UNIDAD 6 ENERGÍA Y SU TRANSFORMACIÓN TECNOLOGÍAS 3º ESO IES MIGUEL ESPINOSA MURCIA

Documentos relacionados
Tema 5: ENERGÍA (Repaso de Contenidos Básicos)

Producción de energía eléctrica

DEPARTAMENTO DE TECNOLOGÍA

Tipos de energías renovables: ventajas e inconvenientes.

La Energía: Energías renovables

CENTRALES ELÉCTRICAS

Indica cinco dispositivos y objetos diferentes de los anteriores que realicen transformaciones de energía, indicando cuales son.

FORMAS DE ENERGÍA La energía puede manifestarse de diversas maneras, todas ellas interrelacionadas y transformables entre sí:

ENERGIA Y SUS TRANSFORMACIONES

MINISTERIO DE ENERGÍA Y MINAS República de Guatemala

LA PRODUCCIÓN DE LA ENERGÍA ELÉCTRICA

DESDE EL ESPACIO PODEMOS VER LA LUZ DE LAS CIUDADES

MOTOR 200 julios. TEMA 5. ENERGÍAS 1º ESO. Colegio San Agustín Valladolid ENERGÍA. CONVENCIONALES o NO RENOVABLES RENDIMIENTO ENERGÉTICO

ENERGIA TERMOELECTRICA. Daniela Serrano Lady Alejandra Moreno Valentina Bohórquez Andrea Matías

CENTRAL ELÉCTRICA. Energía cinética de un fluido. Turbina. Giro de un eje. Alternador

UNIDAD 7: ENERGÍA 1. Energía tipos y propiedades. 2. Fuentes de energía. 3. La energía y su transformación. La energía. Renovables No renovables

TEMA 2: ENERGÍA Y TRABAJO. Prof: David Leunda

LA ENERGÍA ÍNDICE - 1 -

ENERGIAS DE LIBRE DISPOSICION

LAS ENERGÍAS RENOVABLES EN LA GENERACIÓN ELÉCTRICA EN GUATEMALA

Las fuentes de energía se clasifican de 3 maneras distintas:

UNIDAD 11: LA ENERGÍA

La energía eléctrica llega de forma constante hasta nuestras casas a través de una red desde las llamadas CENTRAL HIDROELÉCTRICA AGUA VIENTO

Tema1: Fuentes de energía renovables. Conceptos básicos

La energía calórica o térmica se debe al movimiento de las partículas que constituyen la materia.

TEMA 4 - LA ENERGÍA.CORRIENTE ELÉCTRICA. La energía es la capacidad de un cuerpo para realizar un trabajo.

GUIA DE TRABAJO GRADO SEXTO. Tema 2

TEMA 1: ENERGÍA. Definición La energía se define como la capacidad que tiene un cuerpo para realizar un trabajo

Seminario de Electrónica Industrial

TEMA 2: MATERIA Y ENERGÍA

TEMA 10: LA ENERGÍA. 1. La Energía Obtención y Consumo. Necesita el ser humano energía en su vida?

ENERGÍA SOLAR DIRECTA

Las energías renovables (EU Directive 2001/77/CE) son las siguientes:

GUÍA DE REPASO: ENERGÍA

FUENTES DE ENERGÍA RENOVABLES

ÍNDICE 1. QUÉ ES LA ENERGÍA? 2. FORMAS O CLASES DE ENERGÍA 3. PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA

LA ENERGÍA ELÉCTRICA

UNIDAD 6: EL SECTOR SECUNDARIO. LOS ESPACIOS INDUSTRIALES VOCABULARIO

Dpto. Desarrollo Sostenible Por una Mejora Continua

La energía se puede manifestar de muchas formas diferentes: energía..., energía..., energía..., energía... y energía...

2.1 La energía eléctrica

La Energía. Curso de verano Febrero 2009 I.F.D. de Paysandú. Prof. Myriam Freitas

RECURSOS ENERGÉTICOS

Árbol de transmisión. Boca de impulsión. Valla del pozo. Encamisado del pozo. Cañería de impulsión. PANELES FOTOVOLTAICOS Wp

ANDALUCÍA / SEPTIEMBRE 2000 LOGSE / CIENCIAS DE LA TIERRA Y DEL MEDIO AMBIENTE / EXAMEN COMPLETO

La energía en nuestra Tierra. Profesores: Miss María del Luján Ricardo Díaz - 5 Básicos A y B Departamento de Ciencias y Tecnología.

LAS FUENTES DE ENERGÍA

REPASO EN ESPAÑOL C.E.I.P. GLORIA FUERTES NATURAL SCIENCE 5 UNIDAD 8: LA ENERGÍA(ENERGY)

TEMA 10: LA ENERGÍA ISABEL CORONADO ROMERO

ADAPTACIÓN CURRICULAR TEMA 10 CIENCIAS NATURALES 2º E.S.O

Biomasa es aquella materia orgánica originada en un proceso biológico, espontáneo o provocado,

PRODUCCIÓN, TRANSPORTE Y DISTRIBUCIÓN DE LA ENERGÍA ELÉCTRICA

DURACION: 600 horas. PRECIO: 900 * * Materiales didácticos, titulación y gastos de envío incluidos. MODALIDAD: A distancia DESCRIPCION:

Tecnologías de Aprovechamiento de Energía con Fuentes Renovables

Programa Regular. Asignatura: Energías Alternativas. Carrera: Ing. Electromecánica. Ciclo Lectivo: Coordinador/Profesor: José Ignacio Gonzalez

ENERGÍAS ALTERNATIVAS. SOLAR Y EÓLICA

Recursos Energéticos. Capitulo 10

LA ENERGÍA EÓLICA: RESPUESTAS Y CRITERIOS DE CORRECCIÓN

Producida por. Cargas eléctricas

Unidad 2. Materia y Energía DPTO. BIOLOGÍA-GEOLOGÍA BELÉN RUIZ GONZÁLEZ

LA ENERGÍA MUEVE AL MUNDO

COMBUSTIBLES FOSILES

Recursos energéticos

La energía es todo lo que puede producir cambios

ENERGÍA Año de Publicación: 2003

INSTITUTO TECNOLÓGICO DE CHIHUAHUA

6 Las actividades industriales

CUESTIONARIO DEL TEMA 3 LAS ENERGÍAS ALTERNATIVAS. Nombre: Fecha de Entrega: Curso: Grupo: Calificación:

3º ESO Tecnologías PRODUCCIÓN DE ENERGÍA ELÉCTRICA PREGUNTAS DE EXAMEN. Curso: Asignatura: Tema:

FÍSICA Y QUÍMICA Solucionario TRABAJO Y ENERGÍA

BLOQUE II: ENERGÍAS RENOVABLES

4. Consecuencias de la crisis del petróleo. 4.1 El recorte del uso de la energía. 4.2 El rendimiento energético. 4.3 Cogeneración y ahorro.

UNIDAD 4. -LA ENERGÍA HIDRAÚLICA- Energía cinética del eje. Tuberías Turbinas Alternador. Funcionamiento de una central hidroeléctrica

La energía eléctrica Se produce en los aparatos llamados generadores o alternadores.

Dos polos, norte y sur. Polos opuestos se atraen, polos iguales se repelen

IES Alquibla Departamento de Tecnología 3º ESO. Fuentes de Energía

FICHA DE CONSULTA DE EXCURSIÓN POR LA RED ELÉCTRICA

La energía y sus transformaciones

CLASIFICACIÓN DE LA ENERGÍA

ACTIVIDADES PENDIENTES 2º ESO CIENCIAS DE LA NATURALEZA CURSO 2015/2016 BLOQUE 2: UNIDAD 10, 11 y 12.

Trabajo Práctico N 2

Producción de energía en Centrales Nucleares. Carolina Ahnert Catedrática de Ingeniería Nuclear

Conversatorio sobre Electrificación Rural y Uso Productivo de la Electricidad en Zonas Rurales. Energía Eólica. Energía eólica

FICHA DE CONSULTA DE EXCURSIÓN POR LA RED ELÉCTRICA

Modelo de secadero solar.

Consideraciones eléctricas y conceptos básicos sobre la generación, transmisión y distribución de energía Unidad 1 Parte 2.

GRADO EN INGENIERÍA ELECTRICA CIRCUITOS MAGNÉTICOS Y TRANSFORMADORES JUAN CARLOS BURGOS

ELECTROMAGNETISMO ELECTROIMANES.

Todos aquellos elementos de la naturaleza que podemos utilizar para satisfacer nuestras necesidades y para asegurar nuestra subsistencia y bienestar.

TECNOLOGÍA ENERGÉTICA

TECHO BIOSOLAR. Fundación Mujeres y Tecnología ENIAC. Agustín V 1

COGENERACIÓN. ENERGIE QUELLE MBA. Ing. Daniel Mina 2010

También descubriremos cómo llega la energía eléctrica hasta nuestros hogares y qué podemos hacer para utilizarla de modo eficiente.

Análisis del sistema energético del Perú y retos de innovación para este sector

ESTUDIO DE DIFERENTES FORMAS DE OBTENER ENERGÍA ELÉCTRICA

4 FUENTES DE ENERGÍA.

LA ENERGÍA. Podemos decir, por tanto, que la energía es la causa de que ocurran cambios.

APROFITAMENT ECONÒMIC DELS DIVERSOS VECTORS ENERGÈTICS D UNA EDAR D ACORD AMB EL RD 661/2007, PEL QUAL ES REGULA L ACTIVITAT DE PRODUCCIÓ D ENERGIA

TEMA 7: LA ENERGÍA. Energía mecánica es la que poseen los cuerpos en movimiento (las olas, el viento ).

Investigación y Desarrollo en Energías Renovables. Departamento de Energías Renovables y Protección del Medio Ambiente

Transcripción:

UNIDAD 6 ENERGÍA Y SU TRANSFORMACIÓN TECNOLOGÍAS 3º ESO IES MIGUEL ESPINOSA MURCIA

ESQUEMA FUENTES DE ENERGÍA ENERGÍA ELÉCTRICA CENTRALES ELECTRICAS CENTRALES NO IMPACTO AMBIENTAL CLASIFICACIÓN - CENTROS DE GENERACIÓN -TRANSPORTE Y DISTRIBUCIÓN CLASIFICACIÓN CLASIFICACIÓN

1. FUENTES DE ENERGÍA Las fuentes de energía son recursos naturales de los cuales se obtienen diferentes formas de energía que pueden transformarse para un uso concreto. Clasificación. Atendiendo a: DISPONIBILIDAD Y REGENERACIÓN RENOVABLES NO RENOVABLES NECESIDAD DE TRANSFORMACIÓN PARA SU USO PRIMARIAS SECUNDARIAS

1. FUENTES DE ENERGÍA SU USO EN CADA PAÍS NO IMPACTO AMBIENTAL LIMPIAS O NO CONTAMINANTES CONTAMINANTES

2. ENERGÍA ELÉCTRICA LA ENERGÍA ELÉCTRICA ES LA ENERGÍA TRANSPORTADA POR LA CORRIENTE ELÉCTRICA. Forma de energía más usada. Razones: - Versátil: capacidad de transformarla con facilidad. - Facilidad de transporte a largas distancias. Bajo coste y mínimas pérdidas.

2. ENERGÍA ELÉCTRICA 2.1. CENTROS DE GENERACIÓN DE ELECTRICIDAD Instalación donde se transforma la energía primaria o secundaria en energía de consumo. Cuando la energía de consumo es energía eléctrica la central recibe el nombre de CENTRAL ELÉCTRICA. Una vez generada, la energía de consumo se transporta hasta los puntos de consumo donde será distribuida (viviendas, alumbrado, industrias, etc).

2. ENERGÍA ELÉCTRICA Funcionamiento general de una central eléctrica Utiliza la energía mecánica (movimiento) para transformarla mediante un generador en energía eléctrica de consumo. El generador empleado es el ALTERNADOR, que consta de: Una pieza fija, ESTATOR, y otra móvil, ROTOR. Rotor: compuesto por un número par de bobinas, alimentadas por corriente continua, funcionando como electroimán y produciendo un campo magnético giratorio.

2. ENERGÍA ELÉCTRICA Al moverse el eje del rotor por acción de la turbina acoplada al mismo, se produce corriente eléctrica alterna en cada una de las bobinas del estator. El sistema turbina-alternador está presente en todas las centrales convencionales y no convencionales, a excepción de las fotovoltaicas.

2. ENERGÍA ELÉCTRICA 2.2. TRANSPORTE Y DISTRIBUCIÓN DE LA ENERGÍA ELÉCTRICA Las centrales eléctricas se ubican lejos de los núcleos urbanos y puntos de consumo por razones de seguridad (central nuclear, térmica, etc), por razones de espacio (central solar) o por motivos físicos y orográficos (central hidráulica, parque eólico o central mareomotriz). La energía eléctrica no se puede almacenar!!! Una vez vertida a la red, se ha de consumir. Hay que transportarla desde las centrales a los puntos de consumo.

2. ENERGÍA ELÉCTRICA El transporte de energía eléctrica implica varios procesos: 1. Elevación del voltaje: por las grandes distancias a recorrer y para reducir las pérdidas (por calor, efecto Joule) el voltaje de salida de la central se eleva con transformadores a 220.000V o 400.000 V. 2. Diseño y construcción de la ruta de cables de alta tensión. Torres de alta tensión. 3. Reducción del voltaje. Subestaciones o transformadores entre la línea de alta tensión y el consumidor final. Reducen hasta 3 30 KV. 4. Desde la subestación empieza la distribución. Reducción de voltaje a 230 V o 400 V, según destino. 5. Antes de llegar al receptor pasa por contadores, cajas de derivación, cuadros de mando y protección para proteger equipos y usuario.

2. ENERGÍA ELÉCTRICA DEBERES: Definición y diferencias entre alta tensión, media tensión y baja tensión, en la libreta, a mano, medio folio.

3. CENTRALES ELÉCTRICAS O las de toda la vida producen la mayor parte de la electricidad que consumimos. Tres tipos: TÉRMICAS, NUCLEARES e HIDROELÉCTRICAS. Se convierte en electricidad la energía mecánica del vapor de agua a presión o la acumulada en un salto de agua. Sistema TURBINA-ALTERNADOR - Turbina: introduce el movimiento desde el vapor o salto de agua. - Alternador: transforma el movimiento en energía eléctrica.

3. CENTRALES ELÉCTRICAS 3.1. CENTRAL TÉRMICA DE COMBUSTIBLES FÓSILES La energía mecánica necesaria para mover las turbinas que están conectadas al rotor del generador proviene de la energía térmica contenida en el vapor de agua a presión.

3. CENTRALES ELÉCTRICAS Se calienta agua en una caldera con el calor generado por la combustión de petróleo (fuel), gas natural o carbón. El vapor de agua generado mueve una turbina conectada al rotor de un generador que suministra corriente eléctrica a la red de alta tensión, pasando antes por el transformador para elevar voltaje. El vapor pasa después a un condensador vuelve a convertirlo en líquido, y se bombea hacia la caldera repite el proceso.

3. CENTRALES ELÉCTRICAS Centrales de ciclo combinado: Obtienen electricidad mediante dos ciclos combinados: uno igual al que poseen las centrales térmicas convencionales y otro en el que se utiliza agua y aire.

3. CENTRALES ELÉCTRICAS En el segundo ciclo se emplea una turbina de gas que incluye un compresor. El compresor comprime el aire entrante, que se mezcla con el gas antes de proceder a su combustión, gracias a la cual se genera la electricidad en la turbina-alternador. Los gases de dicha combustión se llevan a una caldera de recuperación donde transfieren su energía al agua del segundo ciclo (aprovechar el calor residual). Estas centrales tienen rendimientos superiores a las de ciclo único.

3. CENTRALES ELÉCTRICAS 3.2. CENTRALES NUCLEARES Centrales térmicas donde la caldera se sustituye por reactor nuclear, produciéndose el vapor de agua por el calor generado en la fisión de núcleos atómicos radiactivos de uranio o plutonio. Producen una alta cantidad de energía con masas pequeñas de combustible nuclear a costa de producir residuos radiactivos altamente contaminantes y de larga duración. Esta energía calienta agua hasta vapor turbina alternador transformador red alta tensión Electricidad.

3. CENTRALES ELÉCTRICAS

3. CENTRALES ELÉCTRICAS 3.3. CENTRALES HIDRÁULICAS O HIDROELÉCTRICAS La central aprovecha la energía potencial acumulada en el agua almacenada a una altura. Al hacerla caer se convierte en energía cinética que mueve los álabes de una turbina, cuyo eje está conectado al rotor de un generador, que transforma el movimiento en energía eléctrica. Clasificación según el destino del agua: - De gravedad - De bombeo Si el agua sigue el cauce de un río y no se vuelve a usar, es una central hidráulica de gravedad.

3. CENTRALES ELÉCTRICAS Si el agua desciende hasta un embalse a menor altura para posteriormente ser bombeada de nuevo hasta el embalse superior con objeto de usarla de nuevo, son centrales hidráulicas de bombeo. Se construyen estas centrales en zonas donde existe la posibilidad de que en ciertas épocas del año no llegue suficiente agua al embalse superior, necesitando de un aporte.

3. CENTRALES ELÉCTRICAS

3. CENTRALES ELÉCTRICAS CONCLUSIONES: - Usan combustibles fósiles o uranio recursos no renovables. - Asociadas a grandes problemas medioambientales, contaminación y guerras de precios. - Dependencia hacia países exportadores.

4. CENTRALES NO Aparecen motivadas por los problemas asociados a las centrales convencionales. Conocidas como centrales ALTERNATIVAS. Principal inconveniente: generan menos energía al utilizar fuentes de energía difusas (viento, mareas, sol ). Importante desarrollo en los últimos años. Ventajas: - Mucha menos contaminación o limpias. - Recursos renovables o inagotables. - Menor dependencia energética. - Relativamente baratas.

4. CENTRALES NO 4.1. CENTRALES EÓLICAS O PARQUES EÓLICOS - Aprovechan la energía cinética del viento mueven palas de rotor situado en una torre (aerogenerador). - Las aspas están conectadas a un multiplicador de velocidad, que va fijado al eje del rotor. - Condiciones orográficas o del terreno particulares necesidad de fuertes vientos. - Energía limpia y gratuita. - Rango de velocidades de funcionamiento: óptimo: 45 km/h máximo: 100 km/h (motivos de seguridad) mínimo: 20 km/h

4. CENTRALES NO 4.2. CENTRALES SOLARES El Sol emite energía de dos tipos: 1. En forma de calor y, 2. En forma de ondas. Según que energía se use, encontramos dos centrales: - Centrales fototérmicas, y - Centrales fotovoltáicas.

4. CENTRALES NO Centrales fototérmicas: Aprovechan la radiación solar de dos formas: -Colectores solares: absorben las radiaciones solares para producir calor. -Heliostatos: reflejan la luz solar y la concentran en un punto uso calorífico en una caldera. En ambos casos el vapor producido mueve el rotor del generador.

4. CENTRALES NO Centrales fotovoltaicas: Transforman directamente la radiación solar en energía mediante paneles de células fotovoltaicas. Paneles de silicio producen un salto eléctrico al incidir los fotones, energía contenida en las ondas solares. Se usan a nivel usuario, con baterías o acumuladores para dar servicio nocturno, o en grandes extensiones de superficie para verter electricidad a la red.

4. CENTRALES NO 4.3. CENTRALES TÉRMICAS DE BIOMASA Biomasa: cantidad de energía contenida en los compuestos orgánicos producidos mediante procesos naturales. Es necesario quemar restos orgánicos para obtener la energía que contienen. Origen: - Vegetación natural, residuos forestales y agrícolas (restos de poda, pajas, rastrojos ). - Restos de cultivos específicos (girasol y remolacha cultivos energéticos).

4. CENTRALES NO

4. CENTRALES NO - Tratamiento de la biomasa por diversos procesos físicos y químicos naturales (descomposición, fermentación ) en los tanques digestores Obtención de combustibles vegetales como el carbón vegetal, el alcohol y el biogás. -Central de biomasa: central térmica donde se quema combustible procedente de la biomasa. -El vapor de agua generado mueve la turbina conectada a un generador (alternador) produce electricidad. -Reutilización de residuos para producir energía, con la ventaja de eliminar los residuos. -Contaminan menos, pero producen importante impacto ambiental.

4. CENTRALES NO 4.4. CENTRALES DE ENERGÍA OCEÁNICA En desarrollo. Prácticamente experimentales. En la actualidad presenta alto coste y bajo rendimiento. Se obtiene de mares y océanos como: - Energía mecánica de las mareas (Energía maremotriz) - Energía mecánica del oleaje - Energía procedente del gradiente térmico.

4. CENTRALES NO

4. CENTRALES NO 4.5. CENTRALES GEOTÉRMICAS Procede del calor presente en capas más profundas de la Tierra. Llega a la superficie terrestre en forma de vapor de agua, gases y agua caliente. Aprovechamiento de la energía geotérmica: - Directa: agua caliente, calefacción, balnearios - Indirecta: aprovecha vapor y calor para producir electricidad. - Inyectan agua en piedras calientes vapor turbina alternador electricidad

5. IMPACTO AMBIENTAL Desde la extracción de la materia prima, la construcción de la central eléctrica, el transporte de materiales, los subproductos contaminantes que producen Generar energía supone un impacto ambiental al medio ambiente que, como norma general, es negativo.

5. IMPACTO AMBIENTAL 5.1. EVALUACIÓN DEL IMPACTO AMBIENTAL De obligatoria redacción en todo Proyecto Técnico. Estudia los cambios que producirían en el medio ambiente como consecuencia de su realización. Incluye la valoración de las repercusiones económicas y sociales.

5. IMPACTO AMBIENTAL 5.2. REPERCUSIONES MEDIOAMBIENTALES Consumo de energía etapas: extracción, preparación de la materia prima, transporte y distribución, consumo, gestión de los residuos. Todas ellas tienen un coste medioambiental. Extracción de recursos naturales Agotamiento de yacimientos de combustibles fósiles (minas, yacimientos petrolíferos ) y nucleares. Grave impacto ambiental (destrucción de selvas y masas vegetales)

5. IMPACTO AMBIENTAL Transporte del combustible Oleoductos, buques petrolíferos graves accidentes. Grandes camiones o trenes alta contaminación. Destrucción de zonas verdes para realizar conducciones. Generación de electricidad Centrales hidroeléctricas: gran extensión de agua rompen ciclo del agua natural, destrozan la fauna. Centrales térmicas: producen la mayor parte de electricidad. Importante: gestión de residuos (contaminación atmosférica, efecto invernadero, lluvia ácida )

5. IMPACTO AMBIENTAL Centrales térmicas nucleares: no emiten CO2 ni otros gases contaminantes; a pesar de ello, plantean problemas de difícil solución Gestión de residuos nucleares, potencialmente peligrosos durante miles de años. Tratamiento de los residuos Reducir efecto de residuos en centrales térmicas: - Insertar filtros capturar gases de Nitrógeno y de Azufre. - Emplear carbón con bajo contenido en azufre. - Aumentar bosques y masas forestales pulmón del planeta.

5. IMPACTO AMBIENTAL Residuos nucleares: bajo paredes gruesas no deja escapar la radiación. Riesgo de corrosión fuga de radiactividad. Uso de energía final Procesada y transportada la energía, los combustibles en vehículos y calefacción emiten gases y partículas contaminantes. Al consumir energía eléctrica, la energía viene de un proceso contaminante.

5. IMPACTO AMBIENTAL 5.3. Algunas soluciones Eficiencia: menos energía con menor consumo (automóviles de bajo consumo, aislamiento de viviendas, electrodoméstricos clase A, etc) Diversificación energética: utilización de fuentes de energía renovables reducir impacto ambiental. Ahorro energético: reducir el consumo hábitos más saludables.