Unidad III CLASE Nº 2

Documentos relacionados
Disoluciones. Química General II 2011

Sustituir fotografía. Sustituir texto

DISOLUCIONES UNIDAD IV. Licda. Miriam Marroquín Leiva

DISOLUCIONES. Las disoluciones son mezclas homogéneas de dos o más sustancias (componentes) en proporciones variables.

Teoría Disoluciones Fórmula empírica y molecular Física y Química. 1º bachiller DISOLUCIONES

1. MATERIA Y SU ASPECTO

SUSTANCIA QUÍMICA mercurio oxígeno

So S l o u l c u i c o i n o e n s e

M A T E R I A L E S SOLUCIONES

FyQ 1. IES de Castuera Bloque 2 Aspectos Cuantitativos de la Química Unidad Didáctica 2

LOS GASES Y LAS DISOLUCIONES. Departamento de Física y Química 3º ESO

E.E.T. Nº9. Físico-Química de 2do año. Guía Nº3. Profesor: Alumno: Curso:

SISTEMAS MATERIALES. Departamento de Física y Química 2º ESO

La materia se puede definir como todo aquello que tiene masa y ocupa un volumen.

MOL. Nº AVOGADRO GASES. TEMA 4 Pág. 198 libro (Unidad 10)

Solubilidad y Soluciones. Solubilidad. Solubilidad

MOL. Nº AVOGADRO DISOLUCIONES. TEMA 4 Pág. 198 libro (Unidad 10)

SOLUCIONES SOLIDA LIQUIDA GASEOSA. mezclas homogéneas de dos sustancias: SEGÚN EL ESTADO FISICO DEL SOLVENTE

CLASIFICACIÓN DE LA MATERIA

Disoluciones Químicas

TEMA 3: MEZCLAS, DISOLUCIONES Y SUSTANCIAS PURAS

SOLUCIONES. Coordinadora de Enseñanza de Bioquímica y Biología Molecular. Fac. de Medicina. UNAM

Apuntes Disoluciones

Unidad 5 Equilibrio. 1. Razone el efecto que provocará en la síntesis de amoniaco:

MATERIA: ES TODO LO QUE TIENE MASA Y VOLUMEN.

EQUILIBRIO DE FASES. Durante un cambio de Fase, la T siempre se mantiene constante.

Apuntes Disoluciones. Fórmula empírica y molecular. Propiedades coligativas Física y Química. 1º bachiller

Termoquímica. Química General II era Unidad

TEMA 2: LA MATERIA: CÓMO SE PRESENTA?

LA MATERIA: ESTADOS DE AGREGACIÓN

Disoluciones. Qué es una mezcla? Concepto de Mezcla 12/05/2014

QUÉ SON LAS DISOLUCIONES?

LA MATERIA. - Masa - Volumen -Energía - Carga eléctrica. Propiedades generales

Una mezcla es un compuesto formado por varias sustancias con distintas propiedades

Transferencia de masa en la interfase

Acuerdo 286. Química. Disoluciones. Recopiló: M.C. Macaria Hernández Chávez

TEMA 2: LA DIVERSIDAD DE LA MATERIA 3º ESO

CLASIFICACIÓN DE LA MATERIA

Contenido de Física y Química de la Primera Evaluación

TEMA 2 SISTEMAS MATERIALES

1. Disoluciones una disolución es cualquier mezcla homogénea disolvente soluto Medidas de composición

CLASIFICACIÓN DE LA MATERIA

SUSTANCIAS PURAS (Repaso) MEZCLAS (Repaso)

1. Los estados de la materia

Clasificación de la materia

MEZCLAS Y DISOLUCIONES. Física y Química 3º de E.S.O. IES Isidra de Guzmán

ESTADOS DE LA MATERIA

PROBLEMARIO: Tercer Parcial (B) Prof. Juan Pablo Herrera

TEMA 1 Cambios de fase

COMPARACIÓN MOLECULAR DE LOS ESTADOS DE LA MATERIA. 27/05/2014 Carlos Urzúa Stricker 1

UNIVERSIDAD DE CÓRDOBA FACULTAD DE EDUCACIÓN Y CIENCIAS HUMANAS LICENCIATURA EN CIENCIAS NATURALES Y EDUCACION AMBIENTAL V SEMESTRE

TEMA 6 MEZCLAS Y DISOLUCIONES

Materia: es aquello que ocupa un lugar en el espacio y cuyas propiedades percibimos por los sentidos. Es diversa y discontinua.

Materia es todo aquello que tiene masa y ocupa un lugar en el espacio (tiene volumen). La ciencia que estudia la materia es la Química.

TEMA 2: DIVERSIDAD DE LA MATERIA

Tema 7. Las mezclas. Introducción

QUÍMICA. Tema 4. Estados de Agregación de la Materia

EQUILIBRIO QUÍMICO. 1. Equilibrio químico. 2. La constante de equilibrio. 3. EL principio de LeChatelier. Química 2º bachillerato Equilibrio químico 1

FACULTAD DE INGENIERÍA QUÍMICA ESCUELA DE INGENIERÍA QUÍMICA VASQUEZ BRIONES VÍCTOR ZAVALETA GARCÍA LUIS RODRIGUEZ LÁZARO YOVANY RUIZ BARAHONA EDUARDO

Disoluciones químicas

Solubilidad. Material de apoyo, Segundo Medio 15:21

Aprendizajes esperados

FÍSICA Y QUÍMICA TEMA 3: MEZCLAS, DISOLUCIONES Y SUSTANCIAS PURAS

Bioquímica Tema 2: Soluciones. Unidades Año: 2013

SOLUBILIDAD. Conceptos previos

Disoluciones y su contexto dentro de la química. Tipos de disoluciones LA TÉCNICA AL SERVICIO DE LA PATRIA

PREGUNTA (Módulo Electivo) El siguiente equipo de laboratorio: Se utiliza para

Escuela del Petróleo - Química

INSTITUCION EDUCATIVA LA PRESENTACION

CLASE Nº 1 ESTADO LÍQUIDO

CLASIFICACIÓN DE LA MATERIA

CONDICIONES DE FRONTERA DIFUSION ESTACIONARIA DE MASA A TRAVES DE UNA PARED

DISOLUCIONES. Finalmente se incluye un cuestionario on line para que alumno pruebe sus conocimientos.

Disoluciones: La disolución ideal y propiedades coliga4vas

Unidad Propiedades de las sustancias puras

Unidad 2. La materia

INSTITUCIÒN EDUCATIVA JUAN MARIA CESPEDES. DOCENTE: Gissely A. Quintero S. ÁREA: Ciencias Naturales (Química) 11º

Tiempo (minutos) Temperatura (ºC)

FORMAS MÁS COMUNES DE EXPRESAR LA CONCENTRACIÓN:

10. Porque no es posible cocer un huevo en el Everest? A) No hay suficiente presión atmosférica. B) No hay suficiente oxígeno. C) Hace mucho frío

UNIDAD EDUCATIVA COLEGIO SAN ANTONIO DEL TUY OCUMARE DEL TUY, ESTADO MIRANDA

Concepto Teoría Práctica Óxidos básicos (M+O) Nomenclatura. Tablas de formulación. Nomenclatura. En tradicional se denominan anhídridos.

Limitaciones de la 1ra. ley de la termodinámica

Equilibrios heterogéneos de solubilidad

Ley de conservación de la masa o ley de Lavoisier Ley de las proporciones definidas o ley de Proust

Page. Tema 1 Disoluciones. Terminología MATERIA: Cualquier cosa que ocupa espacio y tiene masa. Es todo lo que nos rodea.

03 DISOLUCIONES. 2 Observando la curva de solubilidad del clorato potásico, responder:

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 QUÍMICA TEMA 4: ENERGÍA DE LAS REACCIONES QUÍMICAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 QUÍMICA TEMA 4: ENERGÍA DE LAS REACCIONES QUÍMICAS

Tema 8: Disoluciones y sus propiedades

PROPIEDADES COLIGATIVAS DE LAS SOLUCIONES

SOLUCIONARIO Guía Estándar Anual

SOLUCIONARIO Guía Estándar Anual

Por qué es importante conocer. componentes de una disolución química?

Masas atómicas (g/mol): O = 16; S = 32; Zn = 65,4. Sol: a) 847 L; b) 710,9 g; c) 1,01 atm.

UNIDAD DIDÁCTICA 2. EL MODELO DE PARTÍCULAS DE LA MATERIA PROPUESTA DIDÁCTICA. LA MATERIA Y EL MODELO DOCUMENTO PARA EL ALUMNO

DISOLUCIONES Y CÀLCULO DE CONCENTRACIONES. MSc. Marilú Cerda Lira

CAPITULO 6 : Soluciones

2º de Bachillerato EQUILIBRIOS DE SOLUBILIDAD

Disoluciones. Contenidos. Identificar en una disolución el soluto y el disolvente.

Transcripción:

UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARUISIMETO DEPARTAMENTO DE INGENIERÍA UÍMICA UÍMICA GENERAL Unidad III CLASE Nº 2 Solubilidad 1

Gráficas de calentamiento y enfriamiento: Si las variaciones de temperatura que experimenta un sistema, que se encuentra inicialmente en la fase sólida, se presentan en función del tiempo que se ha utilizado para producir el cambio de estado, se obtiene la gráfica de calentamiento. D E Para cambiar de fase se requiere inyectar una cierta cantidad de energía en forma de calor, es decir, que para calentar el agua desde A a F, se debe considerar el calor requerido en cada uno de B C los tramos: AB, BC, CD, DE, EF. A B C F T = AF = AB + BC + CD + DE + EF En los segmentos AB, CD y EF, estamos calentando una sola fase, de temperatura a otra, por lo cual, la cantidad de calor necesaria viene dado por: = m* Cp * ΔT = m* Cp * ( ) T final T inicial En los segmentos BC y DE, estamos convirtiendo una fase en otra a temperatura constante, por lo cual, la cantidad de calor necesaria viene dado por: = m* Δ DE = m* ΔH vaporizaci ón BC H fusión 2

Gráficas de calentamiento y enfriamiento: Utilizando un sistema parecido al anterior, se pueden representar las variaciones de temperatura de una sustancia, a la cual se le sustrae calor en función del tiempo y que inicialmente se encontraba en la fase gaseosa, la grafica presenta a las gráficas de enfriamiento. fi i Para cambiar de fase se requiere retirar una cierta cantidad de energía en forma de calor, es decir, que para enfriar el agua desde A a F, se debe considerar el calor retirado en cada uno de los tramos: AB, BC, CD, DE, EF. - T =- AF =( AB + BC + CD + DE + EF ) En los segmentos AB, CD y EF, estamos enfriando una sola fase, de temperatura a otra, por lo cual, la cantidad de calor retirada viene dado por: = m* Cp * ΔT = m* Cp * ( ) T final T inicial En los segmentos BC y DE, estamos convirtiendo una fase en otra a temperatura constante, por lo cual, la cantidad de calor necesaria viene dado por: = m* Δ DE = m* ΔH fusión BC H vaporización 3

Ejemplo: Calcule la cantidad de energía (en kilojoules) necesaria para calentar 346 g de agua líquida desde 0ºC hasta 182ºC. Suponga que el calor específico del agua es 4,184 J/g.ºC en todo el intervalo de la fase líquida y que el calor específico del vapor es 1,99 J/g.ºC. Solución: El cálculo se puede dividir en tres etapas: Paso 1: Calentamiento del agua desde 0ºC hasta 100ºC ( 100 0) 1 = m* Cp * ΔT = 346g *4,184J / gº C * 145KJ 1 = Paso 2: Evaporación de 346 g de agua a 100ºC, y ΔH vap =40,79KJ/mol H 2 O 2 2 = = 1molH 2O m * Δ H vap = 346 g * 18 gh O 783 KJ 40,79 KJ * 1molH O Paso 3: Calentamiento del vapor desde 100ºC hasta los 182ºC 3 3 = m* Cp * ΔT = 56,5KJ = 346g *1,99J La energía total requerida está dada por: 2 / gº C * 2 ( 182 100) ( 145 + 783 + 56,5) KJ KJ T = + + = 985 1 2 3 = º C º C 4

Diagrama de fases: En termodinámica se denomina diagrama de fase o diagrama de cambio de estado a la representación gráfica de las fronteras entre diferentes estados de la materia, generalmente en función de la presión y temperatura. A B, el vapor de agua pasa al estado sólido ( escarcha ). C D, Si la humedad es > que 4,58 mm Hg, una de T origina rocío El punto triple: Es la única combinación de presión y temperatura a la que el agua, hielo y vapor de agua pueden coexistir en un equilibrio estable se produce exactamente a una temperatura de 273,1598 K (0,001 ºC) y a una presión parcial de vapor de agua de 611,73 pascales (6,1173 milibares). El punto crítico: Es aquel límite para el cual el volumen de un líquido es igual al de una masa igual de vapor o, dicho de otro modo, en el cual las densidades del líquido y del vapor son iguales. Se encuentra en 218 atm y 374ºC. 5

Solubilidad: Es una medida de la capacidad de una determinada sustancia para disolverse en un líquido. Puede expresarse en moles por litro, en gramos por litro o en % de soluto/disolvente. En la solubilidad, el carácter polar o apolar de la sustancia influye mucho, ya que, debido a estos la sustancia será más o menos soluble. La solubilidad de una sustancia depende de la naturaleza del disolvente y del soluto. Una forma indirecta de hacer referencia, es a través del KPS. Factores que afectan la solubilidad: a) Interacciones Soluto-Disolvente b) Efecto de la temperatura c) Efecto de la presión Interacciones Soluto-Disolvente: Cuanto mayor sean las atracciones entre el soluto y las moléculas del solvente, mayor será la solubilidad. Las disoluciones se favorecen si (1) y (2) son << (3). 6

Efecto de la temperatura: La solubilidad de la mayor parte de los solutos sólidos en agua aumenta al incrementar la temperatura. La solubilidad de los gases disminuye al aumentar la temperatura. Exotérmico => Libera calor Proceso => Un T => solubilidad Endotérmico => Absorbe calor => >Un T => solubilidad d Efecto de la presión: La solubilidad de un gas aumenta cuando, la presión del gas es directamente proporcional a la presión parcial de los gases sobre la disolución. Ley de Henry P gas =K*C gas K:Constante de Henry P gas : Presión del gas por encima de la solución Por ejemplo, cuando se destapa una gaseosa, la presión disminuye, por lo general el gas carbónico disuelto en ella escapa en forma de pequeñas burbujas Estamos hablando de soluciones pero que son??? 7

Soluciones: Las soluciones son mezclas homogéneas de dos o más especies moleculares puras y distintas en la cual no se da la precipitación. Las soluciones incluyen diversas combinaciones en que el sólido, el líquido o el gas actúan como disolvente osoluto, la homogeneidad d de sus componentes se considera desde un punto de vista de una escala molecular. Clasificación de las disoluciones: a) Por el estado de agregación Cualitativamente b) Por su concentración Cuantitativamente Diluidas Concentradas Diferentes unidades de concentración a) Por el estado de agregación: i) Sólidas Sólido en Sólido: Cuando tanto el soluto como el solvente se encuentran en estado sólido. Un ejemplo claro de éste tipo de disoluciones son las aleaciones, como el Zinc (s) en el Estaño (s). Gas en Sólido: Como su definición lo dice, es la mezcla de un gas en un sólido. Un ejemplo puede ser el Hidrógeno (g) en el Paladio (s). Líquido en Sólido: Cuando una sustancia líquida se disuelve junto con un sólido. Las amalgamas se hacen con Mercurio 8 (l) mezclado con Plata (s).

ii) Líquidas Sólidos en Líquidos: Este tipo de disoluciones es de las más utilizadas, pues se disuelven por lo general pequeñas cantidades de sustancias sólidas (solutos) en grandes cantidades líquidas (solventes). Ejemplos son: la mezcla del Agua con el Aú Azúcar, también cuando se prepara un Té, oal agregar Sal a la hora de cocinar. Gases en Líquidos: Por ejemplo, Oxígeno en Agua. Líquidos en Líquidos: Ésta es otra de las disoluciones más utilizadas. Por ejemplo, diferentes mezclas de Alcohol en Agua (cambia la densidad final); un método para volverlas a separar es por destilación. iii) Gaseosas Sólidos en Gases: Existen infinidad de disoluciones de este tipo, pues las podemos encontrar en la contaminación al estudiar los componentes del humo por ejemplo, se encontrará que hay varios minerales disueltos en gases. Gases en Gases: De igual manera, existe una gran variedad de disoluciones de gases con gases en la atmósfera, como el Oxígeno en Nitrógeno. Líquidos en Gases: Este tipo de disoluciones se encuentran en las nieblas. b) Por su concentración: b.1)cualitativamente: Diluidas: son aquellas soluciones donde la cantidad de soluto es pequeña,con respecto al volumen total de la solución. 9

Concentradas: son aquellas soluciones donde la cantidad de soluto es grande,con respecto al volumen total de la solución. Las soluciones concentradas se subdividen en: Insaturadas: contienen mucho soluto disuelto,sin llegar a la saturación. Saturadas: que han alcanzado la máxima concentración. Sobresaturadas: que contienen mayor cantidad de soluto que la saturada,pero en equilibrio inestable. b.2) Cuantitativamente: Disoluciones Valoradas: A diferencia de las disoluciones empíricas, las disoluciones valoradas cuantitativamente, sí toman en cuenta las cantidades numéricas exactas de soluto ysolvente que se utilizan en una disolución. ió Et Este tipo declasificación ió es muy utilizada en el campo de la ciencia y la tecnología, pues en ellas es muy importante una alta precisión. Unidades de concentración 10