1. Introducción. 1.1 Multiplexación por división en longitud de onda



Documentos relacionados
WDM. Wavelength Division Multiplexing Comunicación Multicanal Vía Fibra Óptica

Evolución n de los sistemas de

Capítulo 2. Sistemas de comunicaciones ópticas.

CAPÍTULO II. FUENTES Y DETECTORES ÓPTICOS. Uno de los componentes clave en las comunicaciones ópticas es la fuente de

SOMI XVIII Congreso de Instrumentación MICROONDAS JRA1878 TRANSMISIÓN DE AUDIO Y VIDEO A TRAVÉS DE FIBRA ÓPTICA CON PREMODULACIÓN PCM

IEEE 802.3ba: Ethernet a 100 Gb/s. Ramón Gutiérrez-Castrejón RGutierrezC@ii.unam.mx Reunión Informativa Anual, 16 de enero de 2012

Compensación de la Dispersión Cromática utilizando pre-chirping

FIBRAS OPTICAS INTRODUCCIÓN

DECANATO DE INGENÍERA E INFORMATICA E INFORMÁTICA

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERIA ESCUELA DE MECANICA ELECTRICA LABORATORIO DE ELECTRONICA PENSUM COMUNICACIONES 3

UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERÍA ELECTRÓNICA E INFORMÁTICA SÍLABO ASIGNATURA: COMUNICACIONES ÓPTICAS

ANTENAS: Teledistribución y televisión por cable

Multiplexación. Mg. Gabriel H. Tolosa. Divide y Vencerás." Máxima militar. . tolosoft@unlu.edu.ar

Unidad 3: Extensión de LAN: módems. conmutadores. Redes y Comunicaciones

2.2 Conmutación de circuitos ópticos (OCS)

Estructura de los sistemas de distribución de radiodifusión sonora y de TV Objetivos

MEMORIAS SOMI XV TEL-19

Tema 1: Sistemas de comunicación digital. Transmisión digital (I.T.T. Telemática)

Tema 1. Introducción a las redes de comunicaciones.

Primer informe de avance. Redes WDM de enrutamiento por longitud de onda.

Revista Facultad de Ingeniería ISSN: Universidad de Tarapacá Chile

COMUNICACIONES ÓPTICAS EN EL ESPACIO LIBRE. FSO - Free Space Optics. J. R. Souza CETUC - PUC/Rio. J. R. Souza CETUC - PUC/Rio 1 ÍNDICE

Tecnologías xdsl. Por. Daniel Vazart P.

1. CONCEPTOS BASICOS ANCHO DE BANDA.

UNIVERSIDAD TECNICA DEL NORTE

De Wikipedia, la enciclopedia libre

Redes ruteadas en longitud de onda (WRON) Nicolas Gorriño Castañeda

TENDENCIAS EN TELECOMUNICACIONES ÓPTICAS. Grupo de Óptica-láser, Universidad del Cauca. Resumen

Entre las aplicaciones más importantes para los satélites cabe destacar:

Conmutación. Conmutación telefónica. Justificación y definición.

MEJORA DE LA RED DE COMUNICACIONES DEL PARQUE Y REESTRUCTURACIÓN DE ARMARIOS

CAPÍTULO I GENERALIDADES

PROCESAMIENTO DIGITAL DE IMÁGENES MEDIANTE EL USO DE UN FPGA Y LENGUAJE VHDL

Dentro de los medios de transmisión guiados, los más utilizados en el campo de las comunicaciones y la interconexión de computadoras son:

Integrantes: - Pablo Vargas - Pablo Catalán Profesor: Sr. Victor Cardenas

TECNOLOGIA DE ANTENAS INTELIGENTES EN LOS SISTEMAS DE COMUNICACIONES MOVILES

CAPITULO 4 MODULACIÓN ÓPTICA

En este capitulo de describe el arreglo experimental y el análisis de los resultados obtenidos de las pruebas realizadas a la guía de onda tipo ARROW.

Test (1,5 puntos) Marque la respuesta CORRECTA. Respuesta correcta = +0,15 Respuesta en blanco = +0,0 Respuesta errónea = 0,15.

Gestión de la Configuración

TIPOS DE CONEXIÓN A INTERNET

UNIDADES FUNCIONALES DEL ORDENADOR TEMA 3

GENERALIDADES DE OPTICA AVANZADA.

TRANSMISION DIGITAL. PCM, Modulación por Codificación de Pulsos

Ampliación de Prácticas de Optoelectrónica CUESTIONARIOS AMPLIACIÓN DE PRÁCTICAS DE OPTOELECTRÓNICA PRÁCTICAS DE LABORATORIO

PRESENTADO POR: CAROLINA HERNÁNDEZ RINCÓN CARLOS HERNANDO BEDOYA DUQUE

Fibras Ópticas. Capítulo Modos

Conceptos y Terminologías en la Transmisión de Datos. Representaciones de Señales.

CAPÍTULO II. Gráficos Dinámicos.

Figura 1.12 Señalización analógica y digital de datos analógicos y digitales.

CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION

RECOMENDACIÓN UIT-R F.1332* SEÑALES RADIOELÉCTRICAS TRANSPORTADAS POR FIBRAS ÓPTICAS (Cuestión UIT-R 204/9)

UNIVERSIDAD RICARDO PALMA FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA ELECTRÓNICA SÍLABO PLAN DE ESTUDIOS 2009-I

Tipos de instalaciones

Curso sobre Controladores Lógicos Programables (PLC). Redes Digitales de Datos en Sistemas de Control de Procesos.

FIBRA ÓPTICA Perfil de Indice de Refracción

forma de entrenar a la nuerona en su aprendizaje.

12.1. Verdadero Falso 13. La señal que transmite una fibra óptica puede degradarse debido a la dispersión Verdadero Falso 14.

1. Topología de BUS / Linear Bus. 2. Topología de Estrella / Star. 3. Topología de Estrella Cableada / Star Wired Ring. 4. Topología de Árbol / Tree

TECNOLOGÍA DE TELECOMUNICACIONES PDH, SDH Y DWDM

Unidad II Conmutación.

Procesamiento digital de señales y radios definidas en software

Quality of Service MODULO I FUNDAMENTOS DE NETWORKING 14/04/2012. Ing. Nelwi Báez P. Msc. Página 0

0. ÍNDICE OBJETO Y CAMPO DE APLICACIÓN TERMINOLOGÍA TIPOS DE SISTEMAS REQUISITOS GENERALES DE LA INSTALACIÓN...

La Fibra Óptica. Carlos Eduardo Molina C.

1. Introducción. Videovigilancia: Alternativas de transmisión de Señal. Medio de Transmisión. Cable Coaxial Cable UTP Inalámbrico Fibra Óptica

Los servicios que presta Internet. RETO: Conocer y utilizar los servicios que nos ofrece Internet.

Comunicaciones ópticas II. Colección de Problemas

TECNOLOGÍA. Interconexión: Empalmes y Conectores

Capa Física. Ing. Camilo Zapata Universidad de Antioquia

Preparado por M.Sc. Luis Diego Marín Naranjo Taller en sistemas DWDM 1

TRANSMISIÓN FULL-DUPLEX DE CARACTERES POR UNA SOLA FIBRA ÓPTICA. (Full-Duplex characters transmission over a single optic fiber)

Puesto que la trama consta de 32 intervalos de tiempo iguales, la duración de cada intervalo o canal será de:

SEÑALES Y ESPECTROS SEÑALES Y ESPECTROS 1

Adaptadores de Interfaz de Red. Ing. Camilo Zapata Universidad de Antioquia

Capítulo 1 CAPÍTULO 1-INTRODUCCIÓN-

FIBRA ÓPTICA INTRODUCCIÓN

Elementos de una Red DWDM Capítulo 3 Pag. 1

DECANATO DE INGENÍERA E INFORMATICA E INFORMÁTICA

TSF - Fundamentos de Sistemas de Telecomunicación

INTRODUCCION. Ing. Camilo Zapata Universidad de Antioquia

4. EL OTDR y LA FIBRA ÓPTICA. La demanda de fibra óptica en el mundo esta creciendo considerablemente, las redes

- Tecnología que permite la distribución de RF modulando la portadora transmitida desde una estación base.

UNIVERSIDAD DE SEVILLA

Curso de Tecnologías avanzadas de Fibra óptica. Tlf

Conclusiones, aportaciones y sugerencias para futuros trabajos


FIBRA OPTICA ESCALONADA

UNA APROXIMACION EXPERIMENTAL PARA EL ESTUDIO DE LA RADIACIÓN TERMICA DE LOS SÓLIDOS

La importancia de dimensionar correctamente los sistemas de frenado en aerogeneradores residenciales.

Fibra Óptica. Espectro electromagnético

Qué causa la distorsión de los pulsos de entrada?

ES A1. Número de publicación: PATENTES Y MARCAS. Número de solicitud: Int. Cl. 6 : H04B 10/155

CONCEPTOS DE LA FUERZA

Tecnología MIMO WHITE PAPER. Introducción. Qué es MIMO?

Capítulo 5. Cliente-Servidor.

Tendencias Tecnológicas Optimización de fibra: los retos del WDM

Comunicación en Sistemas Digitales

Capas del Modelo ISO/OSI

2. TERMINOS BÁSICOS DE ACÚSTICA.

Transcripción:

1 Introducción It is better to die on your feet than to live on your knees! Emiliano Zapata C omo capítulo de introducción, se presentará el concepto de multiplexación por división en longitud de onda, fundamental para la compresión de todo el trabao desarrollado en este proyecto 11 Multiplexación por división en longitud de onda 111 Principios básicos El estudio de la multiplexación por división en longitud de onda, también conocida como multiplexación óptica o WDM 1 es un concepto muy antiguo, aunque hasta 1977 no se consiguieron las primeras soluciones prácticas [1] Actualmente y gracias a la aparición de amplificadores de fibra óptica y láseres de múltiples longitudes de onda, es uno de los temas que más atención suscita dentro del campo de las comunicaciones ópticas, pues estos dispositivos permiten incrementar enormemente la capacidad de los sistemas de transmisión actuales sin requerir de desarrollos tecnológicos significativos y sin alterar las arquitecturas de red implantadas Es 1 Acrónimo de la expresión inglesa Wavelength Division Multiplexing, que se podría traducir como

2 Introducción [wwwramonmillancom] decir, permiten una evolución flexible y económica de las presentes redes, respondiendo a la demanda de mayor ancho de banda por parte de los nuevos servicios de telecomunicaciones avanzadas que a tan vertiginoso ritmo están apareciendo La multiplexación por división en longitud de onda tiene su origen, en la posibilidad de acoplar las salidas de diferentes fuentes emisoras de luz, cada una a una longitud de onda diferente, sobre una misma fibra óptica Después de la transmisión a través de la fibra, las señales a cada longitud de onda diferente, pueden ser separadas entre sí hacia diferentes detectores en su extremo final Este concepto queda refleado en la Figura 11, donde se trabaa en el rango visible de la luz y los dispositivos acopladores son componentes ópticos de volumen, en concreto dos prismas 6 x 10 Gb/s fiber STM-64 λ mux λ demux STM-64 Figura 11: Concepto de multiplexación por división en longitud de onda El componente a la entrada, o multiplexor, ha de inyectar la salida de las distintas fuentes en la misma fibra, con unas pérdidas mínimas Por supuesto, el multiplexor podría ser sustituido por un mero acoplador óptico [2], pero las pérdidas por división se verían sensiblemente incrementadas Es evidente, que cuando el sentido de propagación es el inverso, el multiplexor se convierte en el demultiplexor y viceversa, aunque la eficiencia en el acoplamiento no queda necesariamente preservada en esta operación Por eemplo, si el multiplexor utilizase fibras monomodo a la entrada y una fibra multimodo a la salida, las pérdidas de acoplamiento multiplexación por división en longitud de onda

Introducción [wwwramonmillancom] 3 serían excesivas en su uso inverso [2] La simultánea multiplexación y demultiplexación de canales de entrada y salida respectivamente, puede realizarse mediante el mismo dispositivo: el multi/demultiplexor Cuando un multiplexor tiene sólo dos canales, se le denomina diplexor Otros dos importantes tipos de multiplexación son la TDM 2, y la FDM 3 En TDM se segregan muestras de cada señal en ranuras temporales que el receptor puede seleccionar mediante un relo correctamente sincronizado con el transmisor; y en FDM, cada señal se transporta en una frecuencia subportadora que puede ser filtrada electrónicamente por el receptor [3] Si bien la FDM y la TDM son sistemas de multiplexación incompatibles, la WDM puede hacer uso de señales previamente multiplexadas mediante las técnicas FDM y TDM en el dominio eléctrico Por ello la WDM es, actualmente, la meor solución a los límites de capacidad alcanzados recientemente con la TDM en el dominio eléctrico La historia de las técnicas de multiplexación ha demostrado una evolución en espiral sobre el espacio, la frecuencia y el tiempo, tal y como se muestra en la Figura 12 En efecto, la primera técnica de multiplexación óptica ha sido la SDM 4, consistente en la mera disposición en paralelo, con el fin de incrementar la capacidad del enlace, de fibras ópticas transportando la misma longitud de onda entre el origen y el destino En estos momentos la WDM, que también puede verse como una FDM óptica, es la técnica idónea para aprovechar el gran ancho de banda ofrecido por la fibra óptica Cabe esperar por lo tanto, que la técnica de multiplexación óptica del futuro, cuando se resuelvan las limitaciones impuestas por la dispersión en la fibra, sea la TDM óptica [4] 2 Acrónimo de la expresión inglesa Time Division Multiplexing, que se podría traducir como multiplexación por división en el tiempo 3 Acrónimo de la expresión inglesa Frecuency Division Multiplexing, que se podría traducir como multiplexación por división en frecuencia 4 Acrónimo de la expresión inglesa Space Division Multiplexing, que se podría traducir como multiplexación por división en el espacio

4 Introducción [wwwramonmillancom] OFDM=WDM FDM SDM OSDM OTDM TDM Figura 12: Evolución de las técnicas de multiplexación 112 Principales características de los multi/demultiplexores pérdidas Un multiplexor ha de combinar las señales con unas pérdidas mínimas Las P, se expresan en decibelios (db) a cada longitud de onda λ, mediante P Φ = 10 log 10 Φ 0 (11) donde Φ es la potencia óptica inyectada en la línea de transmisión y Φ 0 la potencia incidente a λ En el otro extremo de la fibra, las señales a diferente longitud de onda son separadas mediante un demultiplexor, el cual, al igual que el multiplexor, debe tener unas pérdidas mínimas Las pérdidas por diafonía óptica D i del canal i en el canal son

Introducción [wwwramonmillancom] 5 Φ D i = 10 log10 Φ i (12) Las pérdidas totales por diafonía óptica en un canal son D = 10 log 10 i Φ Φ i (13) Este efecto se debe principalmente al multiplexor cuando se utilizan fuentes de luz con anchuras espectrales mucho más pequeñas que las bandas de paso espectrales del demultiplexor Por lo tanto, depende de las fuentes, los multiplexores y demultiplexores La diafonía eléctrica depende también de los receptores A una sensibilidad del receptor equivalente, en general, la diafonía eléctrica es el doble en db que la diafonía óptica [2] La diafonía eléctrica de un sistema depende también de la potencia relativa y anchura espectral de los emisores, de la transmisión espectral en la fibra y de la variación de la sensibilidad del receptor con la longitud de onda 12 Estructura del proyecto Este trabao tiene una estructura lineal, y parte del presente capítulo de introducción donde se presenta el concepto de multiplexación por división en longitud de onda En el segundo capítulo se hace un breve repaso a las redes WDM actualmente en desarrollo y a los proyectos relacionados con la WDM más relevantes a corto plazo Así mismo, se aprovecha para estudiar el estado del arte de la tecnología óptica, centrándose en los cambios que han tenido que soportar los diferentes componentes para adecuarse a las características de las señales multiplexadas en longitud de onda

6 Introducción [wwwramonmillancom] En el tercer capítulo se presentan los multiplexores más relevantes, en estado de investigación o disponibles comercialmente Todos ellos tienen en común que no se basan en la teoría de interferencia multimodal, pues este tipo de multiplexores constituyen el centro de estudio del presente proyecto y serán tratados con más profundidad en el sexto capítulo El cuarto capítulo trata detalladamente los mecanismos físicos más interesantes para desfasar, con control electrónico, una señal óptica Se estudian en concreto los efectos electroóptico, termoóptico y acustoóptico En el quinto capítulo se aplican los conceptos presentados en el cuarto capítulo, para seleccionar el efecto más interesante para producir el desfasae en las guiaondas que conformarán el phasar del multiplexor por división en longitud de onda a diseñar En el resto del capítulo se tratan diversos métodos para simular el efecto seleccionado, en concreto el termoóptico, y su integración con los métodos de propagación de haz, mediante los que se estudian los distintos modos que viaan en una estructura de óptica integrada En el sexto capítulo se esboza el diseño teórico de un multiplexor activo y el de un conmutador basados en la teoría de la interferencia multimodal o MMI Se demuestra que es posible conseguir un multiplexor MMI 1 2 activo, más grande pero con mayores tolerancias de fabricación y mayor funcionalidad que la de un multiplexor MMI 1 2 pasivo Este multiplexor tiene tres etapas claramente diferenciadas: la primera y la última son dispositivos MMI, de interferencia multimodal, y la segunda es, una etapa desfasadora Dicha etapa desfasadora la conforman una serie guías con tramos curvos y rectos, y de calentadores controlados electrónicamente, a través de los cuales se induce el cambio de fase requerido a la entrada del tercer dispositivo MMI, en las señales que salen del primer dispositivo MMI Se diseña también un conmutador termoóptico MMI 1 2, un dispositivo muy interesante para la conmutación en redes ópticas a tasas de transmisión moderadas En el séptimo capítulo, se muestran los mecanismos derivados para simular los

Introducción [wwwramonmillancom] 7 dispositivos en el sexto, utilizando el software comercial disponible Por ciertas limitaciones del mismo, resultó finalmente imposible comprobar el diseño teórico del conmutador y del multiplexor El octavo capítulo es la enumeración de las conclusiones obtenidas tras el trabao realizado, así como posibles futuras líneas de investigación 13 Referencias [1] W Tomlinson and G Aumiller Optical multiplexer for multimode fiber transmission systems Applied Physic Letters, vol 31, pp 169, 1977 [2] J P Laude Wavelength division multiplexing Prentice Hall, 1993 [3] Paul E Green, Jr Fiber optic networks Prentice Hall, 1993 [4] Govind P Agraval Fiber-optic communications systems John Wiley & Sons, 1992