EXP205 RESPUESTA DE LOS AMPLIFICADORES A LA BAJA FRECUENCIA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EXP205 RESPUESTA DE LOS AMPLIFICADORES A LA BAJA FRECUENCIA"

Transcripción

1 EXP205 RESPUESTA DE LOS AMPLIFICADORES A LA BAJA FRECUENCIA I. OBJETIVOS. Graficar el comportamiento de la ganancia con respecto a la frecuencia. Medir la frecuencia de corte de un amplificador emisor común. Medir las frecuencias de corte debidas a cada uno de los capacitores externos. Graficar el comportamiento de la impedancia de entrada con respecto a la frecuencia. II. LISTA DE MATERIAL Y EQUIPO. 1 Fuente de Alimentación 1 Osciloscopio 1 Generador de señales 1 Transistor NPN 2N Resistencia de 82 KΩ, ½ W 1 Resistencia de 15 KΩ, ½ W 1 Resistencia de 5.6 KΩ, ½ W 1 Resistencia de 3.3. KΩ, ½ W 1 Resistencia de 1.5 KΩ, ½ W 1 Resistencia de 100 Ω, ½ W 1 Capacitor 0.12 µf, 50 V 1 Capacitor 0.27 µf, 50 V 1 Capacitor 4.7 µf, 50 V 2 Capacitores 100 µf, 50 V EXP205-1

2 III.- CIRCUITO DEL EXPERIMENTO. Figura 1. Respuesta a la baja frecuencia de un EC EXP205-2

3 IV.- TEORIA PRELIMINAR. Debido a que la impedancia de los Capacitores externos se incrementa a medida que la frecuencia de la señal disminuye, la ganancia de voltaje de un amplificador con acoplamiento capacitivo decrece. En el circuito de la figura 1 los capacitores de acoplamiento C1 y C2 provocan caídas de voltaje muy considerables a bajas frecuencias, mientras que el capacitor de desacoplamiento del emisor Ce no actúa como un cortocircuito para la resistencia Re. Se define rango de frecuencias medias aquel en donde la frecuencia es tal que los capacitores externos actúan como cortocircuito y por lo tanto, la ganancia de voltaje del amplificador es constante y su valor se denomina Am. El rango de frecuencias en donde la ganancia decrece con la disminución de la frecuencia se le llama rango de bajas frecuencias. La frecuencia de corte inferior es el valor de la frecuencia a la cual la ganancia disminuye al de Am. Las siguientes ecuaciones pueden ser empleadas para la frecuencia de corte inferior, debida a cada capacitor actuando independientemente. En donde: Rin = Rb// [ hie + ( hfe+1) R' e] Ro = Rc f1(c1) = f2 (C2) = fe(ce) = Req = Re// hie + R' e+ ( Rs // Rb) 2π 2π 1 ( Rin+ Rs) C1 2π hfe 1 ( R 0+ R1) C2 1 ( Re q *Ce) La frecuencia de corte inferior f1 del amplificador será la mayor de las tres (suponiendo que sus valores están muy separados). NOTA: En los experimentos se pretende comprobar los fundamentos teóricos. Por tal razón, los circuitos se diseñaron para manejar poca ganancia de voltaje. EXP205-3 FIME, Depto. De Electrónica

4 V.- PROCEDIMIENTO. 1. Armar el circuito amplificador emisor común de la figura 1. Observe la polaridad de los capacitores electrolíticos. 2. Medir los siguientes voltajes de CD, con el propósito de determinar el punto de operación. VCC = VC = VE = VB = Ganancia Am a frecuencias medias 3. Aplicar una señal Vi senoidal de 10 KHz, 200 mvp-p con el generador de señales. En el osciloscopio observe y mida los voltajes de las señales Vi y V0. Vi = Vo = Después de registrar los valores, observe que al variar la frecuencia la magnitud de Vo se mantiene constante. Ganancia contra Frecuencia. 4. Disminuya la frecuencia de la señal de entrada en un rango de 10 Hz a 10 KHz. Tome lectura de Vo y Vi para cada frecuencia. Los valores siguientes se sugieren pero se pueden cambiar por otros. F (Hertz) Vi Vo Vo/Vi 10K 8K 5K 2K 1K EXP205-4 FIME, Depto. De Electrónica

5 Frecuencia de corte inferior F1. 5. Determine experimentalmente la frecuencia de corte inferior del amplificador. Para ello, determine el valor de la frecuencia a la cual la ganancia es el 70.7% de Am. Frecuencias de corte de cada capacitor. fl= 6. Determine f(c1) reemplazando los capacitores C2 y C3 por valores de 100 µf. Aplique una frecuencia de 2 KHz, mida Vo luego disminuya la frecuenica hasta que Vo disminuya a un 70.7% de su valor. Mida la frecuencia f(c1). f(c1) = 7. Determine f(c2) reemplazando los capacitores C1 y Ce por valores de 100 µf. Aplique una frecuencia de 5 KHz, mida Vo luego disminuya la frecuencia hasta que Vo disminuya a un 70.7% de su valor. Mida la frecuencia f(c2). F(C2) = 8. Determine f(ce) reemplazando los capacitores C1 y C2 por valores de 100 µf. Aplique una frecuencia de 5 KHz, mida Vo luego disminuya la frecuencia hasta que Vo disminuya a un 70.7% de su valor. Mida la frecuencia f(ce). f(ce) = EXP205-5

6 VI.- REPORTE 1. Determine analíticamente el punto de operación del transistor del circuito de la figura Determine analíticamente la ganancia de voltaje a frecuencia media Am. 3. Determine analíticamente la frecuencia de corte provocada por cada capacitor externo en forma independiente. Cual de ellas es la frecuencia de corte inferior del amplificador?. 4. Determina el valor experimental de la corriente de operación con el resultado del paso 2 del procedimiento. 5. Calcule el valor experimental de la ganancia de voltaje a frecuencia media, con los resultados del paso 3 del procedimiento. 6. Construya la gráfica de la respuesta a la baja frecuencia con los datos de la tabla del paso 4 del procedimiento. Grafique Vo / Vi contra frecuencia. 7. Señale en la gráfica anterior el valor de la frecuencia de corte inferior. EXP205-6 FIME, Depto. De electrónica

7 8. Observe los valores obtenidos en los pasos 6, 7 y 8 del procedimiento. Determine cuál es el capacitor que define la frecuencia de corte inferior del amplificador y porqué. 9. Construya una tabla comparativa de los valores de: Ganancia de frecuencia media Frecuencia de corte inferior Punto de operación Para los dos casos siguientes: Resultado analítico Resultado experimental. EXP205-7

EXP203 ARREGLO DARLINGTON

EXP203 ARREGLO DARLINGTON EXP203 ARREGLO DARLINGTON I.- OBJETIVOS. Demostrar el uso de un arreglo darlington en una configuración colectorcomún como acoplador de impedancias. Comprobar el funcionamiento de amplificadores directamente

Más detalles

Electrónica II TRABAJO PRÁCTICO N 3. Configuraciones Amplificadoras del Transistor BJT CUESTIONARIO

Electrónica II TRABAJO PRÁCTICO N 3. Configuraciones Amplificadoras del Transistor BJT CUESTIONARIO TRABAJO PRÁCTICO N 3. Configuraciones Amplificadoras del Transistor BJT CUESTIONARIO 1. Por qué se usa el acoplamiento capacitivo para conectar la fuente de señal al amplificador? 2. Cuál de las tres configuraciones

Más detalles

EXP204 REGULADOR DE VOLTAJE SERIE

EXP204 REGULADOR DE VOLTAJE SERIE EXP204 REGULADOR DE VOLTAJE SERIE I.- OBJETIVOS. Diseñar un regulador de voltaje serie ajustable Comprobar el funcionamiento del regulador. Medir la resistencia de salida del regulador Medir el por ciento

Más detalles

EXP209 AMPLIFICADORES, INTEGRADOR Y DIFERENCIADOR NO INVERSOR

EXP209 AMPLIFICADORES, INTEGRADOR Y DIFERENCIADOR NO INVERSOR EXP09 AMPLIFICADORES, INEGRADOR Y DIFERENCIADOR NO INVERSOR I.- OBJEIVO. Comprobar el caso del amplificador operacional como un circuito integrador y diferenciador no inversor. II.- LISA DE MAERIAL Y EQUIPO.

Más detalles

EXP207 REGLAS DE FUNCIONAMIENTO EN OP-AMPS.

EXP207 REGLAS DE FUNCIONAMIENTO EN OP-AMPS. EXP207 REGLAS DE FUNCIONAMIENTO EN OP-AMPS. I.- OBJETIVOS. Comprobar experimentalmente las reglas de funcionamiento líneas del amplificador lineal del amplificador operacional. Comprobar el funcionamiento

Más detalles

PRÁCTICA 10. EMISOR COMÚN Y COLECTOR COMÚN

PRÁCTICA 10. EMISOR COMÚN Y COLECTOR COMÚN PRÁCTICA 10. EMISOR COMÚN Y COLECTOR COMÚN 1. Objetivo El objetivo de la práctica es comprobar experimentalmente la amplificación de dos monoetapas con un transistor BJT (emisor común y colector común)

Más detalles

CURSO: ELECTRÓNICA BÁSICA UNIDAD 1: EL AMPLIFICADOR TEORÍA PROFESOR: JORGE POLANÍA INTRODUCCIÓN

CURSO: ELECTRÓNICA BÁSICA UNIDAD 1: EL AMPLIFICADOR TEORÍA PROFESOR: JORGE POLANÍA INTRODUCCIÓN CURSO: ELECTRÓNICA BÁSICA UNIDAD 1: EL AMPLIFICADOR TEORÍA PROFESOR: JORGE POLANÍA INTRODUCCIÓN Los amplificadores son sistemas electrónicos que tienen como función amplificar una señal de entrada de voltaje

Más detalles

PRÁCTICA 1. AMPLIFICADORES MONOETAPA CON BJT

PRÁCTICA 1. AMPLIFICADORES MONOETAPA CON BJT PRÁCTICA 1. AMPLIFICADORES MONOETAPA CON BJT 1. Objetivo El objetivo de la práctica es comprobar experimentalmente la amplificación de dos monoetapas con un transistor BJT (emisor común y colector común)

Más detalles

TRABAJO PRÁCTICO Nº 8 EL TRANSISTOR BIPOLAR COMO AMPLIFICADOR DE SEÑAL

TRABAJO PRÁCTICO Nº 8 EL TRANSISTOR BIPOLAR COMO AMPLIFICADOR DE SEÑAL TRABAJO PRÁCTICO Nº 8 EL TRANSISTOR BIPOLAR COMO AMPLIFICADOR DE SEÑAL 1) Introducción Teórica y Circuito de Ensayo Ya hemos visto cómo polarizar al TBJ de modo tal que su punto de trabajo estático (Q)

Más detalles

Práctica No. 5 Circuitos RC Objetivo Ver el comportamiento del circuito RC y sus aplicaciones como integrador y diferenciador

Práctica No. 5 Circuitos RC Objetivo Ver el comportamiento del circuito RC y sus aplicaciones como integrador y diferenciador Práctica No. 5 Circuitos RC Objetivo Ver el comportamiento del circuito RC y sus aplicaciones como integrador y diferenciador Material y Equipo Resistencias de varios valores Capacitores de cerámicos,

Más detalles

PRÁCTICA 4. Polarización de transistores en emisor/colector común

PRÁCTICA 4. Polarización de transistores en emisor/colector común PRÁCTICA 4. Polarización de transistores en emisor/colector común 1. Objetivo El objetivo de la práctica es comprobar experimentalmente la polarización de un transistor y la influencia de distintos parámetros

Más detalles

Formatos para prácticas de laboratorio

Formatos para prácticas de laboratorio CARRERA PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE Ing. Aeroespacial 2009-3 11352 Mediciones eléctricas y electrónicas PRÁCTICA No. 6 LABORATORIO DE NOMBRE DE LA

Más detalles

ELECTRÓNICA ANALÓGICA FORMATO DEL REPORTE DE PRÁCTICAS DEL LABORATORIO

ELECTRÓNICA ANALÓGICA FORMATO DEL REPORTE DE PRÁCTICAS DEL LABORATORIO FORMATO DEL REPORTE DE PRÁCTICAS DEL LABORATORIO PORTADA Nombre de la universidad Facultad de Ingeniería Ensenada Carrera Materia Alumno Nombre y número de Práctica Nombre del maestro Lugar y fecha CONTENIDO

Más detalles

PRÁCTICA PB4 AMPLIFICACIÓN DE VOLTAJE CON TRANSISTORES BIPOLARES

PRÁCTICA PB4 AMPLIFICACIÓN DE VOLTAJE CON TRANSISTORES BIPOLARES elab, Laboratorio Remoto de Electrónica ITESM, Depto. de Ingeniería Eléctrica PRÁCTICA PB4 AMPLIFICACIÓN DE VOLTAJE CON TRANSISTORES BIPOLARES OBJETIVOS Entender el funcionamiento de los circuitos que

Más detalles

BENEMÉRITA UNIVERSIDAD AUTONÓMA DE PUEBLA FACULTAD DE CIENCIAS DE LA ELECTRÓNICA DISPOTIVOS ELECTRÓNICOS

BENEMÉRITA UNIVERSIDAD AUTONÓMA DE PUEBLA FACULTAD DE CIENCIAS DE LA ELECTRÓNICA DISPOTIVOS ELECTRÓNICOS BENEMÉRITA UNIVERSIDAD AUTONÓMA DE PUEBLA FACULTAD DE CIENCIAS DE LA ELECTRÓNICA DISPOTIVOS ELECTRÓNICOS PRÁCTICA NÚMERO 5 POLARIZACIÓN Y CONFIGURACIONES DE UN TRANSISTOR BJT TIEMPO ESTIMADO PARA LA REALIZACIÓN

Más detalles

Figura 1. (a) Diagrama de conexiones del LM741. (b) Diagrama de conexiones del TL084

Figura 1. (a) Diagrama de conexiones del LM741. (b) Diagrama de conexiones del TL084 Práctica No. Usos del Amplificador Operacional (OPAM) Objetivos. Comprobar las configuraciones típicas del amplificador operacional. Comprender en forma experimental el funcionamiento del amplificador

Más detalles

1.- En el circuito de la figura 5.1 la impedancia de salida Ro es. Figura 5.1

1.- En el circuito de la figura 5.1 la impedancia de salida Ro es. Figura 5.1 Tema 5. Amplificadores con BJT 1.- En el circuito de la figura 5.1 la impedancia de salida Ro es RC 1 hre R c 1 Figura 5.1 2.- En el circuito de la figura 5.1 la impedancia de entrada es igual a R1 h ie

Más detalles

Laboratorio Amplificador Diferencial Discreto

Laboratorio Amplificador Diferencial Discreto Objetivos Laboratorio mplificador Diferencial Discreto Verificar el funcionamiento de un amplificador discreto. Textos de Referencia Principios de Electrónica, Cap. 17, mplificadores Diferenciales. Malvino,

Más detalles

El amplificador diferencial (AD) es un circuito utilizado para amplificar la diferencia de dos señales v1 y v2 como se indica en la figura.

El amplificador diferencial (AD) es un circuito utilizado para amplificar la diferencia de dos señales v1 y v2 como se indica en la figura. CURSO: ELECTRÓNICA ANALÓGICA UNIDAD I: EL AMPLIFICADOR DIFERENCIAL PROFESOR: JORGE ANTONIO POLANÍA El amplificador diferencial es un circuito que constituye parte fundamental de muchos amplificadores y

Más detalles

Figura 1. (a) Diagrama de conexiones del LM741. (b) Diagrama de conexiones del TL084

Figura 1. (a) Diagrama de conexiones del LM741. (b) Diagrama de conexiones del TL084 Práctica No. 3 Usos del Amplificador Operacional (OPAM) Objetivos. Comprobar las configuraciones típicas del amplificador operacional. Comprender en forma experimental el funcionamiento del amplificador

Más detalles

CURSO: SEMICONDUCTORES UNIDAD 4: POLARIZACIÓN - TEORÍA

CURSO: SEMICONDUCTORES UNIDAD 4: POLARIZACIÓN - TEORÍA CURSO: SEMICONDUCTORES UNIDAD 4: POLARIZACIÓN - TEORÍA Hay varias formas de polarizar un transistor, esto es, obtener su punto de operación adecuado (valores de Vcc y de Ic). Se tiene la polarización fija,

Más detalles

Formatos para prácticas de laboratorio

Formatos para prácticas de laboratorio CARRERA PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE Ing. Aeroespacial 2009-3 11352 Mediciones eléctricas y electrónicas PRÁCTICA No. 4 LABORATORIO DE NOMBRE DE LA

Más detalles

CURSO: ELECTRÓNICA BÁSICA UNIDAD 2: AMPLIFICADOR DE POTENCIA TEORÍA PROFESOR: JORGE ANTONIO POLANÍA INTRODUCCIÓN

CURSO: ELECTRÓNICA BÁSICA UNIDAD 2: AMPLIFICADOR DE POTENCIA TEORÍA PROFESOR: JORGE ANTONIO POLANÍA INTRODUCCIÓN CURSO: ELECTRÓNICA BÁSICA UNIDAD 2: AMPLIFICADOR DE POTENCIA TEORÍA PROFESOR: JORGE ANTONIO POLANÍA INTRODUCCIÓN En un sistema de amplificación que entrega una cantidad considerable de potencia, las ganancias

Más detalles

Electrónica Analógica 1

Electrónica Analógica 1 Trabajo Práctico 4: El transistor bipolar como amplificador. Modelo equivalente de pequeña señal. Parámetros híbridos. Configuraciones multietapa. Análisis en pequeña señal: método de trabajo La figura

Más detalles

Vce 1V Vce=0V. Ic (ma)

Vce 1V Vce=0V. Ic (ma) GUIA DE TRABAJOS PRACTICOS P31 Bibliografía de Referencia Transistores y Circuitos Amplificadores * Boylestad, R & Nashelsky, L. Electrónica -Teoría de Circuitos y Dispositivos 10ª. Ed. Pearson Educación,

Más detalles

BJT como amplificador en configuración de emisor común con resistencia de emisor

BJT como amplificador en configuración de emisor común con resistencia de emisor Práctica 9 BJT como amplificador en configuración de emisor común con resistencia de emisor Índice General 9.1. Objetivos................................ 73 9.2. Introducción teórica..........................

Más detalles

Laboratorio de Electrónica II

Laboratorio de Electrónica II Laboratorio de Electrónica II Método de evaluación Integración de la calificación. En cada práctica: Experimento + Reporte: 100% La asistencia y aprobación del laboratorio son OBLIGATORIAS para acreditar

Más detalles

El transistor como dispositivo amplificador: polarización y parámetros de pequeña señal.

El transistor como dispositivo amplificador: polarización y parámetros de pequeña señal. Sesión 13 El transistor como dispositivo amplificador: polarización y parámetros de pequeña señal. Componentes y Circuitos Electrónicos José A. Garcia Souto www.uc3m.es/portal/page/portal/dpto_tecnologia_electronica/personal/joseantoniogarcia

Más detalles

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II AMPLIFICADOR DIFERENCIAL DISCRETO

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II AMPLIFICADOR DIFERENCIAL DISCRETO AMPLIFICADOR DIFERENCIAL DISCRETO LAURA MAYERLY ÁLVAREZ JIMENEZ (20112007040) MARÍA ALEJANDRA MEDINA OSPINA (20112007050) RESUMEN Se implementarán los circuitos planteados en la guía entregada del laboratorio

Más detalles

Laboratorio Circuitos no Lineales con AO

Laboratorio Circuitos no Lineales con AO Objetivos Laboratorio Circuitos no Lineales con AO Describir cómo funcionan los circuitos activos con diodos. Comprender el funcionamiento de una báscula Schmitt trigger Textos de Referencia Principios

Más detalles

PRACTICA Nº 7 AMPLIFICADORES CON TRANSISTORES BIPOLARES

PRACTICA Nº 7 AMPLIFICADORES CON TRANSISTORES BIPOLARES UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS LAB. CIRCUITOS ELECTRONICOS I EC1181 PRACTICA Nº 7 AMPLIFICADORES CON TRANSISTORES BIPOLARES OBJETIVO Familiarizar al estudiante con el diseño y

Más detalles

PRACTICA 4 CIRCUITO AMPLIFICADOR CON TRANSISTOR BIPOLAR EN EMISOR COMÚN, DISEÑANDO CON PARÁMETROS HÍBRIDOS

PRACTICA 4 CIRCUITO AMPLIFICADOR CON TRANSISTOR BIPOLAR EN EMISOR COMÚN, DISEÑANDO CON PARÁMETROS HÍBRIDOS PRACTICA 4 CIRCUITO AMPLIFICADOR CON TRANSISTOR BIPOLAR EN EMISOR COMÚN, DISEÑANDO CON PARÁMETROS HÍBRIDOS DESARROLLO Para esta práctica donde se diseño un circuito amplificador en emisor común con parámetros

Más detalles

OSCILADORES SINUSOIDALES Y NO SINUSOIDALES

OSCILADORES SINUSOIDALES Y NO SINUSOIDALES OSCILADORES SINUSOIDALES Y NO SINUSOIDALES GUÍA DE LABORATORIO Nº 4 Profesor: Ing. Aníbal Laquidara. J.T.P.: Ing. Isidoro Pablo Perez. Ay. Diplomado: Ing. Carlos Díaz. Ay. Diplomado: Ing. Alejandro Giordana

Más detalles

Práctica 3. Diseño de un Transistor BJT en el Punto de Operación

Práctica 3. Diseño de un Transistor BJT en el Punto de Operación Práctica 3. Diseño de un Transistor BJT en el Punto de Operación Universidad de San Carlos de Guatemala Facultad de Ingeniería Escuela de Mecánica Electrica Laboratorio de Electrónica Electrónica 1 Auxiliar:

Más detalles

Práctica 3. Diseño de un Transistor BJT en el Punto de Operación

Práctica 3. Diseño de un Transistor BJT en el Punto de Operación Práctica 3. Diseño de un Transistor BJT en el Punto de Operación Universidad de San Carlos de Guatemala Facultad de Ingeniería Escuela de Mecánica Electrica Laboratorio de Electrónica Electrónica 1 Primer

Más detalles

La información necesaria para el desarrollo de la práctica, se encuentra disponible al menos en las siguientes referencias.

La información necesaria para el desarrollo de la práctica, se encuentra disponible al menos en las siguientes referencias. Electromecánica Laboratorio de Electrónica I. Segundo Semestre 215 OBJETIVOS 1. Evaluar e interpretar características fundamentales de transistores BJT. 2. Obtener la ganancia del circuito a partir del

Más detalles

MEDICIONES SOBRE CIRCUITOS ELECTRÓNICOS APLICACIONES DEL AMPLIFICADOR OPERACIONAL

MEDICIONES SOBRE CIRCUITOS ELECTRÓNICOS APLICACIONES DEL AMPLIFICADOR OPERACIONAL UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 1281 PRACTICA Nº 9 MEDICIONES SOBRE CIRCUITOS ELECTRÓNICOS APLICACIONES DEL AMPLIFICADOR OPERACIONAL

Más detalles

Laboratorio Integrador y Diferenciador con AO

Laboratorio Integrador y Diferenciador con AO Objetivos Laboratorio Integrador y Diferenciador con AO El propósito de este práctico es comprender el funcionamiento de un integrador y de un diferenciador construido con un LM741. Textos de Referencia

Más detalles

ELECTRONICA ANALOGICA I

ELECTRONICA ANALOGICA I 1 Bibliografía de referencia Boylestad R., Nasheslsky, Electrónica: teoría de circuitos, Ed. Prentice Hall, 6ta. Edición Boylestad R.- Nashelsky L., Electrónica: Teoría de circuitos y dispositivos electrónicos,

Más detalles

Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 4

Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 4 Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 4 CARACTERISTICAS DEL MOSFET, AMPLIFICADOR SOURCE COMUN Objetivo:

Más detalles

Instituto Tecnológico de Puebla Ingeniería Electrónica Control Digital

Instituto Tecnológico de Puebla Ingeniería Electrónica Control Digital Instituto Tecnológico de Puebla Ingeniería Electrónica Control Digital Actividad 5 CONVERTIDOR ANALÓGICO DIGITAL INTEGRADO Objetivos Comprobar experimentalmente el funcionamiento del convertidor analógico

Más detalles

Figura Amplificador inversor

Figura Amplificador inversor UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 1281 PRACTICA Nº 9 MEDICIONES SOBRE CIRCUITOS ELECTRÓNICOS CIRCUITOS BÁSICOS DEL AMPLIFICADOR OPERACIONAL

Más detalles

EL TRANSISTOR BIPOLAR

EL TRANSISTOR BIPOLAR EL TRANSISTOR BIPOLAR POLARIZACIÓN UTILIZANDO UNA FUENTE DE CORRIENTE: EL ESPEJO DE CORRIENTE El transistor Q1 está conectado de forma que actúa como un diodo. La corriente que va a circular por el emisor

Más detalles

CURSO: SEMICONDUCTORES UNIDAD 3: EL TRANSISTOR - TEORÍA INTRODUCCIÓN

CURSO: SEMICONDUCTORES UNIDAD 3: EL TRANSISTOR - TEORÍA INTRODUCCIÓN CURSO: SEMICONDUCTORES UNIDAD 3: EL TRANSISTOR - TEORÍA INTRODUCCIÓN Está formado por dos junturas PN tal como se muestra en la figura. Una juntura está polarizada directamente y la otra está polarizada

Más detalles

MODELOS DE PEQUEÑA SEÑAL: EL MODELO HÍBRIDO π Se eliminan las fuentes DC. El modelo también aplica para transistores pnp sin cambio de polaridades

MODELOS DE PEQUEÑA SEÑAL: EL MODELO HÍBRIDO π Se eliminan las fuentes DC. El modelo también aplica para transistores pnp sin cambio de polaridades MODELOS DE PEQUEÑA SEÑAL: EL MODELO HÍBRIDO π Se eliminan las fuentes DC El modelo también aplica para transistores pnp sin cambio de polaridades MODELOS DE PEQUEÑA SEÑAL: EL MODELO T Se eliminan las fuentes

Más detalles

GANANCIA EN CIRCUITOS AMPLIFICADORES. LAURA MAYERLY ÁLVAREZ JIMÉNEZ ( ) MARÍA ALEJANDRA MEDINA OSPINA ( ) RESUMEN

GANANCIA EN CIRCUITOS AMPLIFICADORES. LAURA MAYERLY ÁLVAREZ JIMÉNEZ ( ) MARÍA ALEJANDRA MEDINA OSPINA ( ) RESUMEN GANANCIA EN CIRCUITOS AMPLIFICADORES. LAURA MAYERLY ÁLVAREZ JIMÉNEZ (20112007038) MARÍA ALEJANDRA MEDINA OSPINA (20112007050) RESUMEN Observar la amplificación del transistor mediante un análisis y diseño

Más detalles

Laboratorio 1. Circuitos en serie y en paralelo en corriente alterna

Laboratorio 1. Circuitos en serie y en paralelo en corriente alterna Laboratorio 1. Circuitos en serie y en paralelo en corriente alterna Objetivos: 1. Comprobar experimentalmente la validez de los cálculos teóricos, por medio del análisis de un circuito RL en serie y de

Más detalles

Laboratorio Reguladores de Tensión Integrados

Laboratorio Reguladores de Tensión Integrados Objetivos Laboratorio Reguladores de Tensión Integrados Utilizar un LM317 para construir un regulador de tensión ajustable. Implementar un regulador con transistor de paso y limitación de corriente. Textos

Más detalles

Transistor BJT; Respuesta en Baja y Alta Frecuencia

Transistor BJT; Respuesta en Baja y Alta Frecuencia Transistor BJT; Respuesta en Baja y Alta Frecuencia Universidad de San Carlos de Guatemala, Facultad de Ingeniería, Escuela de Mecánica Eléctrica, Laboratorio de Electrónica 2, Segundo Semestre 206, Aux.

Más detalles

PRACTICA Nº 1: APLICACIONES DEL AMPLIFICADOR OPERACIONAL

PRACTICA Nº 1: APLICACIONES DEL AMPLIFICADOR OPERACIONAL PRACTICA Nº 1: APLICACIONES DEL AMPLIFICADOR OPERACIONAL El objetivo de esta práctica es la medida en el laboratorio de distintos circuitos con el amplificador operacional 741. Analizaremos aplicaciones

Más detalles

Laboratorio Circuitos Lineales con Amplificador Operacional

Laboratorio Circuitos Lineales con Amplificador Operacional Laboratorio Circuitos Lineales con Amplificador Operacional Objetivos Construir con un operacional, un amplificador de alterna, uno diferencial y una fuente de corriente. Observar el funcionamiento de

Más detalles

Departamento de Ingeniería Eléctrica y Electrónica. Guía de Prácticas de Laboratorio. Materia: Diodos y Transistores

Departamento de Ingeniería Eléctrica y Electrónica. Guía de Prácticas de Laboratorio. Materia: Diodos y Transistores Instituto Tecnológico de Querétaro Departamento de Ingeniería Eléctrica y Electrónica Guía de Prácticas de Laboratorio Materia: Diodos y Transistores Laboratorio de Ingeniería Electrónica Santiago de Querétaro,

Más detalles

Experimento 5: Transistores BJT como interruptores

Experimento 5: Transistores BJT como interruptores I Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica Profesores: Dr.-Ing. Pablo Alvarado M., Dipl.-Ing. Eduardo Interiano S. Laboratorio de Elementos Activos I Semestre 2005 Objectivo

Más detalles

TECNOLÓGICO DE ESTUDIOS SUPERIORES DE ECATEPEC ELECTRÓNICA I

TECNOLÓGICO DE ESTUDIOS SUPERIORES DE ECATEPEC ELECTRÓNICA I TECNOLÓGICO DE ESTUDIOS SUPERIORES DE ECATEPEC ELECTRÓNICA I PRÁCTICA No. 1 EL DIODO RECTIFICADOR. ESTUDIO DE COMPONENTE 1.- OBJETIVOS: El alumno maneje los parámetros importantes en un diodo rectificador

Más detalles

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER OBJETIVOS 1. Evaluar e interpretar características fundamentales de transistores BJT. 2. Obtener la ganancia del circuito a partir del modelo en pequeña señal del transistor BJT. 3. Observar como varían

Más detalles

Ejercicios analógicos

Ejercicios analógicos 1. Una empresa de comunicaciones nos ha encargado el diseño de un sistema que elimine el ruido de una transmisión analógica. Los requisitos son tales que toda la componente de frecuencia superior a 10

Más detalles

Práctica 2: Análisis de circuitos básicos con diodos y transistores Utilización del PSIM para análisis de circuitos electrónicos básicos

Práctica 2: Análisis de circuitos básicos con diodos y transistores Utilización del PSIM para análisis de circuitos electrónicos básicos Práctica 2: Análisis de circuitos básicos con diodos y transistores Utilización del PSIM para análisis de circuitos electrónicos básicos EJERCICIO 1: Rectificador de onda completa con puente de diodos

Más detalles

e) Lámina para transformador Comprobar experimentalmente, como la frecuencia incide en las pérdidas por histéresis.

e) Lámina para transformador Comprobar experimentalmente, como la frecuencia incide en las pérdidas por histéresis. Tema: EL CICLO DE HISTERESIS. I. OBJETIVOS. Determinar experimentalmente el ciclo de histéresis para: a) Lámina para dínamo b) Núcleo de ferrita c) Hierro pulverizado d) Metal Mu Facultad de Ingeniería.

Más detalles

PRÁCTICA 12. AMPLIFICADOR OPERACIONAL II

PRÁCTICA 12. AMPLIFICADOR OPERACIONAL II PRÁCTICA 12. AMPLIFICADOR OPERACIONAL II 1. Objetivo El objetivo de esta práctica es el estudio del funcionamiento del amplificador operacional, en particular de tres de sus montajes típicos que son como

Más detalles

DOS TRANSISTORES. AMPLIFICADOR CON UN TRANSISTOR NPN Y OTRO PNP. a) Polarización. β = 100 y Vbe 0 0,7V.

DOS TRANSISTORES. AMPLIFICADOR CON UN TRANSISTOR NPN Y OTRO PNP. a) Polarización. β = 100 y Vbe 0 0,7V. DOS TRANSISTORES AMPLIFICADOR CON UN TRANSISTOR NPN Y OTRO PNP. a) Polarización. β = 100 y Vbe 0 0,7V. En primer lugar se calcula el Thevenin equivalente del circuito de base de Q1 y todas las variables

Más detalles

DISEÑO DE UNCIRCUITO AMPLIFICADOR MONOETAPA EMISOR COMUN, EN AUTOPOLARIZACION CON ACOPLAMIENTO CAPACITIVO PARA MES.

DISEÑO DE UNCIRCUITO AMPLIFICADOR MONOETAPA EMISOR COMUN, EN AUTOPOLARIZACION CON ACOPLAMIENTO CAPACITIVO PARA MES. PRACTICA 2 DISEÑO DE UNCIRCUITO AMPLIFICADOR MONOETAPA EMISOR COMUN, EN AUTOPOLARIZACION CON ACOPLAMIENTO CAPACITIVO PARA MES. Objetivo: El objetivo de esta práctica es que conozcamos el funcionamiento

Más detalles

2A 239 ó eq. GUIA DE TRABAJOS PRACTICOS DE LABORATORIO L2. Objetivos:

2A 239 ó eq. GUIA DE TRABAJOS PRACTICOS DE LABORATORIO L2. Objetivos: GUIA DE TRABAJOS PRACTICOS DE LABORATORIO L2 Objetivos: 1. Efectuar mediciones estáticas y dinámicas sobre etapas amplificadoras. 2. Reconocer características de transistores bipolares de señal utilizados

Más detalles

2A 239 ó eq. GUIA DE TRABAJOS PRACTICOS DE LABORATORIO L2 B LABORATORIO REAL Y PRACTICAS DE RECICLADO. Objetivos:

2A 239 ó eq. GUIA DE TRABAJOS PRACTICOS DE LABORATORIO L2 B LABORATORIO REAL Y PRACTICAS DE RECICLADO. Objetivos: GUIA DE TRABAJOS PRACTICOS DE LABORATORIO L2 B LABORATORIO REAL Y PRACTICAS DE RECICLADO Objetivos: 1. Efectuar mediciones estáticas y dinámicas sobre etapas amplificadoras. 2. Reconocer características

Más detalles

**** Lea completamente esta guía antes de realizar la práctica ****

**** Lea completamente esta guía antes de realizar la práctica **** 1. OBJETIVOS ESCUELA DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA ÁREA: INFORMÁTICA INDUSTRIAL ASIGNATURA: LABORATORIO DE ELECTRÓNICA I PRÁCTICA 4 ANÁLISIS DEL TRANSISTOR BJT EN PEQUEÑA SEÑAL **** Lea completamente

Más detalles

E.E.T Nº 460 GUILLERMO LEHMANN Departamento de Electrónica. Sistemas electrónicos analógicos y digitales TRABAJO PRÁCTICO

E.E.T Nº 460 GUILLERMO LEHMANN Departamento de Electrónica. Sistemas electrónicos analógicos y digitales TRABAJO PRÁCTICO Tema: El amplificador operacional. Objetivo: TRABAJO PRÁCTICO Determinar las limitaciones prácticas de un amplificador operacional. Comprender las diferencias entre un amplificador operacional ideal y

Más detalles

Práctica 3. Universidad Nacional Autónoma de México. Comunicaciones Analógicas. Filtros activos. Integrantes del grupo

Práctica 3. Universidad Nacional Autónoma de México. Comunicaciones Analógicas. Filtros activos. Integrantes del grupo Universidad Nacional Autónoma de México Comunicaciones Analógicas Práctica 3 Filtros activos Integrantes del grupo 1. Nombre: 2. Nombre: 3. Nombre: 4. Nombre: Profesor: Ing. Mario Alfredo Ibarra Carrillo

Más detalles

CENTRO DE ENSENANZA TECNICA INDUSTRIAL. División de Electrónica. Guía de Practicas Electrónica III

CENTRO DE ENSENANZA TECNICA INDUSTRIAL. División de Electrónica. Guía de Practicas Electrónica III CENTRO DE ENSENANZA TECNICA INDUSTRIAL División de Electrónica. Guía de Practicas Electrónica III E L E C T R O N I C A I I I Guía de Practicas Desarrollado por: FAVIO MURILLO GARCIA IVAN ALEJANDRO SALAS

Más detalles

LABORATORIOS DE: DISPOSITIVOS DE ALMACENAMIENTO Y DE ENTRADA/SALIDA. MEMORIAS Y PERIFÉRICOS.

LABORATORIOS DE: DISPOSITIVOS DE ALMACENAMIENTO Y DE ENTRADA/SALIDA. MEMORIAS Y PERIFÉRICOS. LABORATORIOS DE: DISPOSITIVOS DE ALMACENAMIENTO Y DE ENTRADA/SALIDA. MEMORIAS Y PERIFÉRICOS. OBJETIVO DE LA PRÁCTICA. PRÁCTICA #2 EL AMPLIFICADOR OPERACIONAL Hacer la comprobación experimental de la función

Más detalles

PREPARACIÓN DE LA PRÁCTICA 2: DIODOS Y ZENERS RECTIFICADORES Y REGULADORES. Hoja de datos del diodo rectificador 1N400X. Valores Máximos Absolutos

PREPARACIÓN DE LA PRÁCTICA 2: DIODOS Y ZENERS RECTIFICADORES Y REGULADORES. Hoja de datos del diodo rectificador 1N400X. Valores Máximos Absolutos PREPARACIÓN DE LA PRÁCTICA 2: DIODOS Y ZENERS RECTIFICADORES Y REGULADORES Hoja de datos del diodo rectificador 1N400X Valores Máximos Absolutos Características Térmicas Características Eléctricas Hoja

Más detalles

6.071 Prácticas de laboratorio 3 Transistores

6.071 Prácticas de laboratorio 3 Transistores 6.071 Prácticas de laboratorio 3 Transistores 1 Ejercicios previos, semana 1 8 de abril de 2002 Leer atentamente todas las notas de la práctica antes de asistir a la sesión. Esta práctica es acumulativa

Más detalles

Amplificador en Emisor Seguidor con Autopolarización

Amplificador en Emisor Seguidor con Autopolarización Practica 3 Amplificador en Emisor Seguidor con Autopolarización Objetivo El objetivo de la práctica es el diseño y análisis de un amplificador colector común (emisor seguidor). Además se aplicara una señal

Más detalles

PRÁCTICAS DE ELECTRÓNICA II.

PRÁCTICAS DE ELECTRÓNICA II. PRÁCTICAS DE ELECTRÓNICA II. 5 o FÍSICA Juan Antonio Jiménez Tejada Índice 1. POLARIZACIÓN DEL TRANSISTOR BIPOLAR. 1 2. TRANSISTOR EN CONMUTACIÓN. FAMILIA LÓGICA TTL. 3 3. AMPLIFICADOR MONOETAPA CON TRANSISTOR

Más detalles

Amplificación de Señales

Amplificación de Señales Departamento de Ingeniería Sección Electrónica Amplificación de Señales Manual de prácticas de laboratorio SEMESTRE 2018 - I Asignatura: Amplificación de Señales Clave de la carrera 130 Clave de la asignatura

Más detalles

PRÁCTICA N 6. Cómo influye el factor de atenuación X1 y X10 cuando se realiza una medida?

PRÁCTICA N 6. Cómo influye el factor de atenuación X1 y X10 cuando se realiza una medida? REPUBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DE EDUCACIÓN SUPERIOR INSTITUTO UNIVERSITARIO EXPERIMENTAL DE TECNOLOGÍA DE LA VICTORIA LA VICTORIA ESTADO ARAGUA DEPARTAMENTO DE ELECTRICIDAD LABORATORIO

Más detalles

PRÁCTICA 3. Simulación de amplificadores con transistores

PRÁCTICA 3. Simulación de amplificadores con transistores PRÁCTICA 3. Simulación de amplificadores con transistores 1. Objetivo El objetivo de la práctica es recordar el uso de MicroCap, esta vez en su versión de simulador de circuitos analógicos, analizando

Más detalles

Base común: Ganancia de corriente

Base común: Ganancia de corriente Base común: de corriente La ganancia de corriente se encuentra dividiendo la corriente de salida entre la de entrada. En un circuito de base común, la primera es la corriente de colector (Ic) y la corriente

Más detalles

CARACTERÍSTICAS DEL FET EN DC.

CARACTERÍSTICAS DEL FET EN DC. Electrónica I. Guía 10 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). CARACTERÍSTICAS DEL FET EN DC. Objetivos

Más detalles

Función de Transferencia

Función de Transferencia Función de Transferencia N de práctica: 2 Tema: Modelado y representación de sistemas físicos Nombre completo del alumno Firma N de brigada: Fecha de elaboración: Grupo: Elaborado por: Revisado por: Autorizado

Más detalles

FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser

FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser Objetivos: Estudiar el comportamiento de distintos elementos (resistores,

Más detalles

Filtros Activos de Primer Orden

Filtros Activos de Primer Orden Facultad Escuela Lugar de Ejecución : Ingeniería. : Electrónica : Fundamentos Generales (Edificio 3, 2da planta) Filtros Activos de Primer Orden Objetivos Específicos Medir las tensiones de entrada y salida

Más detalles

DATOS DE IDENTIFICACIÓN DEL CURSO

DATOS DE IDENTIFICACIÓN DEL CURSO DATOS DE IDENTIFICACIÓN DEL CURSO DEPARTAMENTO: ELECTRÓNICA ACADEMIA A LA QUE Electrónica Analógica Básica PERTENECE: NOMBRE DE LA MATERIA: Laboratorio de Electrónica 1 CLAVE DE LA MATERIA: ET 204 CARÁCTER

Más detalles

Reguladores de voltaje

Reguladores de voltaje Reguladores de voltaje Comenzamos con un voltaje de ca y obtenemos un voltaje de cd constante al rectificar el voltaje de ca y luego filtrarlo para obtener un nivel de cd, y, por último, lo regulamos para

Más detalles

Parcial_2_Curso.2012_2013

Parcial_2_Curso.2012_2013 Parcial_2_Curso.2012_2013 1. La función de transferencia que corresponde al diagrama de Bode de la figura es: a) b) c) d) Ninguna de ellas. w (rad/s) w (rad/s) 2. Dado el circuito de la figura, indique

Más detalles

Universidad de Carabobo Facultad de Ingeniería Departamento de Electrónica y Comunicaciones Electrónica I Prof. César Martínez Reinoso

Universidad de Carabobo Facultad de Ingeniería Departamento de Electrónica y Comunicaciones Electrónica I Prof. César Martínez Reinoso Guía de Ejercicios Parte III. Transistores BJT 1. Para el circuito que se presenta a continuación, todos los transistores son exactamente iguales, Q1=Q2=Q3=Q4 y poseen una ganancia de corriente β=200.

Más detalles

CURSO: Circuitos Eléctricos UNIDAD IV: CORRIENTE ALTERNA - TEORÍA

CURSO: Circuitos Eléctricos UNIDAD IV: CORRIENTE ALTERNA - TEORÍA www.ceduvirt.com CURSO: Circuitos Eléctricos UNIDAD IV: CORRIENTE ALTERNA - TEORÍA EJEMPLO 1: Cinco ciclos de una señal ocurren en un tiempo de 25 msg. Hallar el periodo y la frecuencia. Solución Si

Más detalles

Manual de Prácticas Electrónica Analógica

Manual de Prácticas Electrónica Analógica Practica 1: Diodos Semiconductores. S2 S3 S4 S5 S6 S7 S8 S9 0 D1 D2 D3 D4 D5 D6 D7 D8 D14 D9 D10 D11 D12 D13 D15 LED1 LED2 LED3 LED4 Led 1 Led 2 Led 3 Led 4 Numero X 1 X 2 X X 3 X 4 X X 5 X X 6 X X X 7

Más detalles

FILTROS ACTIVOS DE PRIMER ORDEN. Objetivo general. Objetivos específicos. Materiales y equipo

FILTROS ACTIVOS DE PRIMER ORDEN. Objetivo general. Objetivos específicos. Materiales y equipo Electrónica II. Guía 4 FILTROS ACTIVOS DE PRIMER ORDEN Objetivo general Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales, aula 3.2 (Edificio

Más detalles

Física Experimental III Guía de Laboratorio (2016) Práctico: El Transistor Bipolar.

Física Experimental III Guía de Laboratorio (2016) Práctico: El Transistor Bipolar. Física Experimental III Guía de Laboratorio (2016) Práctico: El Transistor Bipolar. Tarea 1: Curvas de salida del transistor bipolar, relación. Objetivo: Implementar un circuito para trazar las curvas

Más detalles

VGD = 0 < Vt = 2 Están en saturación Ecuaciones en el circuito MOSFET de la izquierda Iref = ID:

VGD = 0 < Vt = 2 Están en saturación Ecuaciones en el circuito MOSFET de la izquierda Iref = ID: ESPEJO DE CORRIENTE CON MOSFET Hallar los valores de los voltajes y corrientes en el circuito. VGD = 0 < Vt = 2 Están en saturación Ecuaciones en el circuito MOSFET de la izquierda Iref = ID: Ecuación

Más detalles

UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE TECNOLOGÍAS ESCUELA DE TECNOLOGÍA MECÁNICA

UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE TECNOLOGÍAS ESCUELA DE TECNOLOGÍA MECÁNICA PRÁCTICA 3. ESTABLECER LAS CURVAS DE CARGAS Y DESCARGA DE UN CAPACITOR ELECTROLÍTICO EN C.C OBJETIVOS Realizar el cálculo teórico del tiempo de carga de un capacitor electrolítico. Conocer y manejar la

Más detalles

Desarrollo de la Práctica Unidad de aprendizaje: Practica número: 11, 12 y 13 Nombre de la practica:

Desarrollo de la Práctica Unidad de aprendizaje: Practica número: 11, 12 y 13 Nombre de la practica: Desarrollo de la Práctica Unidad de aprendizaje: Practica número: 11, 12 y 13 Nombre de la practica: 11. Comprobar el teorema de máxima transferencia de potencia. 12. Observar y medir los voltajes en terminales

Más detalles

OPCIÓN: SISTEMAS ASIGNATURA: ESCUELA SUPERIOR DE CÓMPUTO SUBDIRECCIÓN ACADEMICA ELECTRÓNICA ANALÓGICA

OPCIÓN: SISTEMAS ASIGNATURA: ESCUELA SUPERIOR DE CÓMPUTO SUBDIRECCIÓN ACADEMICA ELECTRÓNICA ANALÓGICA ESCUELA SUPERIOR DE CÓMPUTO SUBDIRECCIÓN ACADEMICA INGENIERÍA EN SISTEMAS COMPUTACIONALES ACADEMIA DE SISTEMAS DINÁMICOS NOMBRE: OPCIÓN: SISTEMAS ASIGNATURA: ELECTRÓNICA ANALÓGICA GRUPO: BOLETA: CALIFICACIÓN:

Más detalles

Dispositivos Semiconductores Última actualización: 2 do Cuatrimestre de 2013 V GS = 3.0 V V GS = 2.5 V V GS = 2.

Dispositivos Semiconductores  Última actualización: 2 do Cuatrimestre de 2013 V GS = 3.0 V V GS = 2.5 V V GS = 2. Guía de Ejercicios N o 8: Aplicacion de transistores en circuitos analogicos Parte I: Amplificadores con MOSFET 1. Dada la curva de I D vs. V DS de la figura 1a y el circuito de la figura 1b, con V dd

Más detalles

PRACTICA Nº 1 CONFIGURACIONES BASICAS DEL AMPLIFICADOR OPERACIONAL. * Realizar montajes de circuitos electrónicos sobre el protoboard.

PRACTICA Nº 1 CONFIGURACIONES BASICAS DEL AMPLIFICADOR OPERACIONAL. * Realizar montajes de circuitos electrónicos sobre el protoboard. UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS LAB. CIRCUITOS ELECTRONICOS EC3192 PRACTICA Nº 1 CONFIGURACIONES BASICAS DEL AMPLIFICADOR OPERACIONAL OBJETIVOS * Realizar montajes de circuitos

Más detalles

INTRODUCCIÓN: OBJETIVOS:

INTRODUCCIÓN: OBJETIVOS: INTRODUCCIÓN: En el desarrollo de esta práctica se observará experimentalmente el comportamiento del transistor bipolar BJT como amplificador, mediante el diseño, desarrollo e implementación de dos amplificadores

Más detalles

Determinar cuál es la potencia disipada por el transistor, y su temperatura de juntura.

Determinar cuál es la potencia disipada por el transistor, y su temperatura de juntura. Circuitos Electrónicos II (66.10) Guía de Problemas Nº 3: Amplificadores de potencia de audio 1.- Grafique un circuito eléctrico que realice la analogía del fenómeno que involucra la potencia disipada

Más detalles

2. Calcule la frecuencia de oscilación del oscilador en doble T de la figura 2.

2. Calcule la frecuencia de oscilación del oscilador en doble T de la figura 2. 1/6 ELECTRÓNICA ANALÓGICA II Guía de problemas Nº 9 Osciladores Problemas básicos 1. El oscilador en Puente de Wien de la figura 1 a) tiene dos potenciómetros que le permiten variar la frecuencia de oscilación.

Más detalles

1º Escuela Técnica Superior de Ingeniería de Telecomunicación TECNOLOGÍA Y COMPONENTES ELECTRÓNICOS Y FOTÓNICOS. PROBLEMAS de transistores bipolares

1º Escuela Técnica Superior de Ingeniería de Telecomunicación TECNOLOGÍA Y COMPONENTES ELECTRÓNICOS Y FOTÓNICOS. PROBLEMAS de transistores bipolares 1º Escuela Técnica Superior de Ingeniería de Telecomunicación TECNOLOGÍA Y COMPONENTES ELECTRÓNICOS Y FOTÓNICOS 3 PROBLEMAS de transistores bipolares EJERCICIOS de diodos: TECNOLOGÍA Y COMPONENTES ELECTRÓNICOS

Más detalles

Electrónica 1. Práctico 5 Transistores 1

Electrónica 1. Práctico 5 Transistores 1 Electrónica 1 Práctico 5 Transistores 1 Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic Circuits,

Más detalles

TRABAJO PRÁCTICO DE LABORATORIO 6. Física General III 2013 CIRCUITOS RC, RL Y RLC EN ALTERNA.

TRABAJO PRÁCTICO DE LABORATORIO 6. Física General III 2013 CIRCUITOS RC, RL Y RLC EN ALTERNA. TRABAJO PRÁCTICO DE LABORATORIO 6 Física General III 2013 CIRCUITOS RC, RL Y RLC EN ALTERNA. OBJETIVO: Analizar el comportamiento de circuitos RC, RL y RLC cuando son alimentados con corriente alterna.

Más detalles