se va desplazando hasta que todos los datos del entrenamiento quedan en la parte correcta. Esto deja, inevitablemente, algunos puntos del entrenamiento muy cerca del hiperplano lo cual no es un resultado óptimo a la hora de generalizar. 9.1 Conceptos básicos. Inicialmente se aplica un sistema de clasificación basado en. Una red neuronal que se entrenará y validará con dichos datos de una forma automática. Una red neuronal [14] es un procesamiento distribuido masivamente paralelo que tiene una tendencia natural para almacenar conocimiento empírico y hacerlo disponible para el uso. Recuerda al cerebro en dos aspectos: 1. El conocimiento se adquiere por la red a través de un proceso de aprendizaje. 2. Las conexiones interneurónicas se conocen como pesos sinápticos y se usan para almacenar el conocimiento. A continuación se define una serie de conceptos que facilitarán la comprensión de este análisis automatizado de la imagen. Patrón: Descripción estructural o cuantitativa del objeto o región bajo estudio. El patrón está formado por uno o más descriptores. Representación del patrón: Vector de medidas. x i es el i-ésimo descriptor x1 x2 N es el número de descriptores x = x N Clases de patrones: 2 patrones pertenecen a una misma clase si comparten ciertas propiedades comunes. En nuestro caso particular existen 3 clases o grados de quemadura. Página 106 de 162

3 Figura 9.1: Arquitectura básica de una Red Neuronal (a) y una Neurona (b). Las redes neuronales artificiales están compuestas de gran cantidad de procesadores conectados entre sí y actuando en paralelo. Estos procesadores se les denomina neuronas. Tratan de simulan el comportamiento neuronal humano, sin embargo, los modelos neuronales biológicos son mucho más complejos que los modelos computacionales actuales. Neurona. La operación de una neurona es sumar los productos entre las componentes del vector de entrada x y un vector de pesos w; y la transforma según una función de activación f dando un escalar. Salida = f( w T x) = f ( N i= 1 w i x i ) (9.1) A este sumatorio se le suele añadir un valor de desplazamiento debido al peso de bias. f() es la función de activación. Función no lineal, creciente, diferencial y acotada asintóticamente. El número de neuronas en la capa de entrada coincide con el número de descriptores que se va a utilizar. El número de neuronas de la capa de salida coincide con el número de clases en las que se va a diferenciar las muestras (3). A las capas intermedias se les denomina Capas Ocultas. El número de capas ocultas y neuronas en cada capa es un parámetro de diseño que se deberá resolver por prueba y error.. En la mayoría de las aplicaciones sólo se utiliza una capa oculta. Página 107 de 162

4 9.2 Técnicas de optimización Consideremos una función de error ε (w) (también llamada función de coste), continuamente diferenciable, donde w es un vector con los pesos (parámetros) de una determinada red neuronal. La función ε (w) proporciona un número real que es una medida de la corrección de los pesos w para resolver un determinado problema de forma óptima. Nos interesa encontrar una solución óptima w * que satisfaga la condición * ε ( w ) ε ( w) (9.2) Es decir, queremos minimizar la función de coste ε (w) con respecto a w. Se trata en definitiva de un problema de optimización sin restricciones. La condición necesaria para el óptimo es * ε ( w ) = 0 (9.3) donde es el operador de gradiente = (,,..., ) (9.4) w w w 1 2 n 1 Una clase de algoritmos de optimización que suelen adaptarse bien a las redes neuronales son los basados en la idea de descenso iterativo: Comenzar con un valor inicial w(0) (aleatorio, si no se tiene más informació y generar una secuencia de vectores de pesos w(1); w(2); : : :, tal que la función de error ε (w) se reduzca en cada iteración del algoritmo, esto es, ( w( n 1) ) ε ( w( ε + < (9.5) Descenso por gradiente En esta forma de descenso iterativo, los sucesivos ajustes realizados al vector de pesos w se hacen en dirección opuesta al vector de gradiente ε (w) : w( n + 1) = w( η ε ( w( (9.6) donde es la tasa de aprendizaje. Al pasar de la iteración n a la n + 1, el algoritmo aplica la corrección Página 108 de 162

5 w( = w( n + 1) w( = η ε ( w( (9.7) En la formulación anterior se asume que el umbral b se trata como un peso más del vector w. Demostraremos ahora que la formulación del algoritmo de descenso por gradiente satisface la condición (9.5) del descenso iterativo. Por conveniencia en la notación, consideremos g = ε (w) (9.8) Mediante una expansión en series de Taylor de primer orden alrededor de w(, podemos aproximar ε (w(n + 1)) como T ε ( w( n + 1)) ε ( w( + g ( w( (9.9) expresión justificada para valores pequeños de η. Sustituyendo la ecuación en esta aproximación, obtenemos T ε ( w( n + 1)) ε ( w( ηg (. g( (9.10) 2 = ε ( w( η g( (9.11) que demuestra que para valores positivos de la función de error se decrementen cada iteración. El razonamiento presentado aquí es aproximado, ya que el resultado final es solo cierto para valores lo suficientemente pequeños de la tasa de aprendizaje. La tasa de aprendizaje tiene una enorme influencia en la convergencia del método de descenso por gradiente. Si es pequeño, el proceso de aprendizaje se desarrolla suavemente, pero la convergencia del sistema a una solución estable puede llevar un tiempo excesivo. Si es grande, la velocidad de aprendizaje aumenta, pero existe el riesgo de que el proceso de aprendizaje diverja y el sistema se vuelva inestable. El método de descenso por gradiente tiene en su sencillez uno de sus mayores enemigos: cuando la superficie de error tiene máximos locales, existe el riesgo de que el algoritmo quede atrapado en uno de ellos. Existen otros métodos de optimización más sofisticados (por ejemplo, métodos que consideran la información suministrada por las derivadas de segundo orde, que, en general, proporcionan mejores resultados que el descenso por gradiente. Algunos de ellos son el método de Gauss-Newton, el algoritmo de Levenberg-Marquardt o el método de los gradientes conjugados. Página 109 de 162

6 9.3 Comparativa de y SVM Una de las principales características del detector SVM es que para encontrar la solución en la resolución de la ecuación cuadrática del problema convexo, no existen mínimos locales, tenemos un mínimo global, lo que implica que la solución es única, y se trata de la solución óptima que maximiza el margen, además de poder predecir el tiempo de ejecución de la resolución de la ecuación, pues es resoluble en tiempo polinomial. La se basan en la minimización del error cuadrático medio. El aprendizaje se puede terminar por dos motivos, porque se encuentra la cota de error buscado, o bien se han realizado el número máximo de iteraciones. En el caso de que no se haya cumplido la cota de error se debe modificar los datos de entrenamiento o cambiar el modelo. Con lo cual la velocidad de resolución depende del modelo elegido y de la cota de error a la que queramos llegar. Y con este tipo de resolución tenemos múltiples mínimos locales y también múltiples mínimos locales. Ésto hace no ya sólo que la solución sea múltiple, también que no sea una solución óptima. Figura 9.2:Representación del margen óptimo en SVM y varias fronteras obtenidas por Otra diferencia la podemos encontrar en el sobreentrenamiento [18] que se produce en las, pues si los datos tiene ruido, entrenar demasiado a la máquina puede perjudicar la capacidad de generalización. Página 110 de 162

7 Figura 9.3: problema del sobreentrenamiento Si los datos son generados por un modelo cuadrático: El modelo lineal corresponde a una situación de bajo-aprendizaje. El modelo de alto grado corresponde a una situación de sobre-aprendizaje. Necesidad de encontrar un compromiso entre la adecuación de los datos y la complejidad que sea capaz de generalizar. SVM depende de la obtención del parámetro C, así como de utilizar un Kernel adecuado en el caso de tratarse de sistemas no lineales, estos parámetros se tienen que encontrar de manera empírica y controla el compromiso entre la complejidad del sistema y el número de datos no separables. En las no existen estos parámetros, pero como contrapartida tenemos que dimensionar el sistema en cuanto al número de capas ocultas y nodos. Como se ha mencionado en el párrafo anterior, una de las características de SVM es encontrar el Kernel óptimo, cuando se utiliza un Kernel pasamos a espacios de dimensión muy superior, pero sólo aquellos puntos necesarios. En las Redes Neuronales, las capas ocultas pueden llegar a realizar transformaciones a cualquier dimensión. La metodología de entrenamiento para el detector basado en SVM es más eficiente, debido a que requiere de un número mucho menor de ejemplos de entrenamiento, pues sólo utiliza aquellos que se encuentran más cercanos a la frontera de decisión. Mientras que el banco de datos de ejemplos de entrenamiento para poder llegar a una solución óptima en la es mucho mayor. En el apartado 6 hablamos de la minimización del riesgo empírico el riesgo real y de la minimización del riesgo estructural. SVM se basa en la minimización del riesgo estructural (SRM) el cual no se limita a una única función, consiste en encontrar el subconjunto de funciones que minimiza la cota del error actual. Mientras que las redes Página 111 de 162

8 neuronales basan su funcionamiento en la minimización de una función error (minimización del riesgo empírico). Los resultados mediante SRM son mucho mejores. Figura 9.4: Minimización del riesgo empírico y el intervalo de confianza al mismo tiempo Principio inductivo de Minimización Estructural del Riesgo (SRM). Su objetivo es el de minimizar el riesgo empírico y el intervalo de confianza al mismo tiempo, eligiendo el elemento Sk más apropiado y que minimiza el borne: R( ζ ) R emp ( ζ ) + h(log(2n / h) + 1) log( ρ / 4) N Debido a todo lo mencionado en párrafos anteriores, con la técnica de SVM podemos tener una mayor generalización, no obstante tendríamos las limitaciones mencionadas en el apartado Página 112 de 162

SISTEMAS INTELIGENTES

SISTEMAS INTELIGENTES SISTEMAS INTELIGENTES T10: Redes Neuronales.aic.uniovi.es/ssii Índice Redes Neuronales Artificiales Fundamentos biológicos Perceptrón Funciones de activación Redes de neuronas Entrenamiento: Perceptrón

Más detalles

Redes Neuronales. Las redes neuronales son modelos computacionales que buscan imitar el funcionamiento

Redes Neuronales. Las redes neuronales son modelos computacionales que buscan imitar el funcionamiento Redes Neuronales Las redes neuronales son modelos computacionales que buscan imitar el funcionamiento de las neuronas biológicas. Se usan principalmente para el reconocimiento de patrones complejos. Para

Más detalles

El Perceptrón Multicapa

El Perceptrón Multicapa El Perceptrón Multicapa N entradas M neuronas de salida L: neuronas en la capa oculta E = 1 p M ( zi ( k) yi ( k) ) k = 1 i= 1 Implementación de la función XOR Regiones de clasificación en función del

Más detalles

Técnicas de inteligencia artificial. Aprendizaje: Perceptrón multi-capa

Técnicas de inteligencia artificial. Aprendizaje: Perceptrón multi-capa Técnicas de inteligencia artificial Aprendizaje: Perceptrón multi-capa Índice Regla delta Modelo computacional Neuronas e hiperplanos Entrenamiento como ajuste supervisado No-separabilidad lineal Backpropagation

Más detalles

TLU(s) MULTICAPAS. Se pueden implementar funciones en TLU con más de una capa.

TLU(s) MULTICAPAS. Se pueden implementar funciones en TLU con más de una capa. TLU(s) MULTICAPAS Se pueden implementar funciones en TLU con más de una capa 1 05 2 15 2 3 z 3 15 2 4 05 No eisten, en la actualidad, mecanismos de entrenamiento que permita conocer los pesos sinápticos

Más detalles

Redes de Neuronas de Base Radial

Redes de Neuronas de Base Radial Redes de Neuronas de Base Radial 1 Introducción Redes multicapa con conexiones hacia delante Única capa oculta Las neuronas ocultas poseen carácter local Cada neurona oculta se activa en una región distinta

Más detalles

CONCEPTOS BÁSICOS (Freeman capt.1; Neural Nets capt. 4,5 y 7)

CONCEPTOS BÁSICOS (Freeman capt.1; Neural Nets capt. 4,5 y 7) Tema 1: Conceptos Básicos Sistemas Conexionistas 1 CONCEPTOS BÁSICOS (Freeman capt.1; Neural Nets capt. 4,5 y 7) 1.- Introducción. 1.1.- Redes Neuronales de Tipo Biológico. 1.2.- Redes Neuronales dirigidas

Más detalles

Aprendizaje: Perceptrón multi-capa

Aprendizaje: Perceptrón multi-capa Técnicas de inteligencia artificial Asignatura troncal: 4.5cr, 4ºCurso Ing Inf Aprendizaje: Perceptrón multi-capa 2003-2004 F.Escolano, O.Colomina, M.A. Cazorla Perceptrón 1 Indice Regla delta Modelo computacional

Más detalles

Tema 2 Primeros Modelos Computacionales

Tema 2 Primeros Modelos Computacionales Universidad Carlos III de Madrid OpenCourseWare Redes de Neuronas Artificiales Inés M. Galván - José Mª Valls Tema 2 Primeros Modelos Computacionales 1 Primeros Modelos Computacionales Perceptron simple

Más detalles

Support Vector Machines

Support Vector Machines Support Vector Machines Métodos Avanzados en Aprendizaje Artificial Luis F. Lago Fernández Manuel Sánchez-Montañés Ana González Universidad Autónoma de Madrid 6 de abril de 2010 L. Lago - M. Sánchez -

Más detalles

ANEXO II.- TEORÍA SOBRE REDES NEURONALES ARTIFICIALES

ANEXO II.- TEORÍA SOBRE REDES NEURONALES ARTIFICIALES ANEXO II.- TEORÍA SOBRE REDES NEURONALES ARTIFICIALES 1. Concepto de red neuronal artificial Una red neuronal artificial (RNA) es un modelo matemático que intenta reproducir el modo de funcionamiento y

Más detalles

Redes Neuronales Artificiales

Redes Neuronales Artificiales Red de Hopfield Almacenar un conjunto de p patrones de forma tal que cuando se presente un nuevo patrón, la red responda produciendo alguno de los patrones previamente almacenados que más se parezca al

Más detalles

OTRAS CONSIDERACIONES. Introducción a las Redes Neuronales Artificiales

OTRAS CONSIDERACIONES. Introducción a las Redes Neuronales Artificiales OTRAS CONSIDERACIONES! Estrategias para generalización Existen diversas estrategias para mejorar la generalización: 1) Teoría de Regularización: Agregar una penalidad para lograr mejorar la forma de la

Más detalles

Aprendizaje Automatizado. Redes Neuronales Artificiales

Aprendizaje Automatizado. Redes Neuronales Artificiales Aprendizaje Automatizado Redes Neuronales Artificiales Introducción Otra forma de emular características propias de los humanos: memorizar y asociar hechos. Se aprende de la experiencia. El cerebro humano

Más detalles

INVESTIGACIÓN OPERATIVA Redes Neuronales Artificiales y Aplicaciones INTEGRANTES: Armijos Mauricio Jara Iza Rony

INVESTIGACIÓN OPERATIVA Redes Neuronales Artificiales y Aplicaciones INTEGRANTES: Armijos Mauricio Jara Iza Rony INVESTIGACIÓN OPERATIVA Redes Neuronales Artificiales y Aplicaciones INTEGRANTES: Armijos Mauricio Jara Iza Rony Técnicas De La Inteligencia Artificial Programación Heurística Redes Neuronales. Evolución

Más detalles

Redes Neuronales Multicapa

Redes Neuronales Multicapa Undécima sesión 16 de abril de 2010 Relación entre capas y conjuntos bajo estudio Estructura Regla de decisión XOR Clases no linealmente separables Regiones generalizadas Una capa Regiones separables con

Más detalles

Tema 8: Redes Neuronales

Tema 8: Redes Neuronales Tema 8: Redes Neuronales Pedro Larrañaga, Iñaki Inza, Abdelmalik Moujahid Intelligent Systems Group Departamento de Ciencias de la Computación e Inteligencia Artificial Universidad del País Vasco http://www.sc.ehu.es/isg/

Más detalles

Perceptrón Simple. Aspectos Prácticos y Algoritmos Redes Neuronales, DC-FCEyN-UBA. Rosana Matuk Primer Cuatrimestre 2018

Perceptrón Simple. Aspectos Prácticos y Algoritmos Redes Neuronales, DC-FCEyN-UBA. Rosana Matuk Primer Cuatrimestre 2018 Perceptrón Simple Aspectos Prácticos y Algoritmos Redes Neuronales, DC-FCEyN-UBA Rosana Matuk Primer Cuatrimestre 2018 Rosana Matuk (DC-FCEyN-UBA) Perceptrón simple Primer Cuatrimestre 2018 1 / 29 Objetivo

Más detalles

Profesor: Leonardo Franco Despacho Web:

Profesor: Leonardo Franco Despacho Web: Asignatura: MODELOS COMPUTACIONALES Ingeniería a técnica t en informática de gestión Horario Clases: Martes y Jueves 7:30-9:30 Aula: 3.05 Profesor: Leonardo Franco Despacho 3.2.29 Email: lfranco@lcc.uma.es

Más detalles

Redes neuronales con funciones de base radial

Redes neuronales con funciones de base radial Redes neuronales con funciones de base radial Diego Milone y Leonardo Rufiner Inteligencia Computacional Departamento de Informática FICH-UNL Organización: RBF-NN Motivación y orígenes RBF Arquitectura

Más detalles

CAPÍTULO 3: REDES NEURONALES RECURRENTES

CAPÍTULO 3: REDES NEURONALES RECURRENTES Capítulo 3 Redes Neuronales Recurrentes 15 CAPÍTULO 3: REDES NEURONALES RECURRENTES En este capítulo se describen las principales características y elementos de tres tipos de redes neuronales: feedforward,

Más detalles

Tema: Aprendizaje Supervisado.

Tema: Aprendizaje Supervisado. Sistemas Expertos e Inteligencia Artificial. Guía No. 9 1 Tema: Aprendizaje Supervisado. Facultad: Ingeniería Escuela: Computación Asignatura: Sistemas Expertos e Inteligencia Artificial Objetivos Específicos

Más detalles

Análisis de Datos. Red de función de base radial. Profesor: Dr. Wilfrido Gómez Flores

Análisis de Datos. Red de función de base radial. Profesor: Dr. Wilfrido Gómez Flores Análisis de Datos Red de función de base radial Profesor: Dr. Wilfrido Gómez Flores 1 Introducción Las funciones de base radial han sido utilizadas en diversas técnicas de reconocimiento de patrones como

Más detalles

Redes Neuronales. Introducción. José Manuel Quero Reboul Dpto. Ingeniería Electrónica Universidad de Sevilla

Redes Neuronales. Introducción. José Manuel Quero Reboul Dpto. Ingeniería Electrónica Universidad de Sevilla Redes Neuronales Introducción José Manuel Quero Reboul Dpto. Ingeniería Electrónica Universidad de Sevilla Indice Motivación Arquitectura Leyes de Aprendizae Aplicaciones DILEMA MEMORIA CALCULO Aritmética

Más detalles

REDES NEURONALES ADAPTABLES

REDES NEURONALES ADAPTABLES REDES NEURONALES ADAPTABLES Unidad 3: Redes neuronales artificiales y modelos de entrenamiento SubTemas 3.2 Perceptron simple Arquitectura Regla delta Multi Layer Perceptrón 3.3 Redes Neuronales Adaptables

Más detalles

Introducción. Existen dos aproximaciones para resolver el problema de clasificación: Aproximación Generativa (vista en el Tema 3) Basada en:

Introducción. Existen dos aproximaciones para resolver el problema de clasificación: Aproximación Generativa (vista en el Tema 3) Basada en: Introducción Eisten dos aproimaciones para resolver el problema de clasificación: Aproimación Generativa (vista en el Tema 3) Basada en: Modelar p(,w)=p( w)p(w) p( w) es la distribución condicional de

Más detalles

Inteligencia Artificial. Aprendizaje neuronal. Ing. Sup. en Informática, 4º. Curso académico: 2011/2012 Profesores: Ramón Hermoso y Matteo Vasirani

Inteligencia Artificial. Aprendizaje neuronal. Ing. Sup. en Informática, 4º. Curso académico: 2011/2012 Profesores: Ramón Hermoso y Matteo Vasirani Inteligencia Artificial Aprendizaje neuronal Ing. Sup. en Informática, 4º Curso académico: 20/202 Profesores: Ramón Hermoso y Matteo Vasirani Aprendizaje Resumen: 3. Aprendizaje automático 3. Introducción

Más detalles

Introducción a las Redes Neuronales

Introducción a las Redes Neuronales Introducción a las Redes Neuronales Excepto en las tareas basadas en el cálculo aritmético simple, actualmente, el cerebro humano es superior a cualquier computador: Reconocimiento de imágenes, Interpretación

Más detalles

Introducción a la optimización. Tomás Arredondo Vidal 7/4/09

Introducción a la optimización. Tomás Arredondo Vidal 7/4/09 Introducción a la optimización Tomás Arredondo Vidal 7/4/09 Esta charla trata de lo siguiente: Algunos aspectos de la optimización basada en derivados. Optimización basada en derivados: La optimización

Más detalles

Introducción al algoritmo de máxima pendiente. Análisis de estabilidad y convergencia

Introducción al algoritmo de máxima pendiente. Análisis de estabilidad y convergencia 4.3 Algoritmo de máxima pendiente Introducción al algoritmo de máxima pendiente Aplicación al filtro de Wiener Análisis de estabilidad y convergencia Otras técnicas de optimización Newton-Raphson Levemberg-Marquardt

Más detalles

Redes Neuronales. Elementos básicos de las redes neuronales Carlos Andrés Delgado S.

Redes Neuronales. Elementos básicos de las redes neuronales Carlos Andrés Delgado S. Redes Neuronales Elementos básicos de las redes neuronales carlos.andres.delgado@correounivalle.edu.co Carlos Andrés Delgado S. Facultad de Ingeniería. Universidad del Valle Agosto de 2017 Contenido 1

Más detalles

Métodos de Aprendizaje en Redes Neuronales

Métodos de Aprendizaje en Redes Neuronales 11 de abril de 2011 Entrenamiento de redes feedforward (Backpropagation) Siendo {z m, t m } m=1...n un conjunto de n patrones de entrenamiento, con z m las entradas conocidas para el m ésimo patrón y

Más detalles

Fuzzification. M.C. Ana Cristina Palacios García

Fuzzification. M.C. Ana Cristina Palacios García Fuzzification M.C. Ana Cristina Palacios García Introducción Es el proceso donde las cantidades clásicas se convierten a difusas. Requiere el identificar la incertidumbre presente en valores finitos o

Más detalles

Inteligencia Artificial (Curso ) Grado en Ingeniería Informática - Ingeniería del Software

Inteligencia Artificial (Curso ) Grado en Ingeniería Informática - Ingeniería del Software Inteligencia Artificial (Curso 0-0) Grado en Ingeniería Informática - Ingeniería del Software Redes neuronales Cuestión : Decir si las siguientes afirmaciones son verdaderas o falsas: Si tomamos la función

Más detalles

4. El perceptrón. 4.1 Introducción. 4.2 Consideraciones básicas

4. El perceptrón. 4.1 Introducción. 4.2 Consideraciones básicas 4. El perceptrón 4.1 Introducción El perceptrón es la forma más simple de una red neuronal usada para la clasificación de un tipo especial de patrones, los linealmente separables (es decir, patrones que

Más detalles

Codificadores Neuronales

Codificadores Neuronales Codificadores Neuronales Pedro Almagro Blanco May 12, 2016 Red Neuronal Artificial Feedforward Multi-capa Hasta ahora hemos hecho uso de las redes neuronales feedforward como máquinas de cálculo, en esta

Más detalles

TUTORIAL SOBRE REDES NEURONALES APLICADAS EN INGENIERIA ELECTRICA Y SU IMPLEMENTACIÓN EN UN SITIO WEB

TUTORIAL SOBRE REDES NEURONALES APLICADAS EN INGENIERIA ELECTRICA Y SU IMPLEMENTACIÓN EN UN SITIO WEB TUTORIAL SOBRE REDES NEURONALES APLICADAS EN INGENIERIA ELECTRICA Y SU IMPLEMENTACIÓN EN UN SITIO WEB MARIA ISABEL ACOSTA BUITRAGO CAMILO ALFONSO ZULUAGA MUÑOZ UNIVERSIDAD TECNOLOGICA DE PEREIRA FACULTAD

Más detalles

MÉTODOS DE APRENDIZAJE INDUCTIVO (continuación)

MÉTODOS DE APRENDIZAJE INDUCTIVO (continuación) Aprendiae Automático y Data Mining Bloque III MÉTODOS DE APRENDIZAJE INDUCTIVO (continuación) REDES NEURONALES 2 Redes neuronales (I) Red neuronal: método de aprendiae inductivo inspirado en la estructura

Más detalles

Conceptos básicos V:

Conceptos básicos V: C261-69 69 Tópicos Avanzados: Redes Neuronales Artificiales Conceptos básicos Dra. Ma. del Pilar Gómez Gil Primavera 2009 pgomez@acm.org V:13-01-09 Modelo Básico y Abstracto de un Neurón Artificial x 0

Más detalles

CAPÍTULO 3. Las redes neuronales artificiales, ANNs por sus siglas en inglés, son el resultado de varias

CAPÍTULO 3. Las redes neuronales artificiales, ANNs por sus siglas en inglés, son el resultado de varias CAPÍTULO 3 REDES NEURONALES ARTIFICIALES 3.1 Introducción Las redes neuronales artificiales, ANNs por sus siglas en inglés, son el resultado de varias décadas de investigaciones desarrolladas en torno

Más detalles

ALGUNOS COMENTARIOS SOBRE GENERALIZACION EN BACKPROPAGATION

ALGUNOS COMENTARIOS SOBRE GENERALIZACION EN BACKPROPAGATION ALGUNOS COMENTARIOS SOBRE GENERALIZACION EN BACKPROPAGATION En una RN entrenada, si las salidas calculadas por la red con nuevos ejemplos están próimas a los valores deseados, hay generalización (Haykin,

Más detalles

OPENCOURSEWARE REDES DE NEURONAS ARTIFICIALES Inés M. Galván José M. Valls. Tema 6: Redes de Neuronas Recurrentes

OPENCOURSEWARE REDES DE NEURONAS ARTIFICIALES Inés M. Galván José M. Valls. Tema 6: Redes de Neuronas Recurrentes OPENCOURSEWARE REDES DE NEURONAS ARTIFICIALES Inés M. Galván José M. Valls Tema 6: Redes de Neuronas Recurrentes En este tema se estudian las redes de neuronas recurrentes. Se presentan en primer lugar

Más detalles

Uso de una red neuronal multicapa para el reconocimiento de caracteres griegos. Skynet Reloaded

Uso de una red neuronal multicapa para el reconocimiento de caracteres griegos. Skynet Reloaded Uso de una red neuronal multicapa para el reconocimiento de caracteres griegos: Skynet Reloaded...decided our fate in a microsecond... P. García H. Rajchert I. Scena Sistemas de Inteligencia Artificial

Más detalles

Perceptrones Fernando Berzal,

Perceptrones Fernando Berzal, Fernando Berzal, berzal@acm.org Introducción Redes neuronales artificiales Modelos de redes Modelo de neurona artificial Funciones de activación La neurona de McCulloch y Pitts El algoritmo de aprendizaje

Más detalles

Capítulo 3 REDES NEURONALES Y SU APLICACIÓN EN LA INGENIERÍA SÍSMICA III. REDES NEURONALES Y SU APLICACIÓN EN LA INGENIERÍA SÍSMICA

Capítulo 3 REDES NEURONALES Y SU APLICACIÓN EN LA INGENIERÍA SÍSMICA III. REDES NEURONALES Y SU APLICACIÓN EN LA INGENIERÍA SÍSMICA III. REDES NEURONALES Y SU APLICACIÓN EN LA INGENIERÍA SÍSMICA 32 III. REDES NEURONALES ARTIFICIALES Y SU APLICACIÓN EN LA INGENIERÍA SÍSMICA III.1 CONCEPTOS GENERALES En sus orígenes las Redes Neuronales

Más detalles

CONCLUSIONES. La teoría de Redes Neuronales Artificiales, presenta grandes ventajas con

CONCLUSIONES. La teoría de Redes Neuronales Artificiales, presenta grandes ventajas con 319 CONCLUSIONES La teoría de Redes Neuronales Artificiales, presenta grandes ventajas con respecto a otros modelos típicos de solución de problemas de Ingeniería, una de ellas es su inspiración en modelos

Más detalles

Introducción a las Redes Neuronales

Introducción a las Redes Neuronales Introducción a las Redes Neuronales Perceptrón Simple William Campillay-LLanos williamcampillay@gmail.com https://sites.google.com/site/williamcampillay/home Departamento de Matemática, Física y Estadística.

Más detalles

Redes Neuronales Artificiales El Perceptrón

Redes Neuronales Artificiales El Perceptrón 1 Sistemas Expertos e Inteligencia Artificial / Guía IX / Ciclo 01-2018 Facultad: Ingeniería Escuela: Computación Asignatura: Sistemas Expertos e Inteligencia Artificial Redes Neuronales Artificiales El

Más detalles

Segmentación de imágenes biomédicas

Segmentación de imágenes biomédicas Segmentación de imágenes biomédicas Definición de segmentación La segmentación es la partición de una imagen, en un subconjunto regiones homogéneas en base a una característica (intensidad, textura,...).

Más detalles

Redes Neuronales. Parte II. Facultad de Ciencias Exactas y Tecnología Universidad Nacional de Tucumán Mg. Ing. Gustavo E. Juárez

Redes Neuronales. Parte II. Facultad de Ciencias Exactas y Tecnología Universidad Nacional de Tucumán Mg. Ing. Gustavo E. Juárez Redes Neuronales Parte II Facultad de Ciencias Exactas y Tecnología Universidad Nacional de Tucumán Mg. Ing. Gustavo E. Juárez UNIDAD TEMÁTICA : REDES NEURONALES Introducción. De/iniciones. Topologías

Más detalles

Perceptrón simple y perceptrón multicapa

Perceptrón simple y perceptrón multicapa UNL - FICH - Departamento de Informática - Ingeniería Informática Inteligencia Computacional Guía de trabajos prácticos Perceptrón simple y perceptrón multicapa. Objetivos Aplicar diferentes arquitecturas

Más detalles

Redes Neuronales Artificiales

Redes Neuronales Artificiales Redes Neuronales Artificiales Introducción a la Robótica Inteligente Álvaro Gutiérrez de abril de 208 aguti@etsit.upm.es www.robolabo.etsit.upm.es Mapas Predicción Robótica M l M r W ij S S 2 S 3 S 4

Más detalles

INDICE. Procedimiento 4. Mutación Paramétrica. 8

INDICE. Procedimiento 4. Mutación Paramétrica. 8 INDICE Introducción. 3 Objetivo 4 Procedimiento 4 Algoritmo Principal. 6 Inicialización de la Población 6 Función de Aptitud.. 7 Selección de la Nueva Población. 7 Mutación Estructural 8 Mutación Paramétrica.

Más detalles

Análisis aplicado. José Luis Morales. Departamento de Matemáticas. ITAM

Análisis aplicado. José Luis Morales. Departamento de Matemáticas. ITAM Departamento de Matemáticas. ITAM. 2011. Consideraciones http://allman.rhon.itam.mx/ jmorales Temas del curso + bibliografía. Exámenes, proyectos. Aprender haciendo Trabajo individual Consideraciones http://allman.rhon.itam.mx/

Más detalles

Las Redes Neuronales Artificiales y su importancia como herramienta en la toma de decisiones. Villanueva Espinoza, María del Rosario CAPÍTULO V

Las Redes Neuronales Artificiales y su importancia como herramienta en la toma de decisiones. Villanueva Espinoza, María del Rosario CAPÍTULO V CAPÍTULO V V. ALGORITMOS NEURONALES Los modelos neuronales utilizan varios algoritmos de estimación, aprendizaje o entrenamiento para encontrar los valores de los parámetros del modelo, que en la jerga

Más detalles

Relación 7 - Redes neuronales

Relación 7 - Redes neuronales Sistemas Inteligentes 0-0 Relación - Redes neuronales Problemas Ejercicio. Explicar cómo se usaría una red neuronal para obtener un reconocedor de letras escritas a mano. Describir con precisión qué estructura

Más detalles

Apuntes de Computación Científica I 1. Optimización

Apuntes de Computación Científica I 1. Optimización Apuntes de Computación Científica I Optimización 1. Optimización Maximización (de beneficios, flujo,...) o minimización (de costes, recursos, error,...) de una función f(x) Maximizar f(x) es minimizar

Más detalles

Redes Neuronales Multicapa

Redes Neuronales Multicapa 4 de abril de 2011 Relación entre capas y conjuntos bajo estudio Estructura Regla de decisión XOR Clases no linealmente separables Regiones generalizadas Una capa Regiones separables con hiperplanos Dos

Más detalles

Redes Neuronales Artificiales

Redes Neuronales Artificiales Algoritmo de retropropagación Back propagation Es utilizado para entrenar redes neuronales multicapa. Exige que la función de activación de las neuronas sea derivable y creciente. Las funciones comúnmente

Más detalles

REDES NEURONALES. Una esquema simplificado de una neurona se muestra en la siguiente figura. Cuerpo celular. Dendrita. Axón.

REDES NEURONALES. Una esquema simplificado de una neurona se muestra en la siguiente figura. Cuerpo celular. Dendrita. Axón. REDES NEURONALES Las redes neuronales constituyen una poderosa herramienta para modelar sistemas, especialmente no lineales, sean dinámicos o estáticos. En el cuerpo celular se realizan la mayoría de las

Más detalles

Observación: El método de Euler, es el método de Taylor de orden 1.

Observación: El método de Euler, es el método de Taylor de orden 1. METODO DE TAYLOR TEOREMA DE TAYLOR DE ORDEN N Sea y(t) una función tal que sea n veces continuamente diferenciable en el intervalo [a,b] y existe y (N+1) existe en [a, b] Para todo t k + [a, b] abrá un

Más detalles

Programación NO Lineal (PNL) Optimización sin restricciones

Programación NO Lineal (PNL) Optimización sin restricciones Programación NO Lineal (PNL) Optimización sin restricciones Ejemplos de los problemas que se aplica la programación NO Lineal: Problema de transporte con descuentos por cantidad : El precio unitario de

Más detalles

Perceptron multicapa. Capítulo Introducción

Perceptron multicapa. Capítulo Introducción Capítulo 3 Perceptron multicapa 3.1. Introducción En este capítulo se estudiará una de las clases de redes de neuronas, conocida como Perceptron multicapa o red multicapa con conexiones hacia adelante.

Más detalles

CLASIFICACIÓN CON DISCRIMINANTES: UN ENFOQUE NEURONAL. Juan Antonio Pérez Ortiz

CLASIFICACIÓN CON DISCRIMINANTES: UN ENFOQUE NEURONAL. Juan Antonio Pérez Ortiz CLASIFICACIÓN CON DISCRIMINANTES: UN ENFOQUE NEURONAL Juan Antonio Pérez Ortiz japerez@dlsi.ua.es Departamento de Lenguajes y Sistemas Informáticos Universidad de Alicante Julio 1999 Prefacio Este trabajo

Más detalles

Análisis de Datos. Perceptrón multicapa. Profesor: Dr. Wilfrido Gómez Flores

Análisis de Datos. Perceptrón multicapa. Profesor: Dr. Wilfrido Gómez Flores Análisis de Datos Perceptrón multicapa Profesor: Dr. Wilfrido Gómez Flores 1 Introducción De acuerdo con el consejo de la IEEE Neural Networks de 1996, inteligencia artificial (IA) es el estudio de cómo

Más detalles

ALN - Curso 2007 Gradiente Conjugado

ALN - Curso 2007 Gradiente Conjugado ALN - Curso 27 Gradiente Conjugado Cecilia González Pérez Junio 27 Métodos Iterativos Pueden ser: Métodos estacionarios Métodos no estacionarios Métodos no estacionarios hacen uso de información, evaluada

Más detalles

OCW-V.Muto El método de la Secante Cap. VIII CAPITULO VIII. EL METODO DE LA SECANTE 1. INTRODUCCION Y METODO

OCW-V.Muto El método de la Secante Cap. VIII CAPITULO VIII. EL METODO DE LA SECANTE 1. INTRODUCCION Y METODO CAPITULO VIII. EL METODO DE LA SECANTE 1. INTRODUCCION Y METODO Utilizando los supuestos de los capítulos anteriores, daremos en este capítulo un procedimiento más rápido para hallar una raíz p de la ecuación

Más detalles

Identificación n de SIStemas

Identificación n de SIStemas Identificación n de SIStemas Métodos de Estimación n Recursivos ISIS J. C. Gómez Métodos de Identificación n Recursivos Mínimos Cuadrados Recursivos ara una estructura de modelo de regresión lineal y n

Más detalles

Análisis Numérico para Ingeniería. Clase Nro. 7

Análisis Numérico para Ingeniería. Clase Nro. 7 Análisis Numérico para Ingeniería Clase Nro. 7 Sistemas de Ecuaciones No Lineales Temas a tratar: Método de Bisección. Método de Punto Fijo. Método de Punto Fijo Sistemático. Método de Newton-Raphson.

Más detalles

Análisis de Datos. Regresión logística. Profesor: Dr. Wilfrido Gómez Flores

Análisis de Datos. Regresión logística. Profesor: Dr. Wilfrido Gómez Flores Análisis de Datos Regresión logística Profesor: Dr. Wilfrido Gómez Flores 1 Regresión logística Supóngase que se tiene una variable binaria de salida Y, y se desea modelar la probabilidad condicional P(Y=1

Más detalles

Cristián Bravo R.

Cristián Bravo R. Cristián Bravo R. cbravo@dii.uchile.cl Banco de Crédito e Inversiones 2 al 5 de Julio, 2011 1 Preparación de datos para generación de scorecards. Selección de Variables. Transformaciones Notables. Segmentación

Más detalles

Análisis de Datos. Introducción al aprendizaje supervisado. Profesor: Dr. Wilfrido Gómez Flores

Análisis de Datos. Introducción al aprendizaje supervisado. Profesor: Dr. Wilfrido Gómez Flores Análisis de Datos Introducción al aprendizaje supervisado Profesor: Dr. Wilfrido Gómez Flores 1 Conceptos básicos Desde la antigüedad, el problema de buscar patrones en datos es fundamental en diversas

Más detalles

Red Neuronal Artificial

Red Neuronal Artificial índice RN Supervisadas - Introducción - El Perceptrón y la estructura multicapa MLP - El aprendizaje retropropagado: BP - Aplicaciones y ejemplos - Características y limitaciones P Campoy 1 Red Neuronal

Más detalles

TEMA 6. SVM Support Vector Machines (Máquinas de Vectores Soporte)

TEMA 6. SVM Support Vector Machines (Máquinas de Vectores Soporte) TEMA 6. SVM Support Vector Machines (Máquinas de Vectores Soporte) Francisco José Ribadas Pena Modelos de Razonamiento y Aprendizaje 5 Informática ribadas@uvigo.es 17 de abril de 2012 FJRP ccia [Modelos

Más detalles

Técnicas de aprendizaje sobre series temporales

Técnicas de aprendizaje sobre series temporales Técnicas de aprendizaje sobre series temporales Contenido 1. Motivación. 2. Ejemplo del Problema. 3. Aproximaciones al problema de clasificación de series temporales. 4. Aprendizaje de reglas. 5. Boosting

Más detalles

Optimización de Problemas no lineales.

Optimización de Problemas no lineales. Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Industrial IN34A: Clase Auxiliar Optimización de Problemas no lineales. Marcel Goic F. Esta es una versión bastante

Más detalles

Jesús García Herrero METODOLOGÍA DE ANÁLISIS DE DATOS

Jesús García Herrero METODOLOGÍA DE ANÁLISIS DE DATOS Jesús García Herrero METODOLOGÍA DE ANÁLISIS DE DATOS En esta clase concluimos el curso de Análisis de Datos con una visión de las metodologías del análisis de datos. Como se ha visto, este es un campo

Más detalles

Dada f : [a, b] R R, continua, se plantea el problema de encontrar ceros de f, es decir raíces de la ecuación

Dada f : [a, b] R R, continua, se plantea el problema de encontrar ceros de f, es decir raíces de la ecuación Tema 8 Ceros de funciones Versión: 23 de abril de 2009 8.1 Introducción Dada f : [a, b] R R, continua, se plantea el problema de encontrar ceros de f, es decir raíces de la ecuación f(x) = 0. (8.1) La

Más detalles

Redes Neuronales Artificiales para predicción en series temporales. Alba Martín Lázaro José Miguel Martínez Romera Pablo Morales Mombiela

Redes Neuronales Artificiales para predicción en series temporales. Alba Martín Lázaro José Miguel Martínez Romera Pablo Morales Mombiela Redes Neuronales Artificiales para predicción en series temporales Alba Martín Lázaro José Miguel Martínez Romera Pablo Morales Mombiela Contenidos 1. Redes Neuronales Artificiales 2. RNA para predicción

Más detalles

Redes Neuronales Artificiales

Redes Neuronales Artificiales Estructuras de las Los aspectos más característicos de las estructuras son: la conexión, el tamaño y la elección entre ACON y OCON. Dos posibles tipos de arquitectura son: All-Class-in-One-Network (ACON),

Más detalles

Redes neuronales Back Propagation. Enrique Calot 4 de octubre de 2009

Redes neuronales Back Propagation. Enrique Calot 4 de octubre de 2009 Redes neuronales Back Propagation Enrique Calot 4 de octubre de 2009 1 1. Introducción Una red neuronal de tipo back propagation permite aprender mediante un conjunto de ejemplo (entrada-salida) comunmente

Más detalles

Tema 6 Extensiones y aplicaciones (Máquinas de vectores soporte, SVM)

Tema 6 Extensiones y aplicaciones (Máquinas de vectores soporte, SVM) Tema 6 Extensiones y aplicaciones (Máquinas de vectores soporte, SVM) José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 6 El problema de clasificación supervisada:

Más detalles

UNIVERSIDAD CARLOS III MADRID

UNIVERSIDAD CARLOS III MADRID UNIVERSIDAD CARLOS III MADRID PROYECTO FIN DE CARRERA INGENIERÍA INDUSTRIAL Desarrollo de una interfaz gráfica de redes neuronales usando Matlab AUTOR: ALFONSO MORENO RODRÍGUEZ TUTOR: ISABEL GONZÁLEZ FARIAS

Más detalles

Fundamentos de Programación Entera. A. Revisión. Carlos Testuri Germán Ferrari

Fundamentos de Programación Entera. A. Revisión. Carlos Testuri Germán Ferrari Fundamentos de Programación Entera A. Revisión Carlos Testuri Germán Ferrari Departamento de Investigación Operativa Instituto de Computación Facultad de Ingeniería Universidad de la República 2012-2018

Más detalles

Aprendizaje: Boosting y Adaboost

Aprendizaje: Boosting y Adaboost Técnicas de Inteligencia Artificial Aprendizaje: Boosting y Adaboost Boosting 1 Indice Combinando clasificadores débiles Clasificadores débiles La necesidad de combinar clasificadores Bagging El algoritmo

Más detalles

Modelos de Scoring para Riesgo de Crédito

Modelos de Scoring para Riesgo de Crédito Modelos de Scoring para Riesgo de Crédito Los modelos de scoring de riesgo, dentro del proceso de otorgamiento de crédito, están orientados a anticipar comportamiento futuro. Podemos dividirlos en tres

Más detalles

Reconocimiento automático de palabras en documentos históricos usando redes neuronales convolucionales

Reconocimiento automático de palabras en documentos históricos usando redes neuronales convolucionales Reconocimiento automático de palabras en documentos históricos usando redes neuronales convolucionales Dra. Ma. de Guadalupe García Hernández Departamento de Ingeniería Electrónica Objetivo general Aplicar

Más detalles

LOS SISTEMAS ADAPTATIVOS

LOS SISTEMAS ADAPTATIVOS 0010100100100101010110010001 0101010001010100101000101 0010100011110010110010001 11111111111010100010101001010010100010101010101 0010100011110101010101011100101001001010101100100010010100011110101010001

Más detalles

Optimización en Ingeniería

Optimización en Ingeniería Optimización en Ingeniería Departamento de Computación CINVESTAV-IPN Av. IPN No. 2508 Col. San Pedro Zacatenco México, D.F. 07300 email: ccoello@cs.cinvestav.mx El Método de Marquardt Algoritmo Paso 1:

Más detalles

Aprendizaje Automatizado

Aprendizaje Automatizado Aprendizaje Automatizado Aprendizaje Automatizado Programas que mejoran su comportamiento con la experiencia. Dos formas de adquirir experiencia: A partir de ejemplos suministrados por un usuario (un conjunto

Más detalles

Métodos de modelado y clasificación de patrones. clasificación de patrones

Métodos de modelado y clasificación de patrones. clasificación de patrones FUNDAMENTOS DEL RECONOCIMIENTO AUTOMÁTICO DE LA VOZ Métodos de modelado y clasificación de patrones Agustín Álvarez Marquina Introducción. Modelado y clasificación de patrones Objetivos: Agrupar el conjunto

Más detalles

Introducción a Las redes Neuronales (Neurales) CO-6612

Introducción a Las redes Neuronales (Neurales) CO-6612 a Las redes Neuronales (Neurales) CO-6612 Coordenadas iniciales: Prof. Minaya Villasana Oficina: CBI-112 Extension: 906 3386 forma más fácil (preferida) de contacto: mvillasa@usb.ve Bibliografia: Simon

Más detalles

Optimización. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Computación Numérica Optimización 1 / 19

Optimización. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Computación Numérica Optimización 1 / 19 Optimización Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Computación Numérica Optimización 1 / 19 Introducción Problema general de optimización (minimización) Dado f : Ω R

Más detalles

Sistemas de ecuaciones no lineales

Sistemas de ecuaciones no lineales Práctica 6 Sistemas de ecuaciones no lineales En esta práctica revisaremos algunos métodos básicos para la resolución numérica de sistemas de ecuaciones no lineales 61 Método iterativo del punto fijo Partimos

Más detalles

Inteligencia Artificial II (Curso ) Ejercicios propuestos del tema 5

Inteligencia Artificial II (Curso ) Ejercicios propuestos del tema 5 Inteligencia Artificial II (Curso 0-0) Ejercicios propuestos del tema Ejercicio : Diseñar un perceptrón simple con n valores de entrada y función umbral de activación que sirva para calcular la función

Más detalles

Métodos Clásicos de Optimización para Problemas No-Lineales sin Restricciones

Métodos Clásicos de Optimización para Problemas No-Lineales sin Restricciones Métodos Clásicos de Optimización para Problemas No-Lineales sin Restricciones Dr. Gonzalo Hernández Oliva UChile - Departamento de Ingeniería Matemática 07 de Mayo 2006 Abstract En este apunte veremos

Más detalles