Medición de la aceleración de la gravedad con un péndulo simple

Documentos relacionados
Formatos para prácticas de laboratorio

Péndulo en Plano Inclinado

Slide 1 / 47. Movimiento Armónico Simple Problemas de Práctica

FÍSICA EXPERIMENTAL I. Péndulo Simple. Mediciones de Período para amplitudes mayores a 7. 11/11/2013

CINEMÁTICA GUÍA DE LABORATORIO # 3 CAÍDA LIBRE. Contenido. Introducción Marco Teórico Actividades Motivadoras Materiales...

MOVIMIENTO ARMÓNICO SIMPLE

Péndulo físico. m.g. Figura 1: Péndulo físico. cm = centro de masa del sistema; d cm = distancia del punto de suspensión al centro de masa.

CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES

1. Estudio de la caída de un puente.

LABORATORIO DE MECÁNICA FRICCIÓN ESTÁTICA Y DINÁMICA

Física General IV: Óptica

Laboratorio de Física para Ingeniería

I. Objetivos. II. Introducción.

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna

Javier Junquera. Movimiento de rotación

El péndulo físico. Un método para determinar la aceleración de la gravedad. Oscilaciones del péndulo en un plano inclinado.

Cálculo de la velocidad angular de la Tierra mediante el empleo de un Péndulo de Foucault

SIMULACIÓN DE UN SISMO MEDIANTE EL MOVIMIENTO DE UN PÉNDULO DOBLE

MEDICIÓN Y PROPAGACIÓN DE ERRORES. Comprender el proceso de medición y expresar correctamente el resultado de una medida realizada.

Movimiento Armónico Simple

LABORATORIO DE FENÓMENOS COLECTIVOS

8. DETERMINACIÓN DE LA DENSIDAD DE UN SÓLIDO

Mediciones II. Todas las mediciones tienen asociada una incertidumbre que puede deberse a los siguientes factores:

Promover la reflexión crítica desarrollando el pensamiento científico en sus aspectos operativos, formativos y fenomenológicos.

TEMA I.4. Descripción Matemática de una Onda. Dr. Juan Pablo Torres-Papaqui

Determinación de la aceleración de la gravedad a través del péndulo físico.

LABORATORIO DE MECÁNICA MOVIMIENTO DE PROYECTILES

Fuerzas de Rozamiento

COLEGIO DE LA SAGRADA FAMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE FÍSICA II PERIODO ACADEMICO

Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido

Dependencia de la aceleración de un cuerpo en caída libre con su masa

CÁTEDRA DE FÍSICA I ONDAS MECÁNICAS - PROBLEMAS RESUELTOS

y d dos vectores de igual módulo, dirección y sentido contrario.

LABORATORIO DE MECANICA SEDE VILLA DEL ROSARIO

ECUACIONES DIMENSIONALES

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas.

1. Estudiar el comportamiento del péndulo físico. 2. Determinar la aceleración de la gravedad. 1. Exprese y explique el teorema de ejes paralelos.

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO

2 o Bachillerato. Conceptos básicos

2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera Soluciones del boletín de problemas 6

Docente: Angel Arrieta Jiménez

EJERCICIOS ADICIONALES: ONDAS MECÁNICAS

MANUAL DE PROCESOS MISIONALES CODIGO GESTIÓN ACADÉMICA GUIAS DE PRÁCTICAS ACADEMICAS DE LABORATORIO

porque la CALIDAD es nuestro compromiso

ESTUDIO DE LA FUERZA CENTRÍPETA

Campo Magnético en un alambre recto.

SEGUNDO TALLER DE REPASO

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica.

FUERZAS CONCURRENTES. Lorena Vera Ramírez 1, Iván Darío Díaz Roa 2. RESUMEN

MECÁNICA ANALÍTICA - CURSO 2011 Práctica de laboratorio Nro. 3 Centros de masa y Momentos de Inercia. Experimento 1

Slide 1 / 71. Movimiento Armónico Simple

DINÁMICA DE ROTACIÓN DE UN SÓLIDO

TÉCNICO SUPERIOR UNIVERSITARIO EN ENERGÍAS RENOVABLES ÁREA ENERGÍA SOLAR EN COMPETENCIAS PROFESIONALES ASIGNATURA DE FÍSICA

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERÍA CICLO BÁSICO DEPARTAMENTO DE FÍSICA APLICADA

Medición del índice de refracción de líquidos.

EDGAR MANUEL RODRIGUEZ

TEMA 1: CONCEPTOS BASICOS EN FISICA

TALLER DE OSCILACIONES Y ONDAS

Resumen de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA)

PROGRAMA ANALITICO FISICA II (FIS- 102)

Práctico 2: Mecánica lagrangeana

Mecánica del Cuerpo Rígido

SILABO DE FISICA II I. DATOS GENERALES

Examen de Ubicación. Física del Nivel Cero Enero / 2009

HI-TECH AUTOMATIZACION S.A. NIT:

Hacia el pensamiento lógico-matemático formal, mediante la resolución de problemas

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

Práctica 2 sobre mediciones de velocidad promedio y aceleración.

La Hoja de Cálculo en la resolución de problemas de Física.

Teorema de las cuerdas de una circunferencia. Resumen

GUÍA Nº4: Sistema de partículas

Faraday tenía razón!! María Paula Coluccio y Patricia Picardo Laboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA 1999

FÍSICA MECÁNICA. Dino E. Risso Carlos K. Ríos Departamento de Física. martes, 19 de marzo de 13

6.- Cuál es la velocidad de una onda transversal en una cuerda de 2 m de longitud y masa 0,06 kg sometida a una tensión de 500 N?

Física y Química 1º Bachillerato LOMCE. FyQ 1. Tema 10 Trabajo y Energía. Rev 01. Trabajo y Energía

UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL FISICA II. CARÁCTER: Obligatoria DENSIDAD HORARIA HT HP HS THS/SEM

Física I. Carrera: INM Participantes Representante de las academias de ingeniería industrial de Institutos Tecnológicos.

ASOCIACIÓN DE POLEAS

Física. Carrera: IAC Participantes. Representantes de las academias de Ingeniería Ambiental. Academia de Ingeniería

INGENIERIA DE EJECUCIÓN EN MECANICA PROGRAMA PROSECUCION DE ESTUDIOS VESPERTINO GUIA DE LABORATORIO

Universidad Nacional de General San Martín Escuela de Ciencia y Tecnología Laboratorio de Física 1 Comparación de métodos para el cálculo de g

CAMPO MAGNÉTICO SOLENOIDE

GALICIA/ JUNIO 01. LOGSE / FÍSICA / EXAMEN COMPLETO

Momento de Torsión Magnética

Movimiento armónico simple

Guía de Materia Movimiento circular

FÍSICA 110 CERTAMEN # 3 FORMA R 6 de diciembre 2008

Anteriores. EL alumno comprende y aplica las leyes y principios fundamentales de la electricidad y el magnetismo y la termodinámica.

LAS MEDICIONES FÍSICAS. Estimación y unidades

DESCRIPCION DEL MOVIMIENTO CIRCUNFERENCIAL UNIFORME (MCU)

Elongación. La distancia a la que está un punto de la cuerda de su posición de reposo.

DPTO. DE DE FÍSICA ÁREA. y Tiro

TEMA II: CINEMÁTICA I

Medición de la aceleración de la gravedad mediante plano inclinado

Ingeniería en Sistemas Informáticos

MOVIMIENTO CIRCULAR - MCU - MCUV MOVIMIENTO CIRCULAR - MCU - MCUV

1.- La materia y clasificación. La materia es cualquier cosa que ocupa un espacio y tiene masas Estados: sólido, líquido, gaseoso

GUIA Nº5: Cuerpo Rígido

Transcripción:

Universidad Nacional del Centro de la Provincia de Bs. As. Facultad Cs. Exactas Física experimental I Medición de la aceleración de la gravedad con un péndulo simple Achaga, Romina Prado, Patricio Romy_achaga@hotmail.com Patricio-prado@hotmail.com Octubre de 2010, Tandil, Bs. As., Argentina

Resumen El objetivo principal de este trabajo fue medir la aceleración de la gravedad local g. A partir de una serie de mediciones realizadas mediante el uso de un péndulo simple se obtuvo que el valor de g es de (9,73 ± 0,08) m/. Palabras clave Péndulo simple - Aceleración de la gravedad - Movimiento Armónico Simple Introducción En este trabajo se midió el valor de la aceleración de la gravedad local, utilizando como herramienta imprescindible un péndulo simple. La fuerza de gravedad o peso es la fuerza con la cual el planeta Tierra atrae a los cuerpos cercanos hacia ella. No habiendo resistencia del aire, se encuentra que todos los cuerpos caen con la misma aceleración y, si la distancia recorrida no es demasiado grande, la aceleración es constante en toda la caída. La aceleración de un cuerpo que cae libremente se llama aceleración debida a la gravedad g. i Un péndulo simple es un sistema mecánico que exhibe movimiento periódico. Se puede describir, como se ve en la Figura 1, como una partícula de masa m suspendida de un punto O y sostenida por una cuerda de longitud L cuya masa es despreciable. Desplazando la partícula un cierto ángulo pequeño en relación a su punto de equilibrio A, el cuerpo empieza a oscilar con una cierta amplitud x. El astrónomo y físico Galileo Galilei fue el primero en observar que el período es independiente de la amplitud, al menos para ángulos pequeños. Siempre que un ángulo armónico simple. ii sea menor a 10 el movimiento es Las fuerzas que actúan sobre la partícula son el peso mg y la tensión T a lo largo de la cuerda. La componente tangencial de la fuerza resultante (ver Figura 1) es: = -mg (1) La ecuación del movimiento tangencial es = m, siendo la aceleración tangencial. Como la partícula se mueve a lo largo de una circunferencia de radio L, podemos usar que = Lα y α = dω/dt = para expresar la como = L( ) (donde ω y α son la velocidad 2

angular y la aceleración angular del sistema, respectivamente). iii Por lo tanto, la ecuación para el movimiento tangencial es: o, ml ( ) = -mg (2) ( ) + g/l = 0 (3) Si el ángulo es pequeño, podemos usar el desarrollo en serie de y retener solo el primer término. Haciendo ~ en la ecuación (3), obtenemos: ( ) + g/l ф = 0 (4) Podemos concluir así que, en esta aproximación, el movimiento angular del péndulo es armónico simple, con = g/l. El ángulo se puede expresar de la forma =. Mediante la ecuación ω = 2π/T, podemos expresar el período de oscilación del péndulo como: De donde se obtiene que: T = 2 π (5) g= 4 L/ (6) El experimento consistió en medir varias veces el período T, a partir de un L constante, y así calcular el valor de g. Procedimiento De un soporte atornillado firmemente a la pared (ver Figura 2-a), se colgó una esfera de hierro de (0,0447 ± 0,0002) 1 m de radio mediante un alambre de acero inextensible de (2,148 ± 0,001) 2 m de largo (ver Figura 2-b). El alambre se midió con una cinta métrica y el radio (R) se calculó a través de la fórmula R = C/2π, siendo C la circunferencia de la esfera medida. Para medir el período T se utilizó un fotosensor (ver Figura 2-d), instrumento que es capaz de registrar datos acerca del movimiento del péndulo. La esfera era demasiado grande y no pasaba por el gancho del fotosensor (ver Figura 2-d), por lo que se añadió un tornillo en la parte inferior de la misma (ver Figura 2-c), siguiendo la línea del alambre, para que el aparato pudiera medir el periodo. 1 Incertidumbre estimada a través de la propagación del error en mediciones indirectas R= C/2π. 2 Incertidumbre instrumental. 3

Se realizaron 50 mediciones del período del péndulo para diferentes ángulos (3⁰, 5⁰, 8⁰, 10⁰, 13⁰ y 17⁰), los cuales fueron medidos a partir de L por relaciones trigonométricas ( X/L, ver Figura 1). De esta manera se pudo analizar cómo influye el ángulo en la medición de la aceleración gravedad. Nuestro ángulo máximo quedó limitado por el espacio de realización del experimento. (a) (b) (c) (d) Figura 2: (a) Soporte, (b) Plano principal del montaje del experimento, (c) Esfera de hierro con tornillo ya añadido, Resultados (d) Esfera oscilando-fotosensor En la Tabla 1 se muestran los promedios de los 50 períodos T de las mediciones que se tomaron con los diferentes ángulos. A partir de estos resultados, se calcularon los valores de la aceleración de la gravedad promedio, reemplazando en la ecuación (6) a T por cada uno de los y a L por 4

la suma entre el largo del alambre de acero (l) y el radio (R) de la esfera, que nos da la distancia entre el punto O (ver Figura 1) y el centro de masa de la esfera. Para calcular la incertidumbre asociada a los valores de ( g), se utilizó que: g/g = L/L + 2 T/T. Siendo, L = l + C/2π y T = ( es el error instrumental y 3 es el intervalo de confianza en el que se encuentra el verdadero valor de g con una cierta probabilidad ( =95%)) las incertidumbres asociadas a cada una de las variables. iv Ángulo (s) (m/ ) 3⁰ 2,981 ± 0,007 9,74 ± 0,07 5⁰ 2,982 ± 0,005 9,74 ± 0,07 8⁰ 2,984 ± 0,005 9,73 ± 0,07 10⁰ 2,985 ± 0,004 9,72 ±0,07 13⁰ 2,989 ± 0,005 9,69 ±0,07 17⁰ 2,993 ± 0,003 9,66 ±0,06 Tabla 1: Valores de T y g promedio. Graficando el período en función del período obtenemos: T (s) 2,998 2,996 2,994 2,992 2,990 2,988 2,986 2,984 2,982 2,980 2,978 2,976 2,974 2,972 2 4 6 8 10 12 14 16 18 Angulo (grados) T Figura 3: Relación ángulo período. Las barras muestran el intervalo de incertidumbre de cada T promedio. 3 iv ) es desviación estándar asociada a cada en la Tabla 1 y el número de mediciones. El valor de es 1,96 y está asociado a mediante la integral de la distribución gaussiana normalizada (ver referencia 5

Análisis de los resultados Como se aprecia en la Figura 3, los valores de aumentan cuando el ángulo crece. A la vez, se observa que los intervalos de incertidumbre de estos son más pequeños a medida el período aumenta. Esto indica que hasta cierto ángulos, el de 10⁰, los intervalos donde se encuentra el verdadero valor de coinciden, por lo que se considera que los datos obtenidos experimentalmente con ángulos mayores a este no pueden utilizarse para obtener el valor de la aceleración de la gravedad local. g(m/s2) 9,82 9,80 9,78 9,76 9,74 9,72 9,70 9,68 9,66 9,64 9,62 9,60 9,58 2 4 6 8 10 12 14 16 18 Angulo (grados) g Figura 4: relación ángulo aceleración de g. Las barras muestran el intervalo de incertidumbre de cada g promedio. El valor de la aceleración de la gravedad obtenido por la experiencia se encuentra entre 9,65-9,81 m/ (ver Figura 4), sobre un total de 200 mediciones (no se tuvieron en cuenta los valores arrojados por los ángulos de 13⁰ y 17⁰ por lo dicho anteriormente). Conclusiones Se obtuvo que el valor de la aceleración de la gravedad es (9,73 ± 0,08) m/, resultado que es satisfactorio si se considera que en este intervalo se encuentra el valor de g medido con técnicas sofisticadas (9,799165 m/ ) v. Además, la experiencia confirma nuestro marco teórico. Los resultados comenzaron a verse afectados por el ángulo a partir de los 10⁰. Estos resultados se podrían mejorar midiendo las magnitudes L y T con mayor precisión. 6

Anexo Periodo (s)/ Nro de (3⁰) (5⁰) (8⁰) (10⁰) (13⁰) (17⁰) mediciones 1 2,974 2,981 2,984 2,992 2,982 2,989 2 2,988 2,982 2,991 2,981 2,995 2,993 3 2,983 2,988 2,984 2,986 2,990 2,999 4 2,970 2,982 2,977 2,988 2,997 2,995 5 2,984 2,978 2,980 2,989 2,997 2,988 6 2,993 2,981 2,982 2,985 2,989 2,993 7 2,979 2,980 2,979 2,978 2,984 2,993 8 2,980 2,989 2,987 2,986 2,984 2,993 9 2,992 2,980 2,983 2,995 2,991 2,992 10 2,982 2,978 2,976 2,983 2,986 2,996 11 2,971 2,975 2,992 2,989 2,996 2,998 12 2,983 2,983 2,983 2,977 2,989 2,994 13 2,986 2,989 2,976 2,983 2,981 2,997 14 2,970 2,981 2,985 2,985 2,994 2,994 15 2,978 2,974 2,983 2,985 2,988 3,000 16 2,993 2,983 2,988 2,988 2,997 2,994 17 2,981 2,988 2,986 2,991 2,984 2,992 18 2,974 2,988 2,982 2,982 2,985 2,994 19 2,990 2,977 2,982 2,986 2,989 2,992 20 2,989 2,984 2,986 2,982 2,991 2,994 21 2,985 2,991 2,977 2,983 2,984 2,992 22 2,983 2,981 2,984 2,984 3,000 2,988 23 2,970 2,979 2,985 2,990 2,992 2,998 24 2,972 2,990 2,981 2,988 2,990 2,993 25 2,970 2,981 2,977 2,982 2,988 2,989 26 2,984 2,983 2,985 2,985 2,984 2,993 27 2,993 2,989 2,999 2,986 2,988 2,996 7

28 2,979 2,981 2,985 2,984 2,985 2,992 29 2,979 2,982 2,987 2,981 2,991 2,994 30 2,992 2,987 2,982 2,976 2,983 2,994 31 2,982 2,983 2,992 2,983 2,983 2,984 32 2,970 2,980 2,981 2,990 3,000 2,992 33 2,980 2,980 2,989 2,984 2,991 2,998 34 2,986 2,992 2,985 2,983 2,985 2,990 35 2,970 2,985 2,981 2,982 2,985 2,992 36 2,976 2,972 2,986 2,982 2,986 2,992 37 2,992 2,984 2,977 2,979 2,986 2,992 38 2,982 2,988 2,981 2,986 2,995 2,992 39 2,973 2,978 2,984 2,987 2,989 2,992 40 2,989 2,979 2,985 2,977 2,995 2,994 41 2,990 2,978 2,982 2,986 2,998 2,997 42 2,974 2,992 2,981 2,994 2,999 2,992 43 2,981 2,981 2,975 2,981 2,976 2,986 44 2,990 2,980 2,983 2,988 2,993 2,986 45 2,976 2,980 2,991 2,977 2,988 2,991 46 2,972 2,989 2,985 2,982 2,990 2,992 47 2,986 2,972 2,985 2,984 2,985 2,995 48 2,982 2,981 2,990 2,985 2,988 2,992 49 2,970 2,988 2,987 2,987 2,994 2,991 50 2,983 2,974 2,977 2,990 2,982 2,994 8

Bibliografía i Resnick-Halliday; Fisica, partei; Compañía editorial Continental S.A.; México, 1974. ii Serway, Raymond Jewett, John; FISICA, para ciencias e ingenierías; Ed. Thomson iii Alonso Finn; Física I; Ed. Addison-Wesley Iberoamericana; 1992. iv Apuntes teóricos de Fisica experimental I v Medición obtenida por el Dr. Introcaso Antonio del Grupo de Geofísica - Instituto de Física Rosario. 9