La BAPTK, Es la roca mineralizada más dura de Cuajone y generalmente se presenta con mayor continuidad a medida que se profundiza el tajo.

Documentos relacionados
CAPACITACIÓN MOLINO DE BOLAS

MONITOREO CONTINUO, MEDICIÓN DE LA FRAGMENTACIÓN ONLINE Y SU INFLUENCIA EN LA OPTIMIZACIÓN DE LA VOLADURA

SISTEMA DE MOLIENDA PARA DETERMINACIÓN DE SAG WORK INDEX SGS, LÍDER MUNDIAL EN INSPECCIÓN, VERIFICACIÓN, ANÁLISIS Y CERTIFICACIÓN

NaSH EN LA OPTIMIZACIÓN DE LA FLOTACIÓN DE COBRE CONCENTRADORA CUAJONE SOUTHERN PERU. José Dávila Rene Llerena Nelver Benavides Cristhian Curo

BALLSIM_REVERSE.xls/Hoja Data_File

Pontificia Universidad Católica de Chile Escuela de Ingeniería Centro de Minería

TAMAÑO DE PARTÍCULA OBTENIDA POR LA REDUCCIÓN DE TAMAÑO DE ALIMENTOS SÓLIDOS GRANULOMETRIA

ELECTIVO ING. QUIMICA TRATAMIENTO DE MINERALES SULFURADOS DE COBRE. Clase III

Microscopia aplicada al control Metalúrgico de flotación de Cu

Sistema de Rastreo de Tamaño de Partículas (PST) CYCLONEtrac versus Sistema Tradicional. Técnicas de Medición de Tamaño de Partículas

DESAFIOS OPERACIONALES EN PROCESOS DE FLOTACIÓN

TABLA DE CONTENIDO CAPÍTULO 1. INTRODUCCIÓN...

Incremento de flotación de finos en Cerro Corona. Hyder Mamani Huánuco Superintendente de Metalurgia

MONITOREO CONTINUO, MEDICIÓN DE LA FRAGMENTACIÓN ONLINE Y SU INFLUENCIA EN LA OPTIMIZACIÓN DE LA VOLADURA

Los esfuerzos que producirán la fragmentación serán esfuerzos combinados de percusión y/o atrición.

Mejora de la Recuperación de cobre por Control Metalúrgico en la Etapa de Molienda y Flotación en Concentradora Antamina

LA RECUPERACIÓN TEMPRANA DE ULTRA FINOS Y ARCILLA, UNA OPORTUNIDAD DE NEGOCIO EN LA MINERÍA

EVALUACIÓN Y OPTIMIZACIÓN DE CIRCUITOS DE CHANCADO

CODELCO CHILE DIV. RADOMIRO TOMIC. PROPUESTA DE REVESTIMIENTOS CHANCADORES SYMONS 7 STD Rev. B. Área de Aplicaciones MCS

HPC - 50 FLUJO DE MINERAL

ESTUDIO DE PREOPERATIVIDAD PARA EL PROYECTO S.E. ARONDAYA Y LÍNEAS EN 138kV LADO NORTE DEL PIT PARTE I: RESUMEN EJECUTIVO DEL PROYECTO ÍNDICE

NUEVAS HERRAMIENTAS DE INVESTIGACIONES APLICADOS PARA LA OPTIMIZACION DE LOS RESULTADOS EN LA CONCENTRADORA DE CERRO LINDO

MOLINOS HPGR OSVALDO PAVEZ

PROCESOS BÁSICOS DE TRANSFORMACIÓN DE MINERALES

Parámetros de estandarización del método del índice de Bond para Molinos de Bolas

72.02 INDUSTRIAS I DE TRANSFORMACIÓN N DE MINERALES EXTRACCIÓN TRITURACIÓN MOLIENDA CONCENTRACIÓN AGLOMERACIÓN

Necesidades y Desafíos Operacionales de la Industria Minera Chilena

METALURGIA EXTRACTIVA Educación Media Diferenciada Técnico Profesional

Software de Diagnóstico & Consejos Correctivos para Plantas Procesadoras de Minerales

Soluciones con los medios de molienda. Barras y bolas de acero para. molienda. Maximizar su eficiencia en la. molienda FCA

PROCESAMIENTO DE MINERALES: FLOTACIÓN / PARTE II. Víctor Conejeros T.

PRACTICA Nº 4 ANÁLISIS GRANULOMÉTRICO POR TAMIZADO.

72.02 INDUSTRIAS I DE TRANSFORMACIÓN N DE MINERALES CLASIFICACIÓN N DE MINERALES EXTRACCIÓN TRITURACIÓN MOLIENDA CONCENTRACIÓN AGLOMERACIÓN

Expansión de Producción de Condestable con Innovaciones Tecnológicas en Clasificación de Molienda

Aplicación del Ciclo de Gestión Riesgos(CGR): Desde el Aprendizaje Operativo al Aseguramiento de la Promesa de Negocio

COMPETENCIAS EN RECURSOS Y RESERVAS MINERAS

ENCUENTRO INTERNACIONAL METALURGIA

Dimensionamiento Planta Concentradora de Sulfuros de Cobre

MODELO GEOMETALURGICO MATERIAL QUEBRADO YACIMIENTO INCA 18 ABRIL 2013

UNIVERSIDAD NACIONAL DE SAN AGUSTIN

2 HRC. Lars Gronvall Vice-Presidente Senior - Investigación y Desarrollo Tecnológico

SEPARACIONES MECÁNICAS. M. en C. Q. Eduardo Martín del Campo López

DISEÑO DE UN SISTEMA DE DESORCIÓN PARA LA RECUPERACIÓN DE ORO Y PLATA DE CARBÓN ACTIVADO FINO GENERADO EN UNA PLANTA DE PROCESO ADR.

Eficiencia energética en molienda de minerales de wolframio: funciones características del índice de trabajo

RECURSOS Y RESERVAS PARA LA SUSTENTABILIDAD MINERA

CATÁLOGO DE MOLINOS UC-SERIES

Una Comparación de Costo y Rendimiento para Medir Flujo Volumétrico. Por Paul Rothman, Presidente, CiDRA Minerals Processing, Inc.

SOUTHERN COPPER CORPORATION Y SUS PROYECTOS DE AMPLIACIÓN. Instituto de Ingenieros de Minas del Perú Jueves Minero - 7 de agosto de 2014

Una Comparación de Costo y Rendimiento para Medir Flujo Volumétrico. Por Paul Rothman, Presidente, CiDRA Minerals Processing, Inc.

PROYECTO GAMA PROYECTO ALTERNATIVO PERCOLACION A MALLA -6 TCL LABORATORIOS SAC.

Uno de estos procesos previos es la fragmentación:

UAlización de Cribas Derrick en SusAtución de Hidrociclones como Medio de Clasificación

Trituración y Molienda. Problema Combinado. Victoria Viau Lucía Muniagurria C

INSTITUTO DE INNOVACIÓN EN MINERÍA Y METALURGIA, IM2

Resultados del Tercer Trimestre de 2016

DIAGRAMAS DE PUNTA PARA LOS MOLINOS EN LATINO AMÉRICA. MARCO GALLI Director de Tecnología

"FUNDAMENTOS DE GEOMETALÚRGIA - Procesos y Cálculos

GRADUACION. Para la graduación de los agregados se utilizan una serie de tamices que están especificados en la norma ASTM:

Proyectos Estructurales Nuevo Nivel Mina El Teniente Mina Chuquicamata Subterránea. Vicepresidencia de Proyectos Abril 2012

Optimización del Proceso de Molienda en la Planta 2 de Minera Saucito TESIS. INGENIERO en METALURGIA y MATERIALES

Resultados del Cuarto Trimestre de 2017

OPTIMIZACIÓN PLANTA DE CHANCADO SECUNDARIO/TERCIARIO EN DIVISIÓN EL TENIENTE

PROPUESTA DE TRABAJO FIN DE GRADO

ÍNDICE. M.A. Héctor Manuel Mendoza Aguilar

Visita Planta Las Tórtolas

II: ANTECEDENTES Y ANÁLISIS BIBLIOGRAFICO.

Uso de un Indice de Conminución modificado para predecir el BWi en la mina Antamina, Perú

AUMENTO DE PRODUCTIVIDAD DE MOLINO DOBLE ROTADOR DE HARINA. Planta Olavarría Ariel Bacci Juan Manteiga

Metodología para Evaluar los Beneficios del Control de Molienda Utilizando Tecnología PST para Medición Precisa de Tamaño de Partículas en Línea

Cuáles son las medidas que podrían compensar la disminución de las cotizaciones de los metales?

Joel Cabrera Laura Noviembre 2017

Comisión de Minería y Energía Cámara de Diputados. Codelco División El Teniente Rancagua, abril 2018

UNIVERSIDAD AUTONOMA DE SAN LUIS POTOSI FACULTAD DE INGENIERIA - INSTITUTO DE METALURGIA POSGRADO EN INGENIERIA DE MINERALES

Desafíos hacia la Automatización Integrada de Operaciones Mineras. Luis G. Bergh

Planta IGR 100. Planta Artesanal i150. Planta IGR 100. icon Gold Recovery Corp. se enorgullece en presentar la

Entrega de resultados tercer trimestre de Nelson Pizarro, Presidente Ejecutivo. 25 de noviembre de

IBNORCA ANTEPROYECTO DE NORMA BOLIVIANA APNB 594

PROCESOS MINERO METALURGICOS EN LA EVALUACION DE RECURSOS Y RESERVAS MINERAS ESTUDIOS METALURGICOS EN LA MINERIA DEL ORO

Práctica 1 Molienda y tamizado

Informe de Laboratorio N 2 Eficiencia de caracterización en un Harnero piloto

4.3. Análisis histórico de datos de planta Flotación Planta de lixiviación Férrica Integración de procesos...

PROYECTOS DE EXPANSIÓN DE SOUTHERN COPPER CORPORATION

DEPARTAMENTO DE CIENCIAS DE LA ENERGÍA Y MECÁNICA

CYCLOSIM_SINGLE.xls/Hoja Reports

El material que sale del molino tubular se separa en un clasificador de aire, del que el material grueso se manda otra vez al molino.

ANÁLISIS MULTIVARIABLE PARA LA GESTIÓN OPERATIVA PARA MOLIENDA LÍNEA SAG, CODELCO DIVISIÓN ANDINA

Proyecto Optimización a 170 KTPD

PONTIFICIA UNIVERSIDAD CATOLICA DEL PERU FACULTAD DE CIENCIAS E INGENIERIA

METODOLOGÍA EXPERIMENTAL Introducción Descripción modelo físico y equipos Modelo físico Equipos...

Sílabo de Mineralurgia

OPORTUNIDADES PARA CHILE CON LA CRISIS FINANCIERA: EL COBRE. José Pablo Arellano M. Presidente Ejecutivo 28 de Abril de 2009

La molienda es la última etapa del proceso de conminución o fragmentación para la reducción del tamaño de las partículas.

8. Chancado primario de minerales

APLICABILIDAD DEL TEST STARKEY COMO MODELO PREDICTIVO PARA EL DIMENSIONAMIENTO DE MOLINO SAG DIVISIÓN ANDINA CODELCO

PASTA CEMENTADA GRANULOMETRÍA Y FINOS ESTABILIDAD

CHANCADO Y CLASIFICACIÓN

Congreso Expomin 2018 Resultados y Desfíos en Procesamiento de Minerales Antofagasta Minerals

EL MODELO OPERACIONAL INTEGRADO, COLABORATIVO Y EN TIEMPO REAL DE LA DIVISIÓN ANDINA DE CODELCO, A DOS AÑOS DE SU PUESTA EN MARCHA

I C M I INGENIERIA - CONSTRUCCION - MONTAJE INDUSTRIAL DISEÑO DE PROCESOS DIRECCIÓN PROFESIONAL DE PROYECTOS DE INGENIERÍA

Resultados de la instalación de celda flash en planta NOVIEMBRE 2016.

Transcripción:

ANTECEDENTES La litología de la mina de Cuajone en los planes de largo plazo indica que el mineral será más duro por mayor presencia de Andesita Basáltica con alteración potásica (BAPTK). La BAPTK, Es la roca mineralizada más dura de Cuajone y generalmente se presenta con mayor continuidad a medida que se profundiza el tajo. Sus índices de dureza están en el orden de 20 kwhr/tc en promedio y adicional a ello existe la tendencia a disminuir la ley de Cu en el mineral.

Por este escenario, la capacidad de procesamiento en molienda se vería afectado en un 11.3%. Para dar solución a este nuevo reto se decide optimizar las operaciones en la planta de trituración, instalando un High Pressure Grinding Rolls (HPGR). HPGR es un equipo capaz de procesar mineral duro, usando eficientemente la energía en el mecanismo de ruptura y en la reducción del Work Index en la Molienda de Bolas producto de la generación de micro fracturas.

OBJETIVOS DE LA INSTALACIÓN DEL HPGR Mejorar la fragmentación en la planta de trituración para incrementar los finos en la alimentación a Molinos y procesar + 5.7% sobre el tonelaje actual.

BENEFICIOS Incrementar finos, tratando el 30% de la capacidad de la planta de Trituración. Inducir micro-fisuras y liberación preferencial. Reducción granulométrica. Proporcionar mayor energía que absorberá el para ser fragmentado. mineral duro Alternativa de alto rendimiento energético a los circuitos de trituración

DESARROLLO DEL PROYECTO 1. Análisis de Parámetros de Molienda Actual Tabla Nº1: Parámetros de Molienda Actual Condiciones Normales de Operación WI Act. 16 Kwh/Tc P80 = 250 Micras F80 = 9,773 Micras Ton = 88,415 TPD E = 33,500 Kw A futuro el Wi estará en el orden de 18 kwhr/tc, simulando este valor con las mismas condiciones de operación se tiene una disminución en tonelaje de: 10,000 TMPD.

2. Análisis de Parámetros de Molienda Simulado Tabla Nº2: Parámetros de Molienda futura FUTURO (Simulado) WI fut. 18.0 KW-H/T P80 = 250 Micras F80 = 9, 773 Micras Ton = 78,395 TPD E = 33,500 Kw De no tomar acción sobre ello, el tonelaje procesado en molinos estará en el orden de 78,395 TMD.

% Pass. 3. Distribución granulométrica de Alimentación y Producto de Molinos Fig.Nº1: Alimentación a Molinos 120 100 80 60 Grueso Fino 40 20 Intermedio 0 100 1000 10000 100000 Micrones Wi 18.57 Wi 14.92 Fig.Nº2: Overflow General

4. Efecto de la granulometría sobre el Work Index Los valores históricos de las fracciones en malla -6 están disminuyendo conforme se incrementa el Wi ( Fig Nº3). Este efecto se corroboró con pruebas de Wi a nivel de laboratorio con muestra de alimentación a molinos, fracciones +6M y -6M. Tabla Nº3: Histórico del Retenido 6M Rangos %-Malla 6 Ene2012 - WI (kw-h/tc) Ene2013 <15,17> 41.2 <17,19> 37.8 <19,22> 34.0 Tabla Nº4: Wi B Alimentación a Molinos Malla +6-6 % 80 20 Wi (kwh/tc) 18.52 16.34

5. Simulación del incremento de tonelaje por un mayor producto fino. Pruebas de Molienda Ejecutar todo el circuito a escala de laboratorio y analizar los parámetros en función de la energía total aplicada en kwh/t. Enfrentar las dificultades inherentes a la realización de las pruebas en dicho circuito por no contar con un HPGR de laboratorio. Clasificar los materiales de acuerdo a la respuesta de molienda. El tamaño de la partícula constituye una de las variables de mayor relevancia operacional en cada fase del proceso.

Pruebas de Simulación Distribución Granulométrica de la Alimentación al molino del Laboratorio a diferentes mallas ALIMENTACION MOLINO LABORATORIO %-Malla 6 = 3360 micras %-Malla 10 = 1680 micras %-Malla 20 = 840 micras Malla % % 80% Tyler u Ind. Acc Pass Ind. Acc Pass Pass u Peso gr % 80% Peso gr. 80% Pass u Peso gr Ind. Acc Pass Pass u 6 3350 1.90 0.13 0.13 99.87 0 0.00 0.00 0.00 100.00 0 0.00 0.00 0.00 100.00 0 7 2800 138.43 9.13 9.26 90.74 0 0.00 0.00 0.00 100.00 0 0.00 0.00 0.00 100.00 0 8 2362 135.79 8.96 18.22 81.78 2288 0.00 0.00 0.00 100.00 0 0.00 0.00 0.00 100.00 0 9 2000 131.46 8.67 26.89 73.11 0 0.00 0.00 0.00 100.00 0 0.00 0.00 0.00 100.00 0 10 1700 122.20 8.06 34.95 65.05 0 14.47 0.97 0.97 99.03 0 0.00 0.00 0.00 100.00 0 12 1400 94.24 6.22 41.17 58.83 0 178.51 11.96 12.93 87.07 1223 0.00 0.00 0.00 100.00 0 20 852 182.92 12.07 53.24 46.76 0 327.61 21.95 34.88 65.12 0 3.93 0.26 0.26 99.74 609 35 425 180.00 11.87 65.11 34.89 0 287.84 19.28 54.16 45.84 0 524.49 34.74 35.00 65.00 0 48 300 63.65 4.20 69.31 30.69 0 96.85 6.49 60.65 39.35 0 160.22 10.61 45.61 54.39 0 65 212 55.61 3.67 72.98 27.02 0 74.88 5.02 65.66 34.34 0 128.84 8.53 54.15 45.85 0 100 150 41.77 2.76 75.73 24.27 0 56.06 3.76 69.42 30.58 0 90.53 6.00 60.15 39.85 0 150 106 43.13 2.85 78.58 21.42 0 59.61 3.99 73.41 26.59 0 88.51 5.86 66.01 33.99 0 200 75 32.59 2.15 80.73 19.27 0 44.66 2.99 76.40 23.60 0 66.12 4.38 70.39 29.61 0-200 -75 292.11 19.27 100.00 0.00 0 352.21 23.60 100.00 0.00 0 447.06 29.61 100.00 0.00 0 TOTAL 1515.80 2288 1492.70 1223 1509.70 609

Distribución Granulométrica del Producto de la molienda a nivel de Laboratorio (+65M:24% cte) PRODUCTO DE MOLIENDA LABORATORIO Malla +65 Cte: 24% Malla -6 (700 seg) Malla -10 (535 seg) Malla -20 (335 seg) 80% Malla % % % 80% Peso gr. 80% Pass u Peso gr. Pass Peso gr. Tyler u Ind. Acc Pass Ind. Acc Pass Microne Ind. Acc Pass Pass u 35 425 14.51 0.81 0.81 99.19 0 9.61 0.54 0.54 99.46 0 9.09 0.51 0.51 99.49 0 48 300 129.64 7.25 8.06 91.94 234 120.51 6.74 7.27 92.73 232 110.49 6.18 6.68 93.32 231 65 212 284.9 15.93 23.98 76.02 0 294.73 16.47 23.75 76.25 0 303.36 16.96 23.64 76.36 0 100 150 217.81 12.17 36.16 63.84 0 237.20 13.26 37.01 62.99 0 241.9 13.52 37.16 62.84 0 Distribución Granulométrica del producto de la molienda a nivel de Laboratorio (Tiempo de molienda : cte) 150 106 173.81 9.72 45.87 54.13 0 179.53 10.04 47.04 52.96 0 178.16 9.96 47.12 52.88 0 200 75 149.05 8.33 54.20 45.80 0 152.44 8.52 55.56 44.44 0 145.06 8.11 55.23 44.77 0 270 53 94.23 5.27 59.47 40.53 0 106.63 5.96 61.52 38.48 0 79.84 4.46 59.69 40.31 0-270 -53 725.05 40.53 100.00 0.00 0 688.35 38.48 100.00 0.00 0 721.1 40.31 100.00 0.00 0 TOTAL 1789 100.00 100.00 234 1789.00 100.00 100.00 232 1789 100.00 100.00 231 PRODUCTO DE MOLIENDA LABORATORIO Tiempo cte: 535 seg Malla -6 Malla -10 Malla -20 Malla % % 80% 80% Pass u Peso gr. Tyler Micrones Ind. Acc Pass Ind. Acc Pass Pass u Peso gr. % Peso gr. Ind. Acc Pass 35 425 182.96 10.23 10.23 89.77 345 12.61 0.70 0.70 99.30 0 0.17 0.01 0.01 99.99 0 48 300 274.1 15.32 25.55 74.45 0 133.2 7.45 8.15 91.85 235 10.7 0.60 0.61 99.39 0 65 212 219.02 12.24 37.79 62.21 0 287.99 16.10 24.25 75.75 0 121.34 6.78 7.39 92.61 161 100 150 153.92 8.60 46.39 53.61 0 237.2 13.26 37.51 62.49 0 275.45 15.40 22.79 77.21 0 150 106 126.98 7.10 53.49 46.51 0 179.53 10.04 47.54 52.46 0 246.32 13.77 36.56 63.44 0 200 75 112.44 6.29 59.78 40.22 0 152.44 8.52 56.06 43.94 0 201.95 11.29 47.84 52.16 0 80% Pass u

Pruebas de Simulación Se determina el factor de escalamiento del F80 y P80 (Lab./Pta). Parámetros de Molienda WI Grs TMD Kw F80 P80 Wi B Oper. Pta 80,073 3238 10,615 249 17.9 1789 1,223 235 17.2 Lab. Factor Pta /Lab 8.7 1.1

Escalamiento LABORATORIO PLANTA Molienda a Nivel de Laboratorio (20 mm) Pruebas de molienda con diferente tamaño de Alimentación Descripción Peso g Tpo seg Voltaje V Amp Factor Pot Potencia kw F80 P80 Wi Op kw-h/tc Wi Bond 100% -Malla 6 1789 535 440 2.48 0.85 1.61 2,288 345 20.55 100% -Malla 10 - STD 1789 535 440 2.37 0.85 1.53 1,223 235 17.63 17.3 100% -Malla 20 1789 535 440 2.33 0.85 1.51 609 161 16.64 Cálculo de Tonelajes simulados: Wi: 17.3 kwhr/tc Cálculo del Tonelaje con Wi 17.3 Descripción F80 Esc P80 Esc Wi Bond J (TMH)Esc J (TMD)Esc P80 Pta J (TMH)Sim Pta J (TMD)Sim Pta 100% -Malla 6 19,848 366 20.1 323 83,683 250 260 67,341 100% -Malla 10 - STD 10,615 249 17.3 317 81,906 250 317 82,051 100% -Malla 20 5,287 171 16.7 281 72,734 250 356 92,225

Escalamiento LABORATORIO PLANTA Cálculo de Tonelajes simulados con Wi Operacional: Cálculo del Tonelaje con Wi operacional y simulación a diferentes mallas Wi Op Descripción F80 Esc P80 Esc J (TMH)Esc J (TMD)Esc P80 Pta J (TMH)Sim kw-h/tc J (TMD)Simu Pta 100% -Malla 6 19,848 366 20.6 316 81,842 250 255 65,860 100% -Malla 10 - STD 10,615 249 17.6 311 80,376 250 311 80,519 100% -Malla 20 5,287 171 16.6 281 72,787 250 357 92,292 Determinación de ecuación:tmh-f80 cálculo del tonelaje para parámetros predeterminados. F80 (micras) 8,000 J (TMPD)Simulado 84,920 Diferencia Positiva TMPD 4,401 Incremento neto % 5.5

Análisis Económico del Proyecto Capital US$ 51,834,000 TIR 34.90% VAN 77,986,000 Período de Pago 3.8 Años Precio del Cu US$ 3.0 Precio del Mo US$ 13.2 Beneficio Tonelaje 5.70% Recuperación Cu 1%

Diagrama de Flujo del Circuito Actual de Chancado

Diagrama de Flujo del Circuito HPGR

Ubicación del HPGR en 3D

CONCLUSIONES La instalación de un HPGR en la Concentradora de Cuajone significa un incremento de 5.7% (corroborado por Polysius) sobre el tonelaje procesado en molinos con la consideración que el Work Index se ha incrementado hasta 18 kwhr/tc en promedio. La reducción del Work Index de Bond está relacionada con la cantidad de micro fracturas ocurridas en el mineral, incluyendo el aumento de la producción de finos. Esta característica permitirá mejor la recuperación de cobre en 1%.