Influencia del material de cubierta en la composición de los lixiviados de un relleno sanitario



Documentos relacionados
INFLUENCIA DEL MATERIAL DE CUBIERTA EN LA COMPOSICIÓN DE LOS LIXIVIADOS DE UN RELLENO SANITARIO

FACTORES QUE INCIDEN EN LA CALIDAD DEL AGUA

Tratamiento Biológico de Aguas Residuales: Uso de Bacterias Benéficas

PLANTA DE TRATAMIENTO DE LIXIVIADOS PARQUE AMBIENTAL LOS POCITOS


Tratamiento de lixiviados con carbón activado

COMPOSTAJE Y RECUPERACION DE MATERIALES A PARTIR DE RESIDUOS SOLIDOS URBANOS. Ventajas y desventajas

CONTAMINACIÓN ACUÁTICA. USOS DEL AGUA: - DOMÉSTICO: Turbidez, sólidos disueltos, coliformes y compuestos tóxicos (metales y pesticidas)

DOCUMENTO EN ESTUDIO ANULACIÓN O REORIENTACIÓN NORMA TÉCNICA COLOMBIANA NTC 813 (Segunda actualización)

Contaminacion acuática. EAD-217 Yusbelly Diaz

COMPOSICIÓN CUALITATIVA DE LAS AGUAS RESIDUALES

CAPÍTULO III RESULTADOS Y ANÁLISIS DE RESULTADOS

FASES GASEOSA. Es una fase muy importante para la respiración de los organismos y es responsable de las reacciones de oxidación.

El agua como disolvente

El Salvador, Mayo de 2004 El Salvador

SEPARACIÓN DE ALUMINIO A PARTIR DE MATERIAL DE DESECHO

Nuevo método para la determinación y control de los niveles de contaminación orgánica e inorgánica en aguas de distinta naturaleza

8. Reacciones de formación de complejos

Normalización de soluciones de NaOH 0,1N y HCl 0,1N.

CONDICIONES Y RECURSOS

Actividad: Qué es la anomalía del agua?

El término alcalinidad no debe confundirse con alcalino, que indica la situación en donde el nivel de ph

Tema 4 Tratamientos físico-químicos EUETI Escola Universitaria de Enxeñería Técnica Industrial

MÓDULO: GESTIÓN DE RESIDUOS TEMA: DESMINERALIZACIÓN

Universidad Tecnológica de Panamá Centro de Investigaciones Hidráulicas e Hidrotécnicas Laboratorio de Sistemas Ambientales

Tabla 6.3. Frecuencia de causas de humedades en caso III: Misiones de San Francisco: etapa VI

Modelos predictivos cuantitativos

k 11 N. de publicación: ES k 51 Int. Cl. 5 : C02F 1/66

Examen de problemas. PROBLEMA 1 Considere la siguiente reacción: C(s) + CO 2 (g) 2CO(g)

Riesgo de contaminación ambiental por lixiviados del recurso acuífero de abastecimiento

ANEXO 4 Contaminación ambiental causada por los residuos sólidos Conocimientos científicos básicos

CMT. CARACTERÍSTICAS DE LOS MATERIALES

DISOLUCIONES Y ESTEQUIOMETRÍA

CÁTEDRA: QUIMICA GUIA DE PROBLEMAS Nº 10

TEMA 3. PROPIEDADES QUÍMICAS DEL SUELO. Los elementos químicos en el suelo Capacidad de intercambio catiónico El ph suelo Conductividad eléctrica

APLICACIONES. 1. MEDIOAMBIENTE Determinación de metales y contaminantes en aguas continentales, potables, vertido, salmueras y aguas de mar

QUÍMICA DEL AGUA. Año de realización: PROFESOR/A Ana Karina Boltes Espínola

Determinación de presencia de Nitrógeno en las aguas subterráneas, provenientes de diferentes fuentes, en cuencas pilotos seleccionadas.

Normativa y Guías Aplicables al Drenaje Ácido

Capítulo I Introducción

EVALUACIÓN DE LA TOXICIDAD DEL EDTA Y METAL EDTA EN MICROORGANISMOS DE UN SISTEMA DE LODOS ACTIVADOS QUE TRATA EFLUENTE DE LA INDUSTRIA CELULOSA

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO. Modelo Curso

TRATAMIENTO DE AGUAS RESIDUALES

Ablandamiento de agua mediante el uso de resinas de intercambio iónico.

CAPÍTULO 7. CONCLUSIONES FINALES

6. Reacciones de precipitación

BIOMASA Y SUS PROPIEDADES COMO COMBUSTIBLE

SUAVIZACIÓN CONCEPTOS BÁSICOS

V. ANÁLISIS ECONÓMICO. Los costos incluyen: el empleo del regenerante químico; mano de

El laboratorio de la Agencia

BOE 24 Mayo. Preámbulo

Aire ambiente: No se recogieron muestras en esta comunidad.

ANÁLISIS FISICOQUÍMICO Y MICROBIOLÓGICO DEL AGUA

TRATAMIENTO DE RESIDUOS UTILIZANDO CRITERIOS DE SOSTENIBILIDAD Y CON PRODUCCIÓN N DE ENERGÍA

1.1 Corte y reposición a usuarios morosos

Práctica 7 Arenas para moldeo

EFECTO DE LA AGRESIVIDAD ATMOSFÉRICA EN LA TENACIDAD A FRACTURA DE METALES Y ALEACIONES METÁLICAS

8. Análisis de los Resultados

Modelo atómico y elemento químico

INFORME SOBRE LA NATURALEZA Y MAGNITUD ASOCIADAS AL SUBSIDIO DE LA GASOLINA EN VENEZUELA

CUPES L. Ciencias experimentales. Configuración Electrónica. Recopiló: M.C. Macaria Hernández Chávez

El Agua. 2H2O(l) 2H2 (g) +O2 (g) Puentes de hidrogeno

1. La magnitud 0, mm expresada en notación científica es: a) 2, mm b) 2, mm c) mm d) mm

Programa en Microsoft Visual Basic 6.0 para el análisis de riesgos eléctricos en oficinas y centros de cómputo. López Rosales, Juan Carlo.

REACCIONES DE IONES METÁLICOS

Lo esencial sobre el agua

TEMA 3: EN QUÉ CONSISTE?

Cuadro 1. Promedios de la composición química de la leche de vaca según diferentes autores.

Esperanzas de vida en salud

Trabajo Práctico de Laboratorio. Análisis Cualitativo de Cationes. Marcha Sistemática. Identificación de algunos Cationes de Interés Bromatológico.

PRINCIPALES AGENTES CONTAMINANTES

Su éxito se mide por la pertinencia y la oportunidad de la solución, su eficacia y eficiencia.

Diseño y desarrollo de una aplicación informática para la gestión de laboratorios

Tema 9: Agua Potable, Redes y Tratamiento

LABORATORIO DE QUÍMICA ANALÍTICA E INSTRUMENTAL GUÍA No 2.3- METODOS DE SEPARACIÓN POR DESTILACIÓN

COMPARACIÓN ENTRE LAS PROPIEDADES FÍSICO-QUÍMICAS DE PELOIDES DE SALINAS CUBANAS CON PELOIDES COSTEROS DE LA ISLA DE LA JUVENTUD Y CAYOS ADYACENTES.

Especial MANTENIMIENTO LEGAL

INVERSIONES Y RENTAS LOS ANDES S.A.

ALI: 004 Fecha: 08 Julio 2011 AREA DE NEGOCIO ALIMENTO DEL CAMPO A LA MESA

REACCIONES DE TRANSFERENCIA DE ELECTRONES MODELO 2016

1. Cuál es la constante de acidez de un ácido monoprótico HA, sabiendo que una disolución 0,2 M está disociada un 1 %.

Distribuidor Oficial. En primer lugar, comprobar las siguientes circunstancias:

es un dispositivo optimizador del combustible que actúa sobre el mismo para lograr una combustión más eficiente, aumentando las prestaciones y

Características KOH sólido (90%) KOH solución acuosa (50%) Estado físico Sólido Liquido Color Blanco Incoloro g/cm 3 (20 C) (sólido 1.

MUNICIPALIDAD DE ROSARIO SECRETARIA DE SERVICIOS PUBLICOS Y MEDIO AMBIENTE DIRECCION GENERAL DE POLÍTICA AMBIENTAL PROGRAMA SEPARE

Evaluación de diferentes fuentes de minerales para la regulación del ph y conductividad eléctrica en el tratamiento de aguas mieles.

De cualquier manera, solo estudiaremos en esta unidad los compuestos inorgánicos.

La Hidrosfera. El agua es una de las sustancias que más abunda a nuestro alrededor.

2. Escribir las reacciones de disolución de cada una de las especies siguientes en agua: a) HClO b) HC 3 H 5 O 3 c) H 2 PO 4

Tratamiento de aguas petroleras, mineras o industriales en lagunas y humedales. Enero de 2015

Mejoramiento de propiedades de aluminio reciclado de latas mediante reciclado de pistones automotrices

Los gases mejoran la calidad del agua potable

Instalaciones de tratamiento de agua de alimentación de caldera

GAS IC NATURAL IC-G-D

EL PODER DE LA ANTI-EMULSION

Operación de Microsoft Excel. Guía del Usuario Página 79. Centro de Capacitación en Informática

CARACTERISTICAS DEL AGUA. Mayeline Gómez Agudelo

NORMA ISO DE RIESGOS CORPORATIVOS

Las algas producen un agua de color verdoso y se depositan en las paredes y fondo del vaso produciendo manchas verdes y negras.

Resultado: a) K ps = 6, M 4 ; b) No hay precipitado.

Transcripción:

Influencia del material de cubierta en la composición de los lixiviados de un relleno sanitario Roger Iván Méndez Novelo 1, Edgar Cachón Sandoval 2, María Rosa Sauri Riancho 1 y Elba René Castillo Borges 1 RESUMEN Se presentan los resultados de la caracterización de los lixiviados generados en el relleno sanitario de la ciudad de Mérida y se comparan éstos con la composición típica de lixiviados de rellenos sanitarios. El relleno sanitario de la ciudad de Mérida utiliza un material de cubierta llamado sahcab que posee elevadas concentraciones de carbonatos de calcio, por lo que al reaccionar con los lixiviados, principalmente en la fase acidogénica, modifica la composición de los mismos, adicionándole principalmente elevadas concentraciones alcalinidad y calcio. Además, al ser un material fino, actúa como filtro, por lo que los lixiviados ahí generados, poseen bajas concentraciones de sólidos suspendidos y de carga orgánica suspendida (medida como DQO). Palabras clave: Lixiviados, relleno sanitario, tratamiento fisicoquímico. INTRODUCCIÓN El relleno sanitario de la ciudad de Mérida es el único sitio de disposición final de los desechos sólidos generados en la ciudad. Las características geohidrológicas de la región (subsuelo altamente permeable y nivel freático del acuífero a menos de 8 m de la superficie) obligan a poner especial atención a la generación, manejo y disposición de los lixiviados generados. Los lixiviados son líquidos que se generan por la liberación del exceso de agua de los residuos sólidos y por la percolación de agua pluvial a través de los estratos de residuos sólidos que se encuentran en las fases de composición (Cruz et. al., 2001). El lixiviado es considerado como el principal y gran contaminante de un relleno. En la bibliografía, existen numerosos estudios en los que se presentan evidencias de cómo estos líquidos pueden contaminar aguas superficiales y subterráneas (Cossu et. al., 2001; Ding et. al., 2001), por lo que la estimación de su producción a lo largo de la vida del relleno sanitario y la variación de su composición son datos valiosos para planear adecuadamente las obras de control que minimicen impactos negativos al medio ambiente. El lixiviado de un relleno sanitario es un agua residual compleja, con considerables variaciones en la composición y el flujo volumétrico (Trebouet et. al., 2001). La calidad de los lixiviados es determinada fundamentalmente por la composición de la basura depositada en el relleno, por los procesos de reacción bioquímica que tienen lugar en el mismo, por las condiciones de manejo del lixiviado y por las condiciones ambientales ( a Ehring, 1999; Borzacconi 1 Profesor Investigador del Cuerpo Académico de Ingeniería Ambiental de la Facultad de Ingeniería UADY. 2 Alumno de la Maestría en Ingeniería Ambiental, FIUADY 7

et. al., 1996). De acuerdo con lo anterior, la concentración y composición de contaminantes en el lixiviado pueden ser muy diferentes según las condiciones antes mencionadas, pero principalmente la edad del relleno. De hecho, las características de los lixiviados varían incluso dentro de un mismo relleno sanitario dado que pueden coexistir etapas aerobias de los frentes de trabajo de los rellenos, con las fases acidogénicas de las primeras semanas del relleno y con las metanogénicas que siguen a la fase ácida. Se hace necesario por tanto, realizar estudios de tratabilidad de cada lixiviado de cada relleno sanitario, por lo que no es posible transferir directamente el tipo de tratamiento aplicado a un lixiviado (Niininen et. al., 1995; Agudelo, 1996). Los lixiviados en el relleno arrastran a su paso material disuelto, en suspensión, fijo o volátil, lo que provoca que tengan elevadas cargas orgánicas y un color que varía desde café-pardo-grisáceo cuando están frescos hasta un color negro viscoso cuando envejecen. Se reportan concentraciones tan elevadas como 60,000 mg/l de DQO (Kennedy et. al., 2001). Los lixiviados también poseen elevadas concentraciones de sales inorgánicas (cloruro de sodio y carbonatos) y de metales pesados. Varios estudios indican que el carbono orgánico en forma coloidal tiene el potencial de adsorber altas concentraciones de metales en su superficie, por lo que actúan como transporte de metales traza en los lixiviados (Dearlove, 1995). Existe una relación directa entre el grado de descomposición de los desechos y los lixiviados que se generan. En el proceso, no pueden verse separados los líquidos provenientes de procesos de reacción bioquímica y de lixiviación. Todo cambio en la estructura y composición del relleno tiene efecto sobre las corrientes y la acumulación, de tal modo que el agua y los procesos en el relleno son magnitudes que se influyen recíprocamente. De la explicación de los procesos bioquímicos, se desprende que la carga orgánica tiene mucha importancia para calcular la composición de los lixiviados. Los parámetros más importantes para ello, son la DQO y la DBO 5. Adicionalmente la relación DBO 5 /DQO denominada índice de biodegradabilidad, refleja el grado de degradación de los lixiviados en el relleno y con ello los procesos de reacción bioquímica que están teniendo lugar en el relleno. La fase acidogénica está caracterizada por valores del índice de biodegradabilidad > 0.4, mientras que los valores del mismo índice para la fase metanogénica son < 0.1, lo que indica que las sustancias orgánicas tienen problemas para continuar su degradación. Este resultado es relevante para elegir el método de tratamiento para los lixiviados, en especial tiene influencia en la velocidad de degradación. En caso de presencia de valores bajos de DQO y de DBO 5, pero valores altos del índice de biodegradabilidad (> 0.4) se puede inferir la entrada de aguas externas al relleno. Se han ensayado en los lixiviados todos los sistemas de tratamiento aplicados a las aguas residuales, pero en general, los resultados obtenidos son muy inferiores a los obtenidos en otros tipos de desechos líquidos. Existen en la bibliografía numerosos reportes de experiencias de plantas de tratamiento para lixiviados de rellenos sanitarios. Las variaciones en la composición y el volumen generado de lixiviados de un relleno sanitario, complican el adecuado diseño y operación de las plantas de tratamiento. Como parte de un proyecto de investigación sobre el tratamiento fisicoquímico de lixiviados de rellenos sanitarios, se hizo una caracterización de los lixiviados generados en la ciudad de Mérida. En este relleno sanitario, se utiliza como material de cubierta, un suelo propio de la región llamado sahcab, que es un material calcáreo no consolidado compuesto principalmente de carbonatos de calcio y de magnesio. Se planteaba la hipótesis de que la disolución de este material modificaría las características fisicoquímicas del lixiviado, principalmente la dureza y la alcalinidad. No se encontraron en la bibliografía consultada experiencias que relacionen el material de cubierta con la composición de los lixiviados. A casi cuatro años de iniciado el relleno sanitario de la ciudad de Mérida, se han concluido casi 3 celdas del relleno y los lixiviados de todas ellas son almacenados inicialmente en el cárcamo recolector situado en la base de cada celda y posteriormente conducidos a lagunas de evaporación. En épocas de secas, los lixiviados son vertidos al mismo relleno para mantener las condiciones de humedad necesarias para la biodegradación de la materia orgánica. METODOLOGÍA Se realizaron 10 muestreos (uno cada semana) de los lixiviados almacenados en las lagunas de secado del relleno sanitario de la ciudad de Mérida. Se determinaron los siguientes parámetros: ph, DQO (total y soluble), DBO 5, COT, N-NH 3, NKT, N-org, Grasas y aceites, SAAM, P total, 8

Turbiedad, Dureza total, Alcalinidad, Cl, SO 4, O 2, S, SST, SSV, ST, STV, Redox, Fe, Mg, Mn, Zn, Na, K, Cd, Pb, Cr y Cu. Todas las determinaciones analíticas se realizaron de acuerdo con los Standad Methods (APHA-AWWA-WPCF, 1998). Se compararon los resultados obtenidos de la caracterización de los lixiviados con los reportados en otros estudios. Se puso especial énfasis en los valores obtenidos en algunos parámetros (dureza, ph y alcalinidad) para asociarlos con el material de cubierta empleado en el relleno. RESULTADOS Y DISCUSIÓN En la Tabla 1, se presentan los resultados de la caracterización de los lixiviados del relleno sanitario de la ciudad de Mérida. Tabla 1. Caracterización de los lixiviados Parámetro (unidad) Media Rango Parámetro Media Rango (unidad) ph 8.40 8.34 8.50 Sulfuros (mg/l) 405 30 705 Turbiedad (UNT) 108 95 130 O 2 (mg/l) 0.91 0.15 1.30 *Alcalinidad (mg/l) 6857 5340 11107 SST (mg/l) 73 42 88 *Dureza Total (mg/l) 964 720 1196 SSV (mg/l) 51 38 64 Cloruros (mg/l) 2804 2489 3332 ST (mg/l) 12810 10064 16214 Sulfatos (mg/l) 0 0 0 STV (mg/l) 3839 2546 5260 DBO 5 (mg/l) 1652 920 2580 Redox 67 30 123 DQO Total (mg/l) 5764 4460 7610 Fe (mg/l) 102.9 76.7 164.4 DQO Soluble (mg/l) 5532 4410 7490 Mn (mg/l) 1.28 1.08 1.49 COT (mg/l) 2857 2283 4380 Zn (mg/l) 5.02 3.60 5.80 Grasas y ac. (mg/l) 27 4 62 Na (mg/l) 20145 15540 28180 SAAM (mg/l) 6.74 0.88 13.80 K (mg/l) 16139 3711 23100 N-NH 3 (mg/l) 1481 1120 2303 Cd (mg/l) 0.0107 0.086 0.158 N-org (mg/l) 176 82 298 Pb (mg/l) 0.384 0.265 0.900 NKT (mg/l) 1659 1232 2515 Cr (mg/l) 6.98 4.74 14.35 P Total (mg/l) 24.74 7.04 45.54 Cu (mg/l) 0.320 0.290 0.388 * como CaCO 3 En las tablas 2 y 3, se presentan algunos valores típicos de diversos parámetros de lixiviados de rellenos sanitarios. En la primera, se comparan los valores de ciertos parámetros en las fases acidogénica y metanogénica; y en la segunda los parámetros en los que no se nota algún cambio entre ambas fases ( b Ehring, 1989). Los lixiviados muestreados corresponden las lagunas de evaporación del relleno, donde se mezclan lixiviados de celdas de diferentes edades (todos menores de 4 años) por lo que existe en ellos una mezcla de las características de la fermentación ácida y la fermentación metanogénica. Además, están expuestos a la evaporación y a la recarga pluvial. Son notorios los elevados valores de sodio y potasio de los lixiviados del relleno sanitario de la ciudad de Mérida, valores que se relacionan con la disolución del material de cubierta usado. La presencia de metales disueltos indican que existen condiciones de anaerobiosis (etapa acidogénica principalmente), por lo que los metales se solubilizan, pero al pasar por el material de cubierta, el ph se eleva nuevamente sin alcanzar los valores a los cuales precipiten. Aunado a esto, la forma de operación del relleno sanitario, que consiste en almacenar los lixiviados en lagunas de evaporación y en épocas de poca precipitación pluvial recircularlo a las celdas del relleno, propicia que las concentraciones de metales se incrementen. El ph de los lixiviados registrados siempre fue siempre alcalino, lo que correspondería a un lixiviado en la etapa metanogénica, sin embargo, los otros parámetros indican que la mayor parte de los 9

lixiviados provienen de condiciones acidogénicas y que por lo tanto el valor elevado del ph se debe a la influencia del sahcab. La mayor parte de la materia orgánica de los lixiviados está presente en forma soluble como puede deducirse de los valores de la DQO total y soluble, es decir los lixiviados poseen muy poca materia orgánica suspendida; a esta misma conclusión se puede llegar si se analizan los sólidos totales y los sólidos suspendidos (los sólidos suspendidos totales representan sólo el 0.56% de los sólidos totales). La baja concentración de material suspendido en los lixiviados es una consecuencia del material de cubierta usado. El sahcab, al ser comprimido en las capas de cubierta, reduce su porosidad y al contacto con los lixiviados se produce un doble efecto: por un lado las partículas suspendidas de mayor tamaño son retenidas por intercepción y por otro reacciona con el material de cubierta propiciando una disolución cuando el lixiviado es ácido. No obstante, puede existir material orgánico finamente dividido que alcanza a filtrase en las capas de sahcab (y que tampoco es detectado en las determinaciones de DQO soluble y sólidos totales suspendidos) que tenga un tamaño coloidal y que por lo tanto pueda ser removido por el proceso de coagulación floculación a valores de ph bajos. Tabla 2. Valores típicos de parámetros de lixiviados, que varían de acuerdo a la etapa del proceso del relleno sanitario Parámetro Fermentación ácida Fermentación metanogénica (unidad) Valor medio Rango Valor medio Rango ph 6.1 4.5 7.5 8.0 7.5 9.0 DQO (mg/l) 22000 6000-60000 3000 500 4500 DBO 5 (mg/l) 13000 4000-40000 180 20 550 DBO 5 /DQO 0.58 -------- 0.06 -------- Fe (mg/l) 780 20-2100 15 3 280 Ca (mg/l) 1200 10-2500 60 20 600 Mg (mg/l) 470 50-1150 180 40 350 Mn (mg/l) 25 0.3-65 0.7 0 45 Zn (mg/l) 5 0.1-120 0.6 0.03 4 Sr (mg/l) 7.2 1.1 14.7 0.94 0.3 7.25 SO 4 (mg/l) 500 70-1750 80 10-420 Tabla 3. Valores típicos de parámetros de lixiviados, que no varían de acuerdo a la etapa del proceso del relleno sanitario Parámetro (unidad) Media Rango Parámetro Media Rango Cl (mg/l) 2100 100-5000 P total (mg/l) 6 0.1 30 Na (mg/l) 1350 50 4000 AOX (µg Cl/l) 2000 320 3500 K (mg/l) 1100 10 2500 As (µg/l) 160 5 1600 Alcalinidad (mg/l CaCO 3 ) 6700 300 11500 Cd (µg/l) 6 0.5 140 NH 4 (mg/l) 750 30 3000 Co (µg/l) 55 4 950 N-org (mg/l) 600 10 4250 Ni (µg/l) 200 20 2050 KKT (mg/l) 1250 50 5000 Pb (µg/l) 90 8 1020 NO 3 (mg/l) 3.0 0.1 50.0 Cr (µg/l) 300 30 1600 NO 2 (mg/l) 0.5 0 25.0 Cu (µg/l) 80 4 1400 Hg (µg/l) 10 0.2-50 10

Es práctica común que los sistemas de tratamiento de lixiviados incorporen procesos fisicoquímicos y biológicos (aerobios y/o anaerobios), debido a sus elevadas cargas orgánicas. El tratamiento fisicoquímico, consiste en la eliminación de las partículas suspendidas del líquido por la acción de sustancias denominadas coagulantes (sales metálicas y/o polielectrolitos). Involucra procesos de coagulación, floculación y sedimentación y el elemento fundamental para el éxito de este proceso es determinar el coagulante o la combinación de coagulantes más eficiente que se relaciona necesariamente con las características fisicoquímicas del líquido. Características como la alcalinidad, el ph, la concentración de sólidos suspendidos, carga eléctrica de las partículas suspendidas y la forma de agregación de estos sólidos son más relevantes que la concentración orgánica total, sobre todo de la fracción soluble. En términos generales, las partículas coloidales de pequeño diámetro (< 10 mµ ) son las que le infieren color al líquido, mientras que partículas de mayor diámetro, coloidales o no, le producen turbiedad. Mientras que para las primeras, los valores de ph óptimos para su remoción son bajos, de 3.5 a 6, para las segundas, los valores de ph son cercanos a la neutralidad, de 6 a 7.5. En los lixiviados, al igual que en las aguas residuales, existe una gran dispersión de tamaños de partículas, por lo que los valores óptimos de ph son intermedios entre los dos tipos de partículas mencionados. En un estudio realizado con los lixiviados de 4 rellenos sanitarios de distintas edades (Jensen, 1999), se concluyó que las partículas que le infieren turbiedad a los lixiviados son predominantemente coloides de 0.1 a 40 mµ y que el parámetro que mejor se asocia con esta concentración es el carbono orgánico total (COT). Para la realización de este estudio, se realizaron filtraciones sucesivas de los lixiviados después de someterlos a una sedimentación durante 4 horas, lapso en el que se produjo un significativo decremento de la turbiedad, lo que indica la presencia de sólidos suspendidos de tamaño mayor que el coloidal en los lixiviados. De lo anterior puede deducirse que las eficiencias de remoción de DQO por el método coagulación floculación sólo podrá ser efectiva a valores de ph bajos, es decir para remover color. Los lixiviados muestreados poseen turbiedades bajas (108 UNT en promedio) y cargas elevadas de materia orgánica disuelta o en forma coloidal que aportan color al líquido. Poseen además elevadas concentraciones de alcalinidad y valores de ph alcalinos. Con estas características no se espera obtener altas eficiencias de remoción de materia orgánica con un proceso coagulación floculación a valores de ph neutros, sino que necesariamente debe plantearse el proceso fisicoquímico para remover color, es decir a valores de ph bajos. CONCLUSIONES El sahcab utilizado como material de cubierta en el relleno sanitario de la ciudad de Mérida propicia que los lixiviados generados posean elevadas concentraciones de sodio y potasio, así como de ph y de metales pesados. Existen elevadas concentraciones de metales pesados en el lixiviado y seguirán incrementándose conforme avanza la vida útil del relleno. La mayor parte de la materia orgánica de los lixiviados está en forma soluble o coloidal porque las partículas de mayor tamaño son removidas por el sahcab. El proceso fisicoquímico para obtener buenas eficiencias de remoción de materia orgánica deberá realizarse a valores de ph bajos. CRÉDITOS El presente trabajo se realizó con el financiamiento del CONACyT, dentro del proyecto Tratamiento fisicoquímico de lixiviados de composteo. REFERENCIAS Agudelo R. A. 1996, Tratamiento de lixiviados producidos en el relleno sanitario Curve de Rodas de la ciudad de Medellín utilizando reactores UASB y filtros anaerobios FAFA, IV Seminario-Taller Latinoamericano sobre tratamiento anaerobio de aguas residuales, Bucalamanga, Colombia. 11

APHA-AWWA-WPCF, 2000, "Standard Methods for Examination of water and Wastewater", XVIII Edition, USA. Borzzaconi L., López I., Ohanian M. y Viñas M., 1996, Degradación anaerobia de lixiviado de relleno sanitario y post-tratamiento aerobio, IV Seminario-Taller Latinoamericano sobre tratamiento anaerobio de aguas residuales, Bucalamanga, Colombia. Cossu R, Haarstad K., Lavagnolo M. y Littaru P., 2001, Removal of municipal solid waste COD and NH4-N by phyto-reduction: A laboratory-scale comparison of terrestrial and acuatic species at different organics loads, Elsevier Science Ltd. www.elsevier.com/locate/ecoleng. Cruz R., Orta M., Sánchez J. y Rojas M., 2001, Estimación de la generación de lixiviados en rellenos sanitarios mediante un balance de agua en serie, Memorias del AMCRESPAC, Querétaro, México. Dearlove J., 1993, Geochemical interaction processes between landfill clay liner materials and organo-metallic leachate, Waste Disposal by Landfill, Balkema, Rotterdam. Ding A., Zhang Z., Fu J. y Cheng L., 2001, Biological control leachate from municipal landfill, Elsevier Science Ltd, www.elsevier.com/locate/ecoleng a Ehrig H., 1989, "Water and elementes balances of landfills", Earth Sciences, The Landfill, Springer-Verlag Press, USA. b Ehrig H., 1999, Cantidad y contenidos de lixiviados de rellenos de desechos domésticos, CEPIS/OPS Jensen D. & Christensen T., 1999, "Colloidal and dissolved metals in leachates from four danish lnasfills", Water Residual, Vol.33, No.9, UK. Kennedy L. y Everett J., 2001, Microbial degradation of simulated landfill leachate: solid iron/sulfur interaction, Elsevier Science Ltd, www.elsevier.com/locate/ecoleng/aer Miininen M., Kalliokoski P. y Pärjälä E., 1993, Quality of landfill leachates and their effect on groundwater, Waste Disposal by Landfill, Balkema, Rotterdam. Trebouet D., Schlumpf J., Jaquen P. y Quemeneur F., 2001, Stabilized landfill leachate treatment by combined physicochemical-nanofiltration processes, Elsevier Science Ltd, www.elsevier.com/locate/waters 12