Curso Energía Solar Fotovoltaica. Funcionamiento de la Energía Fotovoltaica

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Curso Energía Solar Fotovoltaica. Funcionamiento de la Energía Fotovoltaica"

Transcripción

1 Curso Energía Solar Fotovoltaica Funcionamiento de la Energía Fotovoltaica

2 Temario El Efecto Fotovoltaico Semiconductores P y N Célula Solar Característica I-V Potencia máxima y Eficiencia Efectos de la Irradiancia y Temperatura Células Solares Nuevos Conceptos Comparación de Células Solares

3 El Efecto Fotovoltaico ü Las células solares se fabrican con semiconductores. ü Los semiconductores son elementos sólidos que tienen una conductividad eléctrica inferior a la de un conductor metálico pero superior a la de un buen aislante. ü El semiconductor másutilizado es el silicio. Los átomos de silicio tienen su orbital externo incompleto con solo cuatro electrones denominados electrones de valencia. Estos átomos forman una red cristalina en la que cada átomo comparte sus cuatro electrones de valencia con los cuatro átomos vecinos formando enlaces covalentes.

4 El Efecto Fotovoltaico Cualquier aporte de energía, como una elevación de la temperatura o la iluminación del semiconductor, provoca que algunos electrones de valencia absorban suficiente energía para librarse del enlace covalente y moverse a través de la red cristalina, convirtiéndose en electrones libres. Cuando un electrón libre abandona el átomo de un cristal de silicio, deja en la red cristalina una vacante (hueco) que con respecto a los electrones circundantes tiene efectos similares a los que provocaría una carga positiva. A las vacantes así producidas se las llama huecos con carga positiva. La energía mínima necesaria para romper un enlace y generar un par electrón hueco esuna cantidad constante, característicadel material semiconductor, que se denomina energía de enlace. Para el silicio, la energía necesaria para generar un par electrón-hueco es 1,12 ev.

5 El Efecto Fotovoltaico La luz solar estáformada por fotones que se pueden definir como partículas sin masa con una determinada cantidad de energía. Las diferentes energías de los fotones corresponden a las diferentes longitudes de onda quecomponen el espectro electromagnético solar. 200<λ<380 nm 3,1 ev Ultravioleta Luz Visible 380<λ<780 nm 3,1 ev a 1,6 ev 780<λ<2500 nm 1,6 ev λ>1100nm <1,2 ev Infrarrojo

6 El Efecto Fotovoltaico Los electrones y huecos que se generan al iluminar un semiconductor se mueven por su interior aleatoriamente, cada vez que un electrón encuentra un hueco, lo ocupa y libera la energía adquirida previamente en forma de calor, esto se llama recombinación de un par electrón-hueco. Este proceso no tiene ninguna utilidad si no se consigue separar los electrones y los huecos de manera que se agrupen en diferentes zonas para formar un campo eléctrico, de forma que el semiconductor se comporte como un generador eléctrico. Si de alguna forma se consigue mantener esta separación y se mantiene constante la iluminación aparece una diferencia de potencial. Esta conversión de luz en diferencia de potencial recibe el nombre de efecto fotovoltaico. Para conseguir la separación de electrones y huecos se utiliza una unión de semiconductores P y N.

7 Semiconductores P y N Para mejorar la conductividad eléctrica de los semiconductores se utilizan impurezas añadidas voluntariamente, operación denominada dopado, que pueden ser de dos tipos: Impurezas pentavalentes. Son elementos cuyos átomos tienen cinco electrones de valencia en su orbital externo. Entre ellos se encuentran el fósforo, el antimonio y el arsénico. Impurezas trivalentes. Sonelementos cuyos átomos tienen tres electrones de valencia en su orbital externo. Entre ellos se encuentran el boro, el galio y el indio. Impurezas Pentavalentes (Fosforo). Semiconductor tipo N Impurezas trivalentes (Boro). Semiconductor tipo P

8 Semiconductores P y N Unión PN Por la atracción entre cargas positivas y negativas, los electrones libres de la región N más próximos a la región P se difunden en esta, produciéndose la recombinación con los huecos más próximos de dicha región. En la región N se crean iones positivos En la región P se crean iones negativos. Por el hecho de formar parte de una red cristalina, los iones mencionados no se pueden mover y por lo tanto no son libres para recombinarse. Esta distribución de cargas en la unión establece un campo eléctrico o barrera de potencial que impide el paso del resto de electrones de la región N a la región P, deteniendo la difusión y manteniendo separados a los portadores de carga de cada región. Una unión PN no conectada a un circuito exterior queda bloqueada y en equilibrio electrónico a temperatura constante.

9 Célula Solar Una célula solar básica es una unión PN con un contacto en la región P y otro en la región N que permiten el conexionado con un circuito eléctrico. Si se ilumina la célula, a los electrones y huecos generados los separa la barrera de potencial de la unión PN, acumulando huecos en la región P y electrones en la región N. La acumulación de cargas produce una diferencia de potencial, que aumenta cuando aumenta la iluminación. Esta diferencia de potencial se opone a la generadapor la barrera de potencial de la unión PN, empujando a los electrones hacia la región P y a los huecos hacia la región N, recombinando los pares electrón-hueco generados. Por lo tanto, la acumulación de electrones y huecos tendrá un límite, que dependerá de la dificultad de las cargas para encontrarse de nuevo en el interior del semiconductor. La diferencia de potencialque se alcanza recibe el nombrede tensión de circuito abierto, U oc.

10 Célula Solar Si cortocircuitamos la célula uniendo las regiones P y N con un conductor exterior de resistencia nula, los electrones de la región N se desplazan a través del conductor y se recombinan con los huecos de la zona P. La corriente que circulará por el conductor se mantendrá mientras que esté iluminado, siendo esta corriente proporcional a dicha iluminación. Esta corriente recibe el nombre de corriente de cortocircuito, I sc.

11 Célula Solar Si se conecta un receptor en el circuito exterior la resistencia de dicho receptor condicionará la diferencia de potencial generada por la célula. De las cargas generadas por la iluminación de la unión PN, una parte circulará por el receptor produciendo un trabajo y otra se recombinará en el interior de la célula produciendo calor. Si R, habrá una acumulación mayor de portadores en la unión PN, aumentando U L e incrementando la recombinación de portadores en la célula. Si R 0, la mayoría de los portadores circularán por el circuito exterior, reduciendo la acumulación de portadores en la unión PN y disminuyendo U L.

12 Característica I-V La características i u y p u de una célula solar con irradiancia y temperatura constantes. Sobre la característica i u se sitúa el punto de trabajo de la célula, por ejemplo el punto B, donde la corriente aportada por la célula I L y la resistencia R del receptor, fijan el valor de la tensión U L, de acuerdo con la ley de Ohm: ( Ω) R : Resistencia del receptor UL = IL R I L: Intensidad suministrada por la célula ( A) U L : Tensión del receptor conectado a la célula V La potencia PL entregada por la célula se representa en la característica p u por el punto B y tiene como valor: ( ) ( ) P L : Potencia entregada por la célula W PL = UL IL I L: Intensidad suministrada por la célula A U L : Tensión del receptor conectado a la célula V ( ) ( )

13 Potencia Máxima y Eficiencia Potencia máxima. Punto dela característica i u en el quela potencia entregada por la célula es máxima. Este punto, representado por A, tiene su correspondiente punto A en la característica p u de la célula. Se cumple que: mpp ( ) ( ) ( ) P máx : Potencia máxima de la célula W Pmáx = Umpp Impp I mpp: Intensidad máxima de la célula A U : Tensión máxima de la célula V Este producto es la potencia máxima que la célula es capaz de suministrar a un receptor, está representado por el área del rectángulo sombreado con vértice en A y siempre es inferior al área del rectángulo representado por la corriente de cortocircuito I sc y la tensión de circuito abierto U oc. El cociente entre ambas áreas se denomina factor de forma (FF):

14 Potencia Máxima y Eficiencia FF FF : Factor de forma, sin unidades U I P P máx : Potencia máxima ( W ) Uoc Isc Uoc Isc I sc: Intensidad de cortocircuito A U oc : Tensión de circuito abierto V mpp mpp máx = = ( ) ( ) El factor de forma FF siempre es inferior a la unidad. Es un indicador de la calidad de la célula que será mejor cuanto más cerca esté FF de la unidad.

15 Potencia Máxima y Eficiencia Eficiencia. También denominada rendimiento de conversión, η, indica el porcentaje de energía solar recibida sobre la superficie de la célula que se convierte en energía eléctrica. Se calcula con el cociente entre la potencia eléctrica máxima, P máx, y el producto del área superficial de la célula, A c, por la irradiancia incidente G en condiciones estandar de medida (CEM): P máx η= G Ac ( ) η : eficiencia % P máx : Potencia máxima W ( ) 2 ( ) 2 ( ) G : irradiancia en condiciones CEM 1000 Wm A c : Área superficial de la célula m

16 Efectos de la Irradiancia y Temperatura La figura muestra el efecto de la irradiancia en la característica i u de una célula solar. Como se puede ver, la intensidad de cortocircuito, Isc, varía con la irradiancia, siendo esta variación lineal, de acuerdo con la expresión: I : intensidad de cortocircuito para una irradianción G A sc G I sc( CEM) Isc( G) = G I sc( STC) : intensidad de cortocircuito en condiciones CEM ( A) G : irradiancia ( W m ) ( ) ( ) La tensión de circuito abierto, U oc, varía muy poco con la irradiancia, los valores de U oc para diferentes irradiancias se agrupan en una zonamuypequeña sobre el eje deabscisas, por lo tanto, a efectos prácticos, se puede considerar como constante. La potencia eléctrica de una célula solar será mayor o menor en función de la irradiancia de la radiación solar.

17 Efectos de la Irradiancia y Temperatura La figura muestra el efecto de la temperatura de la célula sobre la característica i u. Se puede ver que la tensión de circuito abierto disminuye cuando aumenta la temperatura. La intensidad de cortocircuito aumenta cuando aumenta la temperatura, aunque la variación es muy pequeña y a efectos prácticos se considera constante. Es evidente que si la tensión de la célula disminuye cuando aumenta la temperatura y la intensidad prácticamente se mantiene constante, la potencia entregada por la célula, producto de la tensión por la intensidad, disminuirá cuando aumente la temperatura.

18 Efectos de la Irradiancia y Temperatura Se aprecia que la potencia máxima es inferior al 90 % con temperaturas de la célula próximas a 50 C, valor que se puede alcanzar con una temperatura ambiente de 30 C. La temperatura de una célula, que forma parte de un módulo fotovoltaico, alcanza unos 20 C por encima de la temperatura ambiente, pero en condiciones de mala disipación del calor. Malas condiciones se generan cuando los módulos que contienen las células se integran en fachadas, la temperatura de la célula puede alcanzar valores superiores a 75 C que reduce la potencia por debajo del 80 %.

19 Efectos de la Irradiancia y Temperatura La temperatura de trabajo de una célula solar depende de la temperatura ambiente y de la irradiancia. Aproximadamente se calcula con la fórmula: ( C) T c : Temperatura de trabajo de la célula TONC 20 T a : Temperatura ambiente ( C ) Tc = Ta + G 800 TONC : Temperatura de operación nominal de la célula C 2 G : Irradiancia ( W m ) El valor de la temperatura de operación nominal de la célula (TONC) es un parámetro que se obtiene de las hojas de características de los módulos fotovoltaicos, toma valores que van de 43 a 49 C y si no se dispone de él se puede tomar 45 C como un valor razonable. ( )

20 Constitución de una Célula Solar Una célula solar convencional está construida a partir de una oblea de material semiconductor como el silicio, de un espesor aproximado de entre 100 y 500 μm, en la que se ha difundido boro (impureza trivalente, región P) y sobre la que se difunde una capa muy fina, de 0,2 a 0,5 μm, de fósforo (impureza pentavalente, región N), para obtener una unión PN.

21 Constitución de una Célula Solar Para aumentar el rendimiento de la célula, la cara que va a recibir la luz solar se somete a un proceso, denominado texturización, que crea micropirámides superficiales para reducir la reflexión en la superficie de la célula. Sobre esta superficie se dispone una rejilla metálica que proporciona una buena conexión eléctrica dejando al descubierto la mayor cantidad posible de superficie receptora de la luz solar. Esto se consigue disponiendo láminas metálicas en forma de peine, muy finas, con anchuras que van de 20 a 150 mm según la técnica de implantación utilizada. La rejilla descrita es el terminal negativo de la célula, el terminal positivo se consigue con la metalización de la cara posterior. La célula se completa depositando una capa antirreflexiva en la cara frontal que facilita la absorción de fotones.

22 Células Solares Tipos de Células Células Cristalinas Células de Capa Fina Células de Estructura Nano Silicio monocristalinas Policristalinas EFG Contacto Posterior Silicio Amorfas CIS de Estructura Nano Silicio estándar - Dopaje P Silicio de Capa Fina (micromorfas) Poliméricas Alto rendimiento - Dopaje N CIS (Cu(In,Ga)Se 2 Materia Colorante Contacto posterior CIS de Franjas/CIS de Esferas/CuInS2 Esferas Telurio de Cadmio (CdTe) Franjas (Sliver cells) Células Hibrídas (HIT) Concentradoras

23 Células Solares

24 Células de Silicio Monocristalinas Descripción Detalle Eficiencia : 15 18% Forma : Redonda, Semi-cuadrada, Cuadrada Tamaño en cm x cm : d=10; 12,5; 15; mayormente (10x10) cm 2 ó (12,5x12,5) cm 2 Grosor : 0,14 a 0,3 mm Estructura : Homogénea Color : Azul oscuro hasta negro

25 Células de Silicio Policristalinas Descripción Detalle Eficiencia : 13 16% Forma : Redonda, Semi-cuadrada, Cuadrada Tamaño en cm x cm : d=10; 12,5; 15; mayormente (12,5x12,5); (15,6x15,6);(20x20) cm2 Grosor : 0,14 a 0,3 mm Estructura : De Flor de Escarcha Color : Azul (con AR), gris plata (sin AR)

26 Células de Silicio Policristalinas TRATAMIENTO ANTIREFLEJANTE Verde : 11,8% Dorado : 12% La capa de grosor determina el comportamiento del fenómeno de reflexión y el color Marrón : 12,5% Violeta : 13,2% Sin AR : 13,2%

27 Células de Capa Fina Comparación del grosor de las células, el consumo de material y el gasto de energía para la producción de células de silicio de capa fina (izquierda) y células cristalinas (derecha)

28 Células de Silicio Amorfas ü ü ü ü Bajos Costos. Ideal para cubierta de superficies. Vida más corta Eficiencia 8%

29 Células de Silicio Amorfas PILA DE CÉLULAS AMORFAS Long. Onda Corta Long. Onda Media Long. Onda larga Células de triple unión Fabricante UniSolar (USA) Eficiencia 5 al 7% Celda absorbe azul Celda absorbe Verde Celda absorbe Roja Capa Reflectora Substrato (Vidrio) Sensibilidad de una célula amorfa de triple unión y de sus células individuales superpuestas

30 Células de cobre, indio y selenio (CIS) ü Son unos de la más alta eficiencia de más bajo costo, de paneles solares de película delgada. ü No utiliza silicio cristalino para hacer las células solares. ü Mientras que los paneles solares de silicio cristalino en la actualidad representan más del 85 por ciento de la infraestructura actual solar CIGS se está convirtiendo cada vez más aceptada como la solución más rentable y eficiente. ü CIGS tiene el mayor potencial de materiales alternativas conocidos de silicio cristalino. ü El aprovechamiento de CIGS potencial en una película delgada permite un alto rendimiento y menores costos. ü Eficiencia 9-12%

31 Células de cobre, indio y selenio (CIS) NUEVAS TECNOLOGÍAS Células de Cobre-IndioBisulfuro Células de esferas CIS Células CIS de franjas Células CIS de nano estructura Células CIS de Folios Metálicos

32 Células de Telurio de Cadmio (CdTe) ü Menos del 2% del contenido equivalente de semiconductores de silicio cristalino. ü Elevado rendimiento energético. ü La eficacia de CdTe, el semiconductor utilizado, es menos susceptible a las variaciones de temperatura de la célula de semiconductores tradicionales. ü CdTe convierte la luz baja y difusa a la electricidad de manera más eficiente que las células convencionales. ü Eficiencia 9-18%

33 Células de Concentración Solar Hasta 46% de Eficiencia Instalación de CPV Minera Centinela Oxidos

34 Células de Concentración Solar

35 Concentrator Photovoltaic Thermal (CPVT) Células de Concentración Solar Receptor Concentrador

36 Nuevos Conceptos: Células de Material Colorante Panel Comercial de una producción de pequeña envergadura STA, Australia

37 Nuevos Conceptos: Células Orgánicas

38 Comparación de Células Solares

39 Comparación de Células Solares Instalación FV de 1 kwp de diferentes tecnologías: Policristalino, monocristalino, CIS, Silicio Amorfo, CdTe (de izquierda a derecha)

40 Comparación de Células Solares

Semiconductores. La característica común a todos ellos es que son tetravalentes

Semiconductores. La característica común a todos ellos es que son tetravalentes Semiconductores Un semiconductor es un dispositivo que se comporta como conductor o como aislante dependiendo del campo eléctrico en el que se encuentre. Elemento Grupo Electrones en la última capa Cd

Más detalles

CELDAS SOLARES INTRODUCCION

CELDAS SOLARES INTRODUCCION CELDAS SOLARES INTRODUCCION La energía eléctrica no esta presente en la naturaleza como fuente de energía primaria y, en consecuencia, sólo podemos disponer de ella mediante la transformación de alguna

Más detalles

ESTRUCTURA DEL ÁTOMO

ESTRUCTURA DEL ÁTOMO ESTRUCTURA DEL ÁTOMO BANDAS DE VALENCIA Y DE CONDUCCIÓN MECANISMOS DE CONDUCCIÓN EN UN SEMICONDUCTOR SEMICONDUCTORES *Semiconductor *Cristal de silicio *Enlaces covalentes. Banda de valencia *Semiconductor

Más detalles

Curso Energía Fotovoltaica. Aspectos técnicos y aplicaciones

Curso Energía Fotovoltaica. Aspectos técnicos y aplicaciones Curso Energía Fotovoltaica Aspectos técnicos y aplicaciones Caracterización de celdas y generadores fotovoltaicos Reinhold Schmidt Introducción Fuente energética Sistema fotovoltaico Bombeo Red eléctrica

Más detalles

Apuntes: Energía Solar Fotovoltaica (ESF) Módulo 2: PRINCIPIO FÍSICO DE LOS DISPOSITIVOS FOTOVOLTAICOS

Apuntes: Energía Solar Fotovoltaica (ESF) Módulo 2: PRINCIPIO FÍSICO DE LOS DISPOSITIVOS FOTOVOLTAICOS Apuntes: Energía Solar Fotovoltaica (ESF) Módulo 2: PRICIPIO FÍSICO DE LOS DISPOSITIVOS FOTOVOLTAICOS Prof. Rafael Martín Lamaison 5 de Marzo de 2004 COTEIDO Introducción: conceptos básicos Átomos Electrones

Más detalles

Energía Solar Fotovoltaica

Energía Solar Fotovoltaica Rincón Técnico Fuente: http://www.electricidad-gratuita.com/energia%20fotovoltaica.html Autor: El contenido de este artículo es un extracto tomado de: http://www.electricidad-gratuita.com/energia%20fotovoltaica.html

Más detalles

GENERADOR FOTOVOLTAICO

GENERADOR FOTOVOLTAICO GENERADOR FOTOVOLTAICO Efecto fotovoltaico Consiste en la conversión de la energía que transportan los fotones de luz, cuando inciden sobre materiales semiconductores, en energía eléctrica capaz de impulsar

Más detalles

OBJETIVOS GENERAL DEL CURSO (Competencia específicas a desarrollar en el curso)

OBJETIVOS GENERAL DEL CURSO (Competencia específicas a desarrollar en el curso) ENERGIA SOLAR Clave de la asignatura: EGJ-1304 SATCA: 4-2-6 OBJETIVOS GENERAL DEL CURSO (Competencia específicas a desarrollar en el curso) Conocer el efecto fotovoltaico para generación de electricidad,

Más detalles

CAPITULO II. DISPOSITIVOS SEMICONDUCTORES.

CAPITULO II. DISPOSITIVOS SEMICONDUCTORES. CAPITULO II. DISPOSITIVOS SEMICONDUCTORES. Tema 4. SEMICONDUCTORES. Las características físicas que permiten distinguir entre un aislante, un semiconductor y un metal, están determinadas por la estructura

Más detalles

Tema 3: Efecto fotovoltaico

Tema 3: Efecto fotovoltaico Tema 3: Efecto fotovoltaico Generación de carga 1 Generación de carga Generación térmica Generación óptica Coeficiente de absorción Dimensiones de la célula fotovoltaica en PC1D Densidad de impurezas en

Más detalles

UNIDAD 2: CÉLULAS Y MÓDULOS FOTOVOLTAICOS.

UNIDAD 2: CÉLULAS Y MÓDULOS FOTOVOLTAICOS. UNIDAD 2: CÉLULAS Y MÓDULOS FOTOVOLTAICOS. Como se ha visto en la primera unidad la fotovoltaica es una aplicación prometedora que ha experimentado un gran crecimiento a lo largo de las últimas décadas.

Más detalles

MÓDULO FOTOVOLTAICO GADIR SOLAR 80 a Si CARACTERÍSTICAS DEL MÓDULO FOTOVOLTAICO DE CAPA FINA GADIR SOLAR. TECNOLOGÍA Y CERTIFICACIÓN

MÓDULO FOTOVOLTAICO GADIR SOLAR 80 a Si CARACTERÍSTICAS DEL MÓDULO FOTOVOLTAICO DE CAPA FINA GADIR SOLAR. TECNOLOGÍA Y CERTIFICACIÓN CARACTERÍSTICAS DEL MÓDULO FOTOVOLTAICO DE CAPA FINA GADIR SOLAR. TECNOLOGÍA Y CERTIFICACIÓN Los módulos fotovoltaicos GADIR SOLAR 80 a Si son producidos aplicando una tecnología de fabricación basada

Más detalles

SEMICONDUCTORES. Silicio intrínseco

SEMICONDUCTORES. Silicio intrínseco Tema 3: El Diodo 0 SEMICONDUCTORES Silicio intrínseco 1 SEMICONDUCTORES Conducción por Huecos A medida que los electrones se desplazan a la izquierda para llenar un hueco, el hueco se desplaza a la derecha.

Más detalles

Estudio y caracterización de células solares fotovoltaicas

Estudio y caracterización de células solares fotovoltaicas Estudio y caracterización de células solares fotovoltaicas Esta práctica consta de tres partes: en la primera analizaremos varias células fotovoltaicas (monocristalina y policristalina), obteniendo su

Más detalles

Dispositivos Electrónicos

Dispositivos Electrónicos Dispositivos Electrónicos AÑO: 2010 TEMA 3: PROBLEMAS Rafael de Jesús Navas González Fernando Vidal Verdú E.T.S. de Ingeniería Informática Ingeniero Técnico en Informática de Sistemas: Curso 1º Grupo

Más detalles

Principios de la Conversión fotovoltaica

Principios de la Conversión fotovoltaica Universidad Nacional Autónoma de México Centro de Investigación en Energía Curso de Especialización Sistemas Fotovoltaicos de Interconexión FIRCO Morelos, 16 a 20 de enero de 2012 UNIVERSIDAD VERACRUZANA

Más detalles

Otros tipos de Diodos. ITESM Campus Monterrey, Departamento de Ing. Eléctrica

Otros tipos de Diodos. ITESM Campus Monterrey, Departamento de Ing. Eléctrica Otros tipos de Diodos Diodo Schottky Se forma uniendo un metal como platino o aluminio a un silicio tipo p o n. Utilizado en circuitos integrados en donde se requiera conmutación a altas velocidades Voltaje

Más detalles

TENDENCIAS ACTUALES EN LA ENERGÍA SOLAR FOTOVOLTAICA

TENDENCIAS ACTUALES EN LA ENERGÍA SOLAR FOTOVOLTAICA TENDENCIAS ACTUALES EN LA ENERGÍA SOLAR FOTOVOLTAICA Lluís Prat Viñas Departamento de Ingeniería Electrónica Universitat Politécnica de Catalunya, Barcelona, España CONTENIDO: 1.- LA ENERGÍA FOTOVOLTAICA:

Más detalles

CONCEPTOS BÁSICOS PARA LAS INSTALACIONES FOTOVOLTAICAS.

CONCEPTOS BÁSICOS PARA LAS INSTALACIONES FOTOVOLTAICAS. ÍNDICE DEL CURSO. INSTALACIÓN Y DISEÑO ENERGÍA SOLAR FOTOVOLTAICA. ENERGÍA SOLAR. T.0.- FUNDAMENTOS DE ENERGIA SOLAR. T.1.- RADIACIÓN SOLAR. T.2.- SOL Y RAYOS SOLARES SOBRE LA TIERRA. T.3.- INCLINACIÓN

Más detalles

Integración de módulos fotovoltaicos en la rehabilitación de edificios de la primera mitad del siglo XX

Integración de módulos fotovoltaicos en la rehabilitación de edificios de la primera mitad del siglo XX Máster Universitario Arquitectura, Energía y Medio Ambiente Universidad Politécnica de Catalunya, Barcelona, España año académico 2013-2014 Integración de módulos fotovoltaicos en la rehabilitación de

Más detalles

CAPÍTULO 6. Arreglo de celdas solares y carga de las baterías para obtener la fuente de alimentación de VCD del convertidor.

CAPÍTULO 6. Arreglo de celdas solares y carga de las baterías para obtener la fuente de alimentación de VCD del convertidor. CAPÍTULO 6 Arreglo de celdas solares y carga de las baterías para obtener la fuente de alimentación de VCD del convertidor. 6.1 Introducción. En este capítulo se define la corriente de corto circuito Icc,

Más detalles

ENERGÍA FOTOVOLTAICA Dr. Ricardo Guerrero Lemus ENERGÍA FOTOVOLTAICA. Dr. Ricardo Guerrero Lemus

ENERGÍA FOTOVOLTAICA Dr. Ricardo Guerrero Lemus ENERGÍA FOTOVOLTAICA. Dr. Ricardo Guerrero Lemus ENERGÍA FOTOVOLTAICA Dr. Ricardo Guerrero Lemus 1 DEFINICIÓN: La energía fotovoltaica es energía eléctrica creada mediante la excitación de portadores de carga eléctrica al interaccionar con fotones procedentes

Más detalles

TEMA 3 TEORIA DE SEMICONDUCTORES

TEMA 3 TEORIA DE SEMICONDUCTORES TEMA 3 TEORIA DE SEMICONDUCTORES (Guía de clases) Asignatura: Dispositivos Electrónicos I Dpto. Tecnología Electrónica CONTENIDO PARTÍCULAS CARGADAS Átomo Electrón Ión Hueco TEORÍA DE LAS BANDAS DE ENERGÍA

Más detalles

SEMICONDUCTORES (parte 2)

SEMICONDUCTORES (parte 2) Estructura del licio y del Germanio SEMICONDUCTORES (parte 2) El átomo de licio () contiene 14 electrones dispuestos de la siguiente forma: 2 electrones en la primer capa (capa completa), 8 electrones

Más detalles

RESISTORES Tipos de Resistores:

RESISTORES Tipos de Resistores: RESISTORES 2016 Tipos de Resistores: Teoría de Circuitos Por su composición o fabricación: De hilo bobinado (wirewound) Carbón prensado (carbon composition) Película de carbón (carbon film) Película óxido

Más detalles

Práctica Nº 4 DIODOS Y APLICACIONES

Práctica Nº 4 DIODOS Y APLICACIONES Práctica Nº 4 DIODOS Y APLICACIONES 1.- INTRODUCCION El objetivo Los elementos que conforman un circuito se pueden caracterizar por ser o no lineales, según como sea la relación entre voltaje y corriente

Más detalles

ALUMNO-A: CURSO: 2º ESO

ALUMNO-A: CURSO: 2º ESO UNIDAD: ELECTRICIDAD. CONOCIENDO LA ELECTRICIDAD ALUMNO-A: CURSO: 2º ESO 1.- INTRODUCCIÓN Hoy en día la energía eléctrica es imprescindible, gracias a ella funcionan infinidad de aparatos, máquinas, fábricas,

Más detalles

3.1. Conceptos básicos sobre semiconductores

3.1. Conceptos básicos sobre semiconductores 1 3.1. Conceptos básicos sobre semiconductores Estructura interna de los dispositivos electrónicos La mayoría de los sistemas electrónicos se basan en dispositivos semiconductores Resistencia: R=ρL/S Materiales

Más detalles

Composición Física y Fabricación de Dispositivos Fotovoltaicos

Composición Física y Fabricación de Dispositivos Fotovoltaicos Composición Física y Fabricación de Dispositivos Fotovoltaicos 1.1 Efecto fotovoltaico Los módulos están compuestos de celdas solares de silicio (o fotovoltaicas). Estas son semiconductoras eléctricas

Más detalles

Introducción. Energía. Demanda creciente Fuerte uso de combustibles fósiles: f. Necesidad de formas alternativas de obtener energía

Introducción. Energía. Demanda creciente Fuerte uso de combustibles fósiles: f. Necesidad de formas alternativas de obtener energía Introducción Energía Demanda creciente Fuerte uso de combustibles fósiles: f Recurso limitado Contaminación Necesidad de formas alternativas de obtener energía Introducción Energía a Solar Ventajas Fuente

Más detalles

Energía Solar Fotovoltaica ESF. Rafael Martín Lamaison Urioste Dept. d Enginyeria Electrònica-UPC

Energía Solar Fotovoltaica ESF. Rafael Martín Lamaison Urioste Dept. d Enginyeria Electrònica-UPC Energía Solar Fotovoltaica ESF MODULO 3: CÉLULAS, PANELES Y GENERADORES F.V. Rafael Martín Lamaison Urioste Dept. d Enginyeria Electrònica-UPC Célula, panel y generador F.V. 1.1. Principio fotovoltaico

Más detalles

INDICE Prologo Semiconductores II. Procesos de transporte de carga en semiconductores III. Diodos semiconductores: unión P-N

INDICE Prologo Semiconductores II. Procesos de transporte de carga en semiconductores III. Diodos semiconductores: unión P-N INDICE Prologo V I. Semiconductores 1.1. clasificación de los materiales desde el punto de vista eléctrico 1 1.2. Estructura electrónica de los materiales sólidos 3 1.3. conductores, semiconductores y

Más detalles

Propiedades de la materia. Características de sólidos, líquidos y gases

Propiedades de la materia. Características de sólidos, líquidos y gases Propiedades de la materia Características de sólidos, líquidos y gases Fluidos Líquidos Ej: H 2 O Estados de la materia Gases Ej: O 2 Amorfos Ej: caucho Cristalinos Ej: sal, azúcar Sólidos Metálicos Enlace

Más detalles

A su vez, una molécula está compuesta por átomos. Cada uno de ellos posee unas propiedades diferentes en el interior de la molécula que constituyen.

A su vez, una molécula está compuesta por átomos. Cada uno de ellos posee unas propiedades diferentes en el interior de la molécula que constituyen. Constitución de la materia. Supongamos que cualquier sustancia de la naturaleza la dividimos en partes cada vez más pequeñas, conservando cada una de ellas las propiedades de la sustancia inicial. Si seguimos

Más detalles

Principios Básicos Materiales Semiconductores

Principios Básicos Materiales Semiconductores Principios Básicos Materiales Semiconductores Definición De Semiconductor Los semiconductores son materiales cuya conductividad varía con la temperatura, pudiendo comportarse como conductores o como aislantes.

Más detalles

T( K) >500 N ioi /N* n i (cm -3 ) 0 1E5 7E7 7E7 7E7 7E7 1E10 6E12 3E14 1E19

T( K) >500 N ioi /N* n i (cm -3 ) 0 1E5 7E7 7E7 7E7 7E7 1E10 6E12 3E14 1E19 Ejercicios relativos al semiconductor 1. Se dispone de una muestra de material semiconductor del que se conocen los siguientes datos a temperatura ambiente: kt = 0,025 ev n i = 1,5 10 10 cm -3 N A = 10

Más detalles

Universidad Nacional de Ingeniería Facultad de Ciencias Período 2011-1 Curso IF 442 : Ingeniería Solar

Universidad Nacional de Ingeniería Facultad de Ciencias Período 2011-1 Curso IF 442 : Ingeniería Solar Universidad Nacional de Ingeniería Facultad de Ciencias Período 2011-1 Curso IF 442 : Ingeniería Solar Clase 6: Conversión fotovoltaica de la energía solar; paneles solares El uso de módulos fotovoltaicos

Más detalles

Accionamientos eléctricos Tema VI

Accionamientos eléctricos Tema VI Dispositivos semiconductores de potencia. ELECTRÓNICA DE POTENCIA - Con el nombre de electrónica de potencia o electrónica industrial, se define aquella rama de la electrónica que se basa en la utilización

Más detalles

1.1 Definición de semiconductor

1.1 Definición de semiconductor Índice 1.- Introducción 1.1- Definición 1.2-Modelo de bandas de energía 1.3- Materiales intrínseco y extrínseco 2.-Tipos de materiales semiconductores 2.1- Estequiométricos (aislantes) 2.2- Imperfecciones

Más detalles

Corriente y Circuitos Eléctricos

Corriente y Circuitos Eléctricos Módulo: Medición y Análisis de Circuitos Eléctricos Unidad 1 Unidades y Mediciones Eléctricas Responda en su cuaderno las siguientes preguntas: Cuestionario 1 1.- Defina los siguientes conceptos, indicando

Más detalles

Pr.B Boletín de problemas de la Unidad Temática B.III: Detección y generación de señales luminosas

Pr.B Boletín de problemas de la Unidad Temática B.III: Detección y generación de señales luminosas Pr.B Boletín de problemas de la Unidad Temática B.III: Detección y generación de señales luminosas Pr.B.4. Detección de luz e imágenes 1. Un detector de Ge debe ser usado en un sistema de comunicaciones

Más detalles

INTRODUCCIÓN FOTOVOLTAICA

INTRODUCCIÓN FOTOVOLTAICA INTRODUCCIÓN FOTOVOLTAICA INTRODUCCION HISTORICA En 1839 se descubre el efecto fotovoltaico Fines del siglo XIX se descubre la fotoconductividad del selenio y se construye la primera celda experimental

Más detalles

P (potencia en watios) = U (tensión eléctrica en voltios) x I (corriente eléctrica en amperios)

P (potencia en watios) = U (tensión eléctrica en voltios) x I (corriente eléctrica en amperios) 1) La placa solar Introducción Una célula solar o célula fotovoltaica es un componente electrónico que, expuesto a la luz, genera una energía eléctrica. Las baterías de células están generalmente agrupadas

Más detalles

FICHA DE CONSULTA DE EXCURSIÓN POR LA RED ELÉCTRICA

FICHA DE CONSULTA DE EXCURSIÓN POR LA RED ELÉCTRICA FICHA DE CONSULTA Sumario 1. Glosario 1.1. Siglas 3 1.2. Términos 3 2. Paneles solares 2.1. Qué es un panel solar? 4 2.2. Cómo funciona un panel solar? 6 2 1. Glosario 1.1. Siglas 1.2. Términos W/m² Watts

Más detalles

LA FOTO-RESISTENCIA. Brevemente podríamos definir una fotorresistencia como un transistor bipolar capaz de detectar variaciones de luz.

LA FOTO-RESISTENCIA. Brevemente podríamos definir una fotorresistencia como un transistor bipolar capaz de detectar variaciones de luz. LA FOTO-RESISTENCIA Brevemente podríamos definir una fotorresistencia como un transistor bipolar capaz de detectar variaciones de luz. Sin embargo este dispositivo encierra una mayor complejidad y merece

Más detalles

Catálogo Torre Solar.

Catálogo Torre Solar. Catálogo 2015 Torre Solar Torre Solar SISTEMAS FOTOVOLTAICOS 3D La tecnología más eficiente y estable. Garantía de 25 años y una vida util que puede superar fácilmente los 50 años. Cada Torre Solar está

Más detalles

UNIDAD 8.ELECTRICIDAD

UNIDAD 8.ELECTRICIDAD UNIDAD 8.ELECTRICIDAD CORRIENTE ELÉCTRICA CIRCUITOS ELÉCTRICOS MAGNITUDES ELÉCTRICAS FUNDAMENTALES LEY DE OHM DEPARTAMENTO TECNOLOGÍA IES AVENIDA DE LOS TOREROS UD. 8: ELECTRICIDAD - 1 ELECTRICIDAD Por

Más detalles

CAPÍTULO 1: DESCRIPCIÓN DE LED Y OLED

CAPÍTULO 1: DESCRIPCIÓN DE LED Y OLED CAPÍTULO 1: DESCRIPCIÓN DE LED Y OLED Este capítulo se enfocará en explicar el principio de funcionamiento y en presentar una descripción general de los diodos de emisión de luz (LED, por sus siglas en

Más detalles

CURSO DE ENERGÍA SOLAR FOTOVOLTAICA

CURSO DE ENERGÍA SOLAR FOTOVOLTAICA CURSO DE ENERGÍA SOLAR FOTOVOLTAICA ÍNDICE 1. Introducción...1 2. La célula fotovoltaica....2 2.1 El efecto fotovoltaico...2 2.2 Tipos de células fotovoltaicas y novedades.... 9 3. El módulo fotovoltaico

Más detalles

Por qué hay diferentes colores?

Por qué hay diferentes colores? Qué son los LEDs? Los LEDs son dispositivos semiconductores de estado sólido que pueden convertir la energía eléctrica directamente en luz al aplicarle una pequeña corriente. El hecho de ser sólidos los

Más detalles

Thompson (1898) Rutherford (1911) Bohr (1913) Schrödinger (1926) NUMEROS CUANTICOS

Thompson (1898) Rutherford (1911) Bohr (1913) Schrödinger (1926) NUMEROS CUANTICOS Thompson (1898) Modelo Atómico Rutherford (1911) Bohr (1913) Propiedad corpuscular de las onda (PLANCK) Propiedad ondulatoria de las partículas (De Broglie) Schrödinger (1926) Números cuánticos 1 NUMEROS

Más detalles

Figura Nº 3.1(a) Fabricación de un TR npn: Crecimiento Epitaxial tipo n y Oxidación

Figura Nº 3.1(a) Fabricación de un TR npn: Crecimiento Epitaxial tipo n y Oxidación 1 3- FABRICACION DE TRANSISTORES BIPOLARES Describiremos la fabricación del BJT planar para circuitos monolíticos mediante los procesos tratados. Para seguir la secuencia de fabricación nos concentraremos

Más detalles

CASTAÑEDA VÁZQUEZ ALEJANDRO UNIVERSIDAD NACIONAL AUTONOMA DE MÉXICO INSTITUTO DE CIENCIAS NUCLEARES

CASTAÑEDA VÁZQUEZ ALEJANDRO UNIVERSIDAD NACIONAL AUTONOMA DE MÉXICO INSTITUTO DE CIENCIAS NUCLEARES CASTAÑEDA VÁZQUEZ ALEJANDRO UNIVERSIDAD NACIONAL AUTONOMA DE MÉXICO INSTITUTO DE CIENCIAS NUCLEARES ESTRUCTURA DEL CAPACITOR MOS El acrónimo MOS proviene de Metal-Oxide- Semiconductor. Antes de 1970 se

Más detalles

Sesión 7 Fundamentos de dispositivos semiconductores

Sesión 7 Fundamentos de dispositivos semiconductores Sesión 7 Fundamentos de dispositivos semiconductores Componentes y Circuitos Electrónicos Isabel Pérez / José A García Souto www.uc3m.es/portal/page/portal/dpto_tecnologia_electronica/personal/isabelperez

Más detalles

Laboratorio de Electricidad PRACTICA - 2 USO DEL MULTÍMETRO ELECTRÓNICO COMO ÓHMETRO Y COMO AMPERÍMETRO, PARA MEDIR LA CORRIENTE CONTINUA

Laboratorio de Electricidad PRACTICA - 2 USO DEL MULTÍMETRO ELECTRÓNICO COMO ÓHMETRO Y COMO AMPERÍMETRO, PARA MEDIR LA CORRIENTE CONTINUA PRACTICA - 2 USO DEL MULTÍMETRO ELECTRÓNICO COMO ÓHMETRO Y COMO AMPERÍMETRO, PARA MEDIR LA CORRIENTE CONTINUA I - Finalidades 1.- Estudiar el código de color de las resistencias. 2.- Utilización del multímetro

Más detalles

Semiconductores. Cristales de silicio

Semiconductores. Cristales de silicio Semiconductores Son elementos, como el germanio y el silicio, que a bajas temperaturas son aislantes. Pero a medida que se eleva la temperatura o bien por la adicción de determinadas impurezas resulta

Más detalles

LED. Alma Rocío Alonso Zuñiga Iván Cossi Camacho

LED. Alma Rocío Alonso Zuñiga Iván Cossi Camacho LED Alma Rocío Alonso Zuñiga Iván Cossi Camacho Funcionamiento Un led es un componente optoelectónico pasivo y, más concretamente, un diodo que emite luz. Cuando un led se encuentra en polarización directa,

Más detalles

Apuntes de apoyo N 2 del módulo de electrónica para los terceros años

Apuntes de apoyo N 2 del módulo de electrónica para los terceros años Apuntes de apoyo N 2 del módulo de electrónica para los terceros años Un material semiconductor: el Silicio (Si). El Silicio es el material de la Naturaleza más parecido al Carbono.. Tiene cuatro electrones

Más detalles

IE1117 - Temas especiales II en máquinas eléctricas: Energía solar fotovoltaica. TAREA 3 Josué Otárola Sánchez

IE1117 - Temas especiales II en máquinas eléctricas: Energía solar fotovoltaica. TAREA 3 Josué Otárola Sánchez IE1117 - Temas especiales II en máquinas eléctricas: Energía solar fotovoltaica TAREA 3 Josué Otárola Sánchez A84674 Ejercicio 2: Cambio de polaridad en la celda solar El montaje realizado se resume en

Más detalles

Se tiene para tener una idea el siguiente cuadro de colores perceptibles por el ojo humano dependiendo de la longitud de onda.

Se tiene para tener una idea el siguiente cuadro de colores perceptibles por el ojo humano dependiendo de la longitud de onda. La luz es una forma de energía la cual llega a nuestros ojos y nos permite ver, es un pequeño conjunto de radiaciones electromagnéticas de longitudes de onda comprendidas entre los 380 nm y los 770 nm.(nm

Más detalles

CARACTERIZACIÓN DE MÓDULOS FOTOVOLTAICOS CON DISPOSITIVO PORTÁTIL

CARACTERIZACIÓN DE MÓDULOS FOTOVOLTAICOS CON DISPOSITIVO PORTÁTIL CARACTERIZACIÓN DE MÓDULOS FOTOVOLTAICOS CON DISPOSITIVO PORTÁTIL Tutor: Pedro Jose Débora Autor: Julio Fernández Ferichola 1 Indice. ÍNDICE 1 Indice. 1 OBJETIVOS... 2 2 INTRODUCCIÓN... 4 3 ANTECEDENTES...

Más detalles

Índice 1 NOCIONES BÁSICAS DE FUNCIONAMIENTO 2 COMPONENTES DE UNA INSTALACIÓN SOLAR FOTOVOLTAICA 3 TIPO DE INSTALACIONES

Índice 1 NOCIONES BÁSICAS DE FUNCIONAMIENTO 2 COMPONENTES DE UNA INSTALACIÓN SOLAR FOTOVOLTAICA 3 TIPO DE INSTALACIONES Funcionamiento general de una instalación solar fotovoltaica. Índice 1 NOCIONES BÁSICAS DE FUNCIONAMIENTO 2 COMPONENTES DE UNA INSTALACIÓN SOLAR FOTOVOLTAICA 3 TIPO DE INSTALACIONES 1-.Nociones básicas

Más detalles

Conceptos generales de una instalación fotovoltaica aislada

Conceptos generales de una instalación fotovoltaica aislada CAPÍTULO 1 Conceptos generales de una instalación fotovoltaica aislada 1.1 Introducción Antes de proceder a los cálculos de una instalación solar aislada, se ha incluido este capítulo con la intención

Más detalles

ILUMINACION DE ESTADO SÓLIDO LED

ILUMINACION DE ESTADO SÓLIDO LED FERNANDO GARRIDO ALVAREZ FERNANDO GARRIDO ALVAREZ INGENIERO INDUSTRIAL INGENIERO INDUSTRIAL CONSULTOR LUMINOTECNICO CONSULTOR LUMINOTECNICO ILUMINACION DE ESTADO SÓLIDO LED UNA APROXIMACION A SU CONOCIMIENTO

Más detalles

1817: Döbreiner. Triadas de elementos con propiedades semejantes. 1865: Newlands. Ley de las octavas. Ordenó 55 elementos.

1817: Döbreiner. Triadas de elementos con propiedades semejantes. 1865: Newlands. Ley de las octavas. Ordenó 55 elementos. Evolución histórica de la Tabla Periódica 1817: Döbreiner. Triadas de elementos con propiedades semejantes. 1865: Newlands. Ley de las octavas. Ordenó 55 elementos. 1869: Mendeleev y Meyer: las propiedades

Más detalles

ENERGÍAS ALTERNATIVAS. SOLAR Y EÓLICA

ENERGÍAS ALTERNATIVAS. SOLAR Y EÓLICA Objetivos del Curso: SOLAR TÉRMICA: - Estudiar los principios fundamentales de funcionamiento de un sistema de aprovechamiento de la energía solar térmica. - Determinar los elementos integrantes de una

Más detalles

TEMA 2 : DISPOSITIVOS Y COMPONENTES ELECTRÓNICOS

TEMA 2 : DISPOSITIVOS Y COMPONENTES ELECTRÓNICOS UNIVERSIDAD DE LEON Departamento de Ingeniería Eléctrica y Electrónica TEMA 2 : DISPOSITIVOS Y COMPONENTES ELECTRÓNICOS Electrónica Básica, Industrial e Informática Luis Ángel Esquibel Tomillo EL DIODO

Más detalles

Los elementos químicos

Los elementos químicos Los elementos químicos Física y Química Las primeras clasificaciones de los elementos Oxford University Press España, S. A. Física y Química 3º ESO 2 Un elemento químico es un tipo de materia constituido

Más detalles

Introducción a la ENERGÍA SOLAR FOTOVOLTAICA

Introducción a la ENERGÍA SOLAR FOTOVOLTAICA Introducción a la ENERGÍA SOLAR FOTOVOLTAICA MIGUEL ÁNGEL EGIDO AGUILERA INSTITUTO DE ENERGÍA SOLAR Universidad Politécnica de Madrid 1 El sistema fotovoltaico Generador Fotovoltaico Generador Auxiliar

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 QUÍMICA TEMA 3: ENLACES QUÍMICOS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 QUÍMICA TEMA 3: ENLACES QUÍMICOS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 010 QUÍMICA TEMA : ENLACES QUÍMICOS Junio, Ejercicio, Opción A Reserva 1, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio, Opción B Septiembre,

Más detalles

Fabricación de módulos solares fotovoltaicos. Situación actual y perspectivas.

Fabricación de módulos solares fotovoltaicos. Situación actual y perspectivas. Fabricación de módulos solares fotovoltaicos. Situación actual y perspectivas. Ponente : Ander Muelas López de Aberasturi Sabadell, 19 de octubre 2005 Índice Tecnologías de Células Comerciales Proceso

Más detalles

Física de Celdas Fotovoltaicas. Cap. III: Celdas Solares

Física de Celdas Fotovoltaicas. Cap. III: Celdas Solares Física de Celdas Fotovoltaicas Cap. III: Celdas Solares José L. Solis Universidad Nacional de Ingeniería Instituto Peruano de Energía Nuclear Unión p-n Unión p-n Unión p-n Unión p-n Directa Inversa Curva

Más detalles

BOMBEO SOLAR. Aplicaciones en regadío BOMBAS CAPRARI, S.A.

BOMBEO SOLAR. Aplicaciones en regadío BOMBAS CAPRARI, S.A. BOMBEO SOLAR Aplicaciones en regadío PRINCIPIO DE FUNCIONAMIENTO Se trata de un sistema de bombeo que entrega un caudal y altura en función de la potencia disponible en las placas solares. Para ello se

Más detalles

Laboratorio Virtual de Placas Solares Fotovoltaicas FUNDAMENTO TEÓRICO

Laboratorio Virtual de Placas Solares Fotovoltaicas FUNDAMENTO TEÓRICO Laboratorio Virtual de Placas Solares Fotovoltaicas FUNDAMENTO TEÓRICO FUNDAMENTO TEÓRICO 1.1. Introducción. Debido a los avances de las nuevas tecnologías y el aumento de la población, se ha incrementado

Más detalles

P R Á C T I C A S D E E L E C T R Ó N I C A A N A L Ó G I C A

P R Á C T I C A S D E E L E C T R Ó N I C A A N A L Ó G I C A P R Á C T I C A S D E E L E C T R Ó N I C A A N A L Ó G I C A Nombres y apellidos: Curso:. Fecha:.. Firma: PRÁCTICA 1: RESISTENCIAS OBJETIVO: Conocer los tipos y características de las resistencias, así

Más detalles

Sistemas y Circuitos Eléctricos 1 GSE Juan Carlos García Cazcarra

Sistemas y Circuitos Eléctricos 1 GSE Juan Carlos García Cazcarra Unidad Didáctica 2: Condensadores y Resistencias. 1.- Condensadores Es un aparato constituido por dos conductores llamados armaduras, separados por un aislante (dieléctrico) que se cargan con igual cantidad

Más detalles

REVISTA COLOMBIANA DE FISICA, VOL. 33, No

REVISTA COLOMBIANA DE FISICA, VOL. 33, No CÁLCULO DE LA CONSTANTE DE BOLTZMAN A PARTIR DE MEDIDAS DE LA CARACTERÍSTICA IV DE UNA CELDA SOLAR. M. Grizález*, C. Quiñones y G. Gordillo Departamento de Física, Universidad Nacional de Colombia, Bogotá,

Más detalles

IEO-394 Semiconductores. Juan E. Martínez P. Docente. UdeA

IEO-394 Semiconductores. Juan E. Martínez P. Docente. UdeA IEO-394 Semiconductores Juan E. Martínez P. Docente. UdeA Bandas de Energía Y Corrientes de Portadores en Semiconductores. PARTICION DE LOS NIVELES DE ENERGIA A medida que se traen juntos N átomos Cada

Más detalles

LABORATORIO DE ESTRUCTURAS DE LOS MATERIALES 1113061. FECHA DE ENTREGA: martes 14 de Junio de 2011

LABORATORIO DE ESTRUCTURAS DE LOS MATERIALES 1113061. FECHA DE ENTREGA: martes 14 de Junio de 2011 INTEGRANTES DEL EQUIPO: 1. Martínez Flores Marcos Adrián 209205112. 2. Francisco Ramos Gabriel 209302867. 3. Campuzano Pánfilo Rosa Alondra 210205010. 4. López Martínez Jesús 210208505. 5. Padilla Cuevas

Más detalles

FUNDAMENTOS FISICOS DE LAS CELDAS SOLARES

FUNDAMENTOS FISICOS DE LAS CELDAS SOLARES FUNDAMENTOS FISICOS DE LAS CELDAS SOLARES INTRODUCCION Las celdas solares son dispositivos de conversión directa que transforman (directamente, sin procesos intermedios) la potencia del sol en potencia

Más detalles

Propiedades Periódicas y Propiedades de los elementos

Propiedades Periódicas y Propiedades de los elementos Propiedades Periódicas y Propiedades de los elementos Se denominan propiedades periódicas, aquellas que tienen una tendencia de variación de acuerdo a la ubicación de los elementos en la tabla periódica.

Más detalles

UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELÉCTRICA Y MECÁNICA

UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELÉCTRICA Y MECÁNICA UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELÉCTRICA Y MECÁNICA Ciclo II-15 Subestaciones eléctricas Guía de Laboratorio No. 4 Sistema fotovoltaicos aislados" I. RESULTADOS

Más detalles

El sistema de suministro de potencia de un vehículo solar

El sistema de suministro de potencia de un vehículo solar Page 1 of 6 El sistema de suministro de potencia de un vehículo solar El sistema de suministro de potencia de un vehículo solar consistente en un conjunto de células fotovoltaicas (panel solar), un grupo

Más detalles

Tema 3_3. Enlace metálico. Teoría de Bandas

Tema 3_3. Enlace metálico. Teoría de Bandas Tema 3_3. Enlace metálico. Teoría de Bandas Conductores (como los metales), que conducen muy bien la electricidad. Aislantes, que no conducen la electricidad. Semiconductores, de conductividad que cambia

Más detalles

Física y Tecnología Energética. 17 - Energía Solar. Fotovoltaica.

Física y Tecnología Energética. 17 - Energía Solar. Fotovoltaica. Física y Tecnología Energética 17 - Energía Solar. Fotovoltaica. Estructura electrónica de los sólidos Átomo Sólido cristalino Los electrones en un átomo sólo pueden tener unos determinados valores de

Más detalles

El transistor sin polarizar

El transistor sin polarizar EL TRANSISTOR DE UNIÓN BIPOLAR BJT El transistor sin polarizar El transistor esta compuesto por tres zonas de dopado, como se ve en la figura: La zona superior es el "Colector", la zona central es la "Base"

Más detalles

Resistencia eléctrica y resistividad: Experimentos con líneas de tinta de impresora y un resistor de carbón

Resistencia eléctrica y resistividad: Experimentos con líneas de tinta de impresora y un resistor de carbón Resistencia eléctrica y resistividad: Experimentos con líneas de tinta de impresora y un resistor de carbón María Inés Aguilar Centro Educativo San Francisco Javier, miaguilar@ciudad.com.ar Mariana Ceraolo

Más detalles

Departamento de Tecnología I.E.S. Mendiño. Electricidad 3º E.S.O. Alumna/o :...

Departamento de Tecnología I.E.S. Mendiño. Electricidad 3º E.S.O. Alumna/o :... Departamento de Tecnología I.E.S. Mendiño Electricidad 3º E.S.O. Alumna/o :... Electricidad.- Magnitudes fundamentales. Tensión o Voltaje: Indica la diferencia de potencial entre 2 puntos de un circuito.

Más detalles

H.5.2.DESARROLLO DEL SISTEMA PARA LA INTEGRACIÓN DE GENERACIÓN FOTOVOLTAICA EN LA MARQUESINA SIRVE

H.5.2.DESARROLLO DEL SISTEMA PARA LA INTEGRACIÓN DE GENERACIÓN FOTOVOLTAICA EN LA MARQUESINA SIRVE H.5.2.DESARROLLO DEL SISTEMA PARA LA INTEGRACIÓN DE GENERACIÓN FOTOVOLTAICA EN LA MARQUESINA SIRVE SISTEMAS INTEGRADOS PARA LA RECARGA DE VEHÍCULOS ELÉCTRICOS Socios del proyecto: Colaborador: Proyecto

Más detalles

Máster Universitario de Investigación en Tecnologías de la Información y las Comunicaciones. Células solares

Máster Universitario de Investigación en Tecnologías de la Información y las Comunicaciones. Células solares Máster Universitario de Investigación en Tecnologías de la Información y las Comunicaciones Células solares 1 Índice Historia El por qué de las células solares? Principios básicos Generaciones de células

Más detalles

Física y Química 3º ESO

Física y Química 3º ESO 1. Física y Química. Ciencias de la medida forman parte de las necesitan Ciencias de la naturaleza medir las propiedades de los cuerpos que se dividen en para lo cual se emplean lo que siempre conlleva

Más detalles

Cuaderno de aplicaciones técnicas n. 10 Plantas fotovoltaicas

Cuaderno de aplicaciones técnicas n. 10 Plantas fotovoltaicas Cuaderno de aplicaciones técnicas n. 10 Plantas fotovoltaicas C Cuadernos de aplicaciones técnicas Plantas fotovoltaicas Índice Introducción... 4 PARTE I 1 Consideraciones generales... 5 1.1 Principio

Más detalles

ESTO ES UNA PRIMERA VERSION. PUEDE CONTENER ERRORES. Energía Solar Lección 2

ESTO ES UNA PRIMERA VERSION. PUEDE CONTENER ERRORES. Energía Solar Lección 2 ESTO ES UNA PRIMERA VERSION. PUEDE CONTENER ERRORES Energía Solar Lección 2 Serie: Conecte el positivo de un componente al negativo del otro. V T = V 1 + V 2 I T = I 1 = I 2 Paralelo: Conecte el positivo

Más detalles

CIRCUITOS ELECTRÓNICOS, DIODO LED

CIRCUITOS ELECTRÓNICOS, DIODO LED Laboratorio electrónico Nº 3 CIRCUITOS ELECTRÓNICOS, DIODO LED Objetivo Aplicar los conocimientos de circuitos electrónicos Familiarizarse con los dispositivos y componentes electrónicos Objetivo específico

Más detalles

4. DIFUSION EN SÓLIDO

4. DIFUSION EN SÓLIDO 4. DIFUSION EN SÓLIDO MATERIALES 13/14 ÍNDICE 1. Conceptos generales. Mecanismos de difusión. 3. Leyes de Fick. 1. Estado estacionario.. Estado no estacionario. 4. Factores de difusión. 5. Aplicaciones

Más detalles

LEY DE OHM Y PUENTE DE WHEATSTONE

LEY DE OHM Y PUENTE DE WHEATSTONE uned de Consorci Centre Associat la UNED de Terrassa Laboratori d Electricitat i Magnetisme (UPC) LEY DE OHM Y PUENTE DE WHEATSTONE Objetivo Comprobar experimentalmente la ley de Ohm. Determinar el valor

Más detalles

ÍNDICE DEL CURSO. INSTALACIÓN Y DISEÑO ENERGÍA SOLAR FOTOVOLTAICA AISLADA. CONCEPTOS BÁSICOS PARA LAS INSTALACIONES FOTOVOLTAICAS.

ÍNDICE DEL CURSO. INSTALACIÓN Y DISEÑO ENERGÍA SOLAR FOTOVOLTAICA AISLADA. CONCEPTOS BÁSICOS PARA LAS INSTALACIONES FOTOVOLTAICAS. ÍNDICE DEL CURSO. INSTALACIÓN Y DISEÑO ENERGÍA SOLAR FOTOVOLTAICA AISLADA. ENERGÍA SOLAR. T.0.- FUNDAMENTOS DE ENERGIA SOLAR. T.1.- RADIACIÓN SOLAR. T.2.- SOL Y RAYOS SOLARES SOBRE LA TIERRA. T.3.- INCLINACIÓN

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO 1. Un condensador se carga aplicando una diferencia de potencial entre sus placas de 5 V. Las placas son circulares de diámetro cm y están separadas

Más detalles

MATERIALES ELECTRICOS JUNTURA PN

MATERIALES ELECTRICOS JUNTURA PN MATERIALES ELECTRICOS JUNTURA PN Consideremos por separado un Semiconductor Tipo N y un semiconductor tipo P. Analicemos el Diagrama de Bandas de cada uno por separado. El semiconductor Tipo N tendrá una

Más detalles