Práctica de Laboratorio Tema 4: Laboratorio Nº 3: USO Y MANEJO DEL OSCILOSCOPIO. MEDICIÓN FRECUENCIA y FASE. Índice

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Práctica de Laboratorio Tema 4: Laboratorio Nº 3: USO Y MANEJO DEL OSCILOSCOPIO. MEDICIÓN FRECUENCIA y FASE. Índice"

Transcripción

1 Práctica de Laboratorio Tema 4: Medidas Eléctricas: El Osciloscopio Laboratorio Nº 3: USO Y MANEJO DEL OSCILOSCOPIO MEDICIÓN FRECUENCIA y FASE Índice 1 Medidas Eléctricas: El Osciloscopio Introducción Medición Frecuencia y Fase Laboratorio Nº 3: USO Y MANEJO DEL OSCILOSCOPIO: MEDICIÓN FRECUENCIA y FASE Objetivo Materiales Implementación Medición de frecuencia en forma directa Medición de frecuencia usando figuras de Lissajaus Medición de fase Tema 4 Teoría de Circuitos Pag. 1 / 12

2 1 Medidas Eléctricas: El Osciloscopio 1.1 Introducción Medición Frecuencia y Fase El osciloscopio también permite medir frecuencias, ya que al conocer el período T de la señal se determina la misma: f = 1/T. Esta condición se logra siempre y cuando el control variable de barrido se encuentre en la posición calibración (Cal). En esas circunstancias, la velocidad de barrido que se ha aplicado mediante el control por pasos Tiempo/ Div. permitirá conocer el período de la señal entrante. A fin de obtener la máxima precisión será conveniente que la señal, en la medida de lo posible, ocupe uno o algunos ciclos completos en la pantalla (F), para lo cual deberá ajustar el control por pasos del barrido y sincronizar la misma con flanco positivo por comodidad, Figura 1. En ella, se han efectuado las operaciones necesarias para que un ciclo (E) de la señal entrante por el eje Y, ocupe la mayor cantidad de divisiones de la cuadrícula horizontal del osciloscopio. Esta operación para esta oportunidad, se ha realizado con la selección de la base de tiempo en 10 μs/div. y el control fino en calibración. Por ello entonces, el barrido de toda la pantalla es de 100 μs y por consiguiente es el período de la señal observada. Su frecuencia será f = 1/T = 1/100μS = Hz. Es de hacer notar que de la precisión de la base de tiempo dependerá la exactitud de la medida. Figura 1 Otra forma de medir la frecuencia es con el método de Lissajaus. Para este proceso es necesario utilizar la posición X-Y del osciloscopio, en la cual no hay barrido. Así entonces se pueden conformar entre los dos ejes, figuras de Lissajaus, las que permiten, conociendo una frecuencia encontrar el valor de otra desconocida. Las señales, para esta modalidad, se ingresan: una por el CH1 que es la correspondiente al eje Y y la otra al CH2, que oficia de eje X (que en la alternativa de barrido es el Tema 4 Teoría de Circuitos Pag. 2 / 12

3 amplificador de la señal diente de sierra), Figura 2. En estas condiciones la señal entrante al eje X podrá ser amplificada o atenuada a comodidad, igual que la del eje Y. Esto será necesario ya que la condición para que se produzcan las figuras, es que las señales sean de igual amplitud y armónicas. Mediante los atenuadores de los dos canales y contando con la ayuda del control variable, se podrá lograr que las dos tensiones aparezcan iguales en amplitud en la pantalla. En la figura se han introducido dos señales de igual frecuencia y amplitud lo que entrega una recta inclinada a 45 hacia la derecha. Con este método se pueden obtener diferentes figuras que permitirán relacionar las frecuencias. Recuerde que las dos señales deben ser iguales en amplitud y armónicas (a obtener mediante los atenuadores en caso necesario). Generador G2 Canal CH1 (Vertical) Canal CH2 (Horizontal) Figura 2 Para estas operaciones será necesario disponer de un generador de frecuencia conocida. Así entonces, por el canal CH1 Se introduce la señal conocida y por el canal CH2 la desconocida. Se producirá entonces una figura que deberá tener simetría en los dos ejes para encontrar la relación de frecuencias. Contando las tangencias en el sentido vertical (t v ) y en el sentido horizontal (t h ) de acuerdo a la expresión: t h f h = t v.f v se podrá determinar la desconocida. Las dos formas apuntadas para medir frecuencias han sido ampliamente superadas por los frecuencímetros digitales, pero no obstante ello, el primer método le da al operador una buena aproximación de la frecuencia. En cuanto a la utilización del osciloscopio en la posición X-Y para las figuras de Lissajaus, permitirá que el alumno pueda aprender a utilizarlo para otras aplicaciones. También mediante este método es posible determinar la relación de fase de las dos señales, lo que en muchas aplicaciones de electrónica es imprescindible. Para ello se debe aplicar el siguiente algoritmo: Tema 4 Teoría de Circuitos Pag. 3 / 12

4 A ϕ = arc sen B Los valores de A y de B surgen de las Figuras 3a y 3b que se muestran a continuación. Figura 3 Debe advertirse que en el caso de la Figura 3b, al ángulo que se obtiene debe restarse a 180, ya que han superado los 90. Esta forma de obtener el desfasaje, si se procede con mucho cuidado, permite obtener el mismo con mucha aproximación. Una aplicación interesante es en la determinación de la variación del ángulo de fase que se produce en un amplificador entre la entrada y la salida. Otra forma pero aproximada de obtener el desfasaje entre dos señales es trabajar con barrido y con los dos canales. Se introduce por ejemplo la entrada en el canal CH1 y se ajusta el barrido con sincronización en dicho canal para que se obtenga un ciclo completo en la pantalla (no es necesario colocar el ajuste fino en calibración). Posteriormente, se introduce la salida en el canal CH2 y se observará si tiene o no desfasaje. Luego, simplemente por una regla de tres se puede obtener el ángulo de desfasaje como así también si está adelantado o atrasado. Esto se muestra en la Figura 4. Una división y media Figura 4 Tema 4 Teoría de Circuitos Pag. 4 / 12

5 La señal de entrada ocupa las diez divisiones y por ello son 360 ; luego el valor entre las dos señales responderá a una cierta cantidad de divisiones o fracciones de ella. Aplicando regla de tres se obtiene entonces el desfasaje. Observando la distribución de la señal de salida respecto a la de entrada, se observa que la misma está atrasada. Tema 4 Teoría de Circuitos Pag. 5 / 12

6 1.2 Laboratorio Nº 3: USO Y MANEJO DEL OSCILOSCOPIO: MEDICIÓN FRECUENCIA y FASE Apellido y Nombre:.. Registro N EL ALUMNO DE FORMA INDIVIDUAL DEBE COMPLETAR ESTE INFORME DURANTE EL HORARIO DE LABORATORIO. LO HARÁ CON LETRA CLARA Y PROLIJA Y SERÁ ENTREGADO AL FINALIZAR LA PRÁCTICA PARA SU EVALUACIÓN POSTERIOR Objetivo Esta actividad permitirá continuar conociendo al osciloscopio para medir frecuencias y fase, en forma directa mediante figuras de Lissajaus Materiales Osciloscopio Puntas conectoras para Osciloscopio 2 Generador de señal 2 Cables coaxial con conectores BNC Caja con red R-C (desfasadora) Implementación Medición de frecuencia en forma directa A. Arme el circuito de la Figura 1. Figura 1 Tema 4 Teoría de Circuitos Pag. 6 / 12

7 B. Varíe los controles del generador de señales para que indique una señal senoidal de 100 Hz con una tensión pico a pico de aproximadamente 5 V. Ajuste los controles del osciloscopio para observar en lo posible una sola senoide en la pantalla (con el control de barrido fino en calibración). Grafique la señal que observa en el osciloscopio, completos los datos en la tabla y calcule el período y la frecuencia con los datos mostrados en la pantalla. 1 ra Medición (Senoidal 100 Hz, 5 V pico a pico) Tensión de pico Tensión pico a pico Tiempo/división Período medido Frecuencia medida C. Repita los datos para una señal senoidal con una frecuencia de 2000 Hz con una amplitud de pico a pico de 5 volt. 1 ra Medición (Senoidal 2000 Hz, 5 V pico a pico) Tensión de pico Tensión pico a pico Tiempo/división Período medido Frecuencia medida D. Repita los datos para una señal senoidal con una frecuencia de Hz con una amplitud de pico a pico de 5 volt. Tema 4 Teoría de Circuitos Pag. 7 / 12

8 1 ra Medición (Senoidal Hz, 5 V pico a pico) Tensión de pico Tensión pico a pico Tiempo/división Período medido Frecuencia medida Qué conclusiones obtiene? Medición de frecuencia usando figuras de Lissajaus A. Arme el circuito de la Figura 2. No conecte aún el oscilador D. Figura 2 B. Oprima la llave del osciloscopio X-Y. En estas condiciones, no tiene barrido el osciloscopio. Ajuste el generador C en 100 Hz senoidales con aproximadamente 5 V pico a pico y con los controles del CH1 obtenga una línea vertical de cuatro divisiones. C. Ajuste el generador D también en 100 Hz senoidales y 5 V pico a pico; desconecte el generador C. Conecte ahora el generador D en CH2 y obtenga una línea horizontal de cuatro divisiones con los controles grueso y fino del CH2. D. Reconecte el generador C y podrá entonces ver figuras de Lissajaus. Grafique lo que observa en el osciloscopio y complete la tabla Tema 4 Teoría de Circuitos Pag. 8 / 12

9 CH1 CH2 Qué sucede con la imagen? Explique.... E. Ajuste cuidadosamente el generador D para que tenga la misma frecuencia que el generador C. Explique por qué la figura cambia de una línea inclinada a 45 a una circunferencia pasando por elipses.... F. Varíe la frecuencia del generador D hasta obtener una frecuencia de 200 Hz. Regule en forma fina el generador hasta que se estabilice la imagen. Grafique lo que observa en el osciloscopio y complete la tabla CH1 CH2 Qué sucede con la imagen? Aplique la relación t h f h = t v.f v Tema 4 Teoría de Circuitos Pag. 9 / 12

10 y explique qué observa.... G. Varíe la frecuencia del generador D hasta obtener una frecuencia de 300 Hz. Regule en forma fina el generador hasta que se estabilice la imagen. Grafique lo que observa en el osciloscopio y complete la tabla CH1 CH2 Qué conclusiones obtiene? Medición de fase A. Arme el circuito de la Figura 3 utilizando para tal efecto la caja desfasadora. Figura 3 Tema 4 Teoría de Circuitos Pag. 10 / 12

11 B. Ajuste los controles del generador C para que den una señal senoidal de 100 Hz y 5 V pico a pico (como quedo en el paso anterior). C. Coloque el CH2 en GND y el CH1 en AC. Regule los controles de V/Div grueso y fino del CH1 hasta obtener una línea horizontal de cuatro divisiones. A continuación Coloque el CH1 en GND y el CH2 en AC y regule los controles de V/Div grueso y fino del CH2 hasta obtener una línea vertical de cuatro divisiones. Coloque el CH1 y el CH2 en GND y centre el punto en la pantalla con los controles de posición. Por último coloque el CH1 y CH2 en AC. Grafique lo que observa en el osciloscopio y complete la tabla CH1 CH2 Aplique para determinar la fase la fórmula A ϕ = arc sen B A =... B =... Cuál es el desfasaje calculado?... D. Oprima la llave del osciloscopio X-Y de forma que las señales tengan barrido en el tiempo. Regule los controles de tiempo para que en lo posible se muestre solo un ciclo completo de las señales en la pantalla del osciloscopio. Graficar lo que observa y complete la tabla Tema 4 Teoría de Circuitos Pag. 11 / 12

12 CH1 CH2 Tiempo/división Por una regla de tres obtener el ángulo de desfasaje entre las señales. Cuál es el desfasaje calculado?... Compare las dos formas de calcular el desfasaje y obtenga conclusiones... Tema 4 Teoría de Circuitos Pag. 12 / 12

CONFIGURACIONES BASICAS DEL AMPLIFICADOR OPERACIONAL. * Realizar montajes de circuitos electrónicos sobre el protoboard.

CONFIGURACIONES BASICAS DEL AMPLIFICADOR OPERACIONAL. * Realizar montajes de circuitos electrónicos sobre el protoboard. UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS LABORATORIO DE ELECTRÓNICA EC2014 PRACTICA Nº 5 Objetivos CONFIGURACIONES BASICAS DEL AMPLIFICADOR OPERACIONAL * Realizar montajes de circuitos electrónicos

Más detalles

Figura Amplificador inversor

Figura Amplificador inversor UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 1281 PRACTICA Nº 9 MEDICIONES SOBRE CIRCUITOS ELECTRÓNICOS CIRCUITOS BÁSICOS DEL AMPLIFICADOR OPERACIONAL

Más detalles

DEPARTAMENTO DE ELECTRONICA Y AUTOMATICA. Exp. de Laboratorio Nº 2. Alumno:... Registro Nº:... Fecha:... /... /... Grupo:...

DEPARTAMENTO DE ELECTRONICA Y AUTOMATICA. Exp. de Laboratorio Nº 2. Alumno:... Registro Nº:... Fecha:... /... /... Grupo:... DEPARTAMENTO DE ELECTRONICA Y AUTOMATICA INTRODUCCION A LA ELECTRICIDAD Exp. de Laboratorio Nº Alumno:... Registro Nº:... Fecha:... /... /... Grupo:... Introducción a la Experiencia de Laboratorio: USO

Más detalles

EC1281 LABORATORIO DE MEDICIONES ELÉCTRICAS PRELABORATORIO Nº 3 EL OSCILOSCOPIO DIGITAL

EC1281 LABORATORIO DE MEDICIONES ELÉCTRICAS PRELABORATORIO Nº 3 EL OSCILOSCOPIO DIGITAL EC1281 LABORATORIO DE MEDICIONES ELÉCTRICAS PRELABORATORIO Nº 3 EL OSCILOSCOPIO DIGITAL DIAGRAMA DE BLOQUES DE UN OSCILOSCOPIO ANALÓGICO PRESENTACIÓN DE LAS FIGURAS EN LA PANTALLA DE UN OSCILOSCOPIO ANALÓGICO

Más detalles

3. Operar un generador de señales de voltaje en función senoidal, cuadrada, triangular.

3. Operar un generador de señales de voltaje en función senoidal, cuadrada, triangular. Objetivos: UNIVERSIDAD FRANCISCO DE PAULA SANTANDER Al terminar la práctica el alumno estará capacitado para: 1. El manejo de los controles del osciloscopio (encendido, ajuste de intensidad, barrido vertical,

Más detalles

Formato para prácticas de laboratorio

Formato para prácticas de laboratorio CARRERA Ingeniero en Computación PRÁCTICA No. 2 PLAN DE ESTUDIO LABORATORIO DE NOMBRE DE LA PRÁCTICA 1 INTRODUCCIÓN CLAVE ASIGNATURA NOMBRE DE LA ASIGNATURA 1995-2 1617 Mediciones Eléctricas y Electrónicas

Más detalles

Tema: Modulación por amplitud de pulso P.A.M.

Tema: Modulación por amplitud de pulso P.A.M. Tema: Modulación por amplitud de pulso P.A.M. Sistemas de comunicación II. Guía 1 1 Facultad: Ingeniería Escuela: Electrónica Asignatura: Sistemas de comunicación II Contenidos Modulación por amplitud

Más detalles

MEDICIONES SOBRE CIRCUITOS ELECTRÓNICOS APLICACIONES DEL AMPLIFICADOR OPERACIONAL

MEDICIONES SOBRE CIRCUITOS ELECTRÓNICOS APLICACIONES DEL AMPLIFICADOR OPERACIONAL UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 1281 PRACTICA Nº 9 MEDICIONES SOBRE CIRCUITOS ELECTRÓNICOS APLICACIONES DEL AMPLIFICADOR OPERACIONAL

Más detalles

EL OSCILOSCOPIO. 2.- Describa el principio básico de operación del tubo de rayos catódicos del osciloscopio.

EL OSCILOSCOPIO. 2.- Describa el principio básico de operación del tubo de rayos catódicos del osciloscopio. UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 2286 PRACTICA Nº 4 Objetivos EL OSCILOSCOPIO Usar adecuadamente el osciloscopio analógico para

Más detalles

Dirección Académica MANUAL DE PRÁCTICAS PRACTICA 1. ANALISIS DE SEÑALES UTILIZANDO EL OSCILOSCOPIO

Dirección Académica MANUAL DE PRÁCTICAS PRACTICA 1. ANALISIS DE SEÑALES UTILIZANDO EL OSCILOSCOPIO 6 de 65 PRACTICA 1. ANALISIS DE SEÑALES UTILIZANDO EL OSCILOSCOPIO -INTRODUCCIÓN Para medir una cantidad eléctrica puede utilizarse un multímetro ya sea analógico o digital, en donde el multímetro analógico

Más detalles

EL AMPLIFICADOR CON BJT

EL AMPLIFICADOR CON BJT 1 Facultad: Estudios Tecnologicos. Escuela: Electrónica. Asignatura: Electronica Analogica Discresta. EL AMPLIFICADOR CON BJT Objetivos específicos Determinar la ganancia de tensión, corriente y potencia

Más detalles

1. Medir el período y determinar la frecuencia de oscilación de movimientos armónicos simples (M.A.S.) mediante el osciloscopio.

1. Medir el período y determinar la frecuencia de oscilación de movimientos armónicos simples (M.A.S.) mediante el osciloscopio. Laboratorio 3 Superposición de M. A. S. 3.1 Objetivos 1. Medir el período y determinar la frecuencia de oscilación de movimientos armónicos simples (M.A.S.) mediante el osciloscopio. 2. Medir las amplitudes

Más detalles

Práctica 4 Detector de ventana

Práctica 4 Detector de ventana Práctica 4 Detector de ventana Objetivo de la práctica Analizar el comportamiento de un detector de ventana Al terminar esta práctica, el discente será capaz de: Comprender el funcionamiento de un circuito

Más detalles

EL DIODO ZENER. REGULADORES DE VOLTAJE

EL DIODO ZENER. REGULADORES DE VOLTAJE UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS CIRCUITOS ELECTRÓNICOS EC1177 - EC1113 PRACTICA Nº 3 Objetivos EL DIODO ZENER. REGULADORES DE VOLTAJE * Familiarizar al estudiante con el uso de

Más detalles

INSTRUMENTOS DE MEDICIÓN PARA CORRIENTE ALTERNA (AC) Interpretar las características nominales descritas en los instrumentos de medición para AC.

INSTRUMENTOS DE MEDICIÓN PARA CORRIENTE ALTERNA (AC) Interpretar las características nominales descritas en los instrumentos de medición para AC. UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 1281 PRACTICA Nº 7 INSTRUMENTOS DE MEDICIÓN PARA CORRIENTE ALTERNA (AC) Objetivos Interpretar las

Más detalles

Tema: Tiristores. Objetivos. Recomendaciones. Introducción. Radiología. GUÍA 01 Pág. 1

Tema: Tiristores. Objetivos. Recomendaciones. Introducción. Radiología. GUÍA 01 Pág. 1 Tema: Tiristores Facultad Escuela Lugar de Ejecución : Ingeniería. : Biomédica : Laboratorio de Biomédica Objetivos SCR Determinar las características de un Tiristor Conectar el SCR para que conduzca en

Más detalles

CARACTERISTICAS DEL BJT. AMPLIFICADOR EMISOR COMUN

CARACTERISTICAS DEL BJT. AMPLIFICADOR EMISOR COMUN UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS CIRCUITOS ELECTRÓNICOS I EC1113 PRACTICA Nº 3 CARACTERISTICAS DEL BJT. AMPLIFICADOR EMISOR COMUN Objetivos * Familiarizar al estudiante con el uso

Más detalles

INACAP ELECTRICIDAD- 2 GUIA DE LABORATORIO 1 USO DEL OSCILOSCOPIO. 2.- 3.- Curso:

INACAP ELECTRICIDAD- 2 GUIA DE LABORATORIO 1 USO DEL OSCILOSCOPIO. 2.- 3.- Curso: INACAP ELECTRICIDAD- 2 GUIA DE LABORATORIO 1 USO DEL OSCILOSCOPIO Alumnos 1.- Fecha: 2.- 3.- Curso: OBJETIVO Usar el osciloscopio como instrumento para visualizar señales y medir en ellas voltaje, frecuencia

Más detalles

CARACTERISTICAS DEL BJT. AMPLIFICADOR EMISOR COMUN

CARACTERISTICAS DEL BJT. AMPLIFICADOR EMISOR COMUN UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS CIRCUITOS ELECTRÓNICOS I EC1177 PRACTICA Nº 4 CARACTERISTICAS DEL BJT. AMPLIFICADOR EMISOR COMUN Objetivos * Familiarizar al estudiante con el uso

Más detalles

PRÁCTICA Nº 2. OSCILOSCOPIO. Describir las características y el funcionamiento del osciloscopio, generador de señales y oscilador de audio.

PRÁCTICA Nº 2. OSCILOSCOPIO. Describir las características y el funcionamiento del osciloscopio, generador de señales y oscilador de audio. PRÁCTICA Nº 2. OSCILOSCOPIO OBJETIVO Describir las características y el funcionamiento del osciloscopio, generador de señales y oscilador de audio. FUNDAMENTO TEÓRICO A continuación se presentan las definiciones

Más detalles

INSTRUMENTOS DE MEDICIÓN PARA CORRIENTE ALTERNA (AC) Interpretar las características nominales de los instrumentos de medición AC.

INSTRUMENTOS DE MEDICIÓN PARA CORRIENTE ALTERNA (AC) Interpretar las características nominales de los instrumentos de medición AC. UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 2286 PRACTICA Nº 7 Objetivos INSTRUMENTOS DE MEDICIÓN PARA CORRIENTE ALTERNA (AC) Usar adecuadamente

Más detalles

1. Medidor de potencia óptica

1. Medidor de potencia óptica En este anexo se va a hablar del instrumental de laboratorio más importante utilizado en la toma de medidas. Este instrumental consta básicamente de tres elementos: el medidor de potencia óptica, el osciloscopio

Más detalles

MEDICIONES SOBRE CIRCUITOS ELECTRÓNICOS APLICACIONES DEL AMPLIFICADOR OPERACIONAL

MEDICIONES SOBRE CIRCUITOS ELECTRÓNICOS APLICACIONES DEL AMPLIFICADOR OPERACIONAL UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 1281 PRACTICA Nº 9 MEDICIONES SOBRE CIRCUITOS ELECTRÓNICOS APLICACIONES DEL AMPLIFICADOR OPERACIONAL

Más detalles

Departamento de Física Aplicada I. Escuela Politécnica Superior. Universidad de Sevilla. Física II

Departamento de Física Aplicada I. Escuela Politécnica Superior. Universidad de Sevilla. Física II Física II Osciloscopio y Generador de señales Objetivos: Familiarizar al estudiante con el manejo del osciloscopio y del generador de señales. Medir las características de una señal eléctrica alterna (periodo

Más detalles

EC2286 MEDICIONES ELÉCTRICAS PRELABORATORIO Nº 3 EL OSCILOSCOPIO Analógico. Digital

EC2286 MEDICIONES ELÉCTRICAS PRELABORATORIO Nº 3 EL OSCILOSCOPIO Analógico. Digital EC2286 MEDICIONES ELÉCTRICAS PRELABORATORIO Nº 3 EL OSCILOSCOPIO Analógico Digital CONCEPTOS TEÓRICOS BÁSICOS: EL OSCILOSCOPIO *EL OSCILOSCOPIO ANALÓGICO *PUNTAS DE PRUEBA-CONEXIÓN A TIERRA * QUÉ ES UN

Más detalles

Supongamos que en los dos casos el técnico sepa hacer la conexión del osciloscopio al circuito en ensayo para obtener las formas de ondas.

Supongamos que en los dos casos el técnico sepa hacer la conexión del osciloscopio al circuito en ensayo para obtener las formas de ondas. Medida de Tensiones Las pantallas de los osciloscopios vienen calibradas con un reticulado de modo que, en función de las ganancias seleccionadas para los circuitos internos, podemos usarlas como referencia

Más detalles

CIRCUITOS INTEGRADOS DE PUERTAS LÓGICAS

CIRCUITOS INTEGRADOS DE PUERTAS LÓGICAS CIRCUITOS INTEGRADOS DE PUERTAS LÓGICAS CIRCUITOS COMBINACIONALES INTEGRADOS CIRCUITOS INTEGRADOS SECUENCIALES: FLIP-FLOPS, REGISTROS Y CONTADORES CONSEJOS PARA LA ELABORACIÓN DE DIAGRAMAS LÓGICOS DE CIRCUITOS

Más detalles

MEDICIONES EN CORRIENTE ALTERNA (AC)

MEDICIONES EN CORRIENTE ALTERNA (AC) UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 2286 PRACTICA Nº 5 MEDICIONES EN CORRIENTE ALTERNA (AC) Objetivos Usar adecuadamente los diversos

Más detalles

Manual de Prácticas LABORATORIO DE CIRCUITOS ELÉCTRICOS Práctica # 9 CORRIENTE ALTERNA

Manual de Prácticas LABORATORIO DE CIRCUITOS ELÉCTRICOS Práctica # 9 CORRIENTE ALTERNA OBJETIVOS: 1. Conocer las ondas senoidales de corriente alterna. 2. Comprender el concepto de frecuencia, ciclo y período. 3. Comparar los valores efectivos y máximos de corriente y voltaje de C.A. 4.

Más detalles

Taller y Laboratorio Filtros RC

Taller y Laboratorio Filtros RC Taller y Laboratorio Filtros RC En la práctica de aula disponemos de plaquetas que contienen 2 resistencias (R1= 220 Ω y R2= 560 Ω, y 2 capacitores (C1= 0,22µF y C2= 0,1µF). Tomamos R1 y C1 y armamos un

Más detalles

USO DE LA PRESENTACION X-Y DEL OSCILOSCOPIO CARACTERISTICAS CORRIENTE- VOLTAJE DE ELEMENTOS LINEALES Y NO LINEALES

USO DE LA PRESENTACION X-Y DEL OSCILOSCOPIO CARACTERISTICAS CORRIENTE- VOLTAJE DE ELEMENTOS LINEALES Y NO LINEALES UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 1281 PRACTICA Nº 5 Objetivos USO DE LA PRESENTACION X-Y DEL OSCILOSCOPIO CARACTERISTICAS CORRIENTE-

Más detalles

GUÍA DE TRABAJO LÍNEA DE TRANSMISIÓN COAXIAL

GUÍA DE TRABAJO LÍNEA DE TRANSMISIÓN COAXIAL Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Eléctrica EL3003 Laboratorio de Ingeniería Eléctrica GUÍA DE TRABAJO LÍNEA DE TRANSMISIÓN COAXIAL Contenido 1.

Más detalles

EL OSCILOSCOPIO Introducción

EL OSCILOSCOPIO Introducción EL OSCILOSCOPIO Introducción Qué es un osciloscopio? El osciloscopio es basicamente un dispositivo de visualización gráfica que muestra señales electricas variables en el tiempo. El eje vertical, a partir

Más detalles

CARACTERISTICAS DEL MOSFET. AMPLIFICADOR DRAIN COMUN

CARACTERISTICAS DEL MOSFET. AMPLIFICADOR DRAIN COMUN UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS LABORATORIO DE ELECTRÓNICA EC2014 PRACTICA Nº 4 Objetivos CARACTERISTICAS DEL MOSFET. AMPLIFICADOR DRAIN COMUN * Familiarizar al estudiante con el

Más detalles

sen(ωt + ϕ) donde la amplitud de corriente en función de la amplitud del voltaje es: = +

sen(ωt + ϕ) donde la amplitud de corriente en función de la amplitud del voltaje es: = + UNIVERSIDAD LIBRE FACULTAD DE INGENIERÌA DEPARTAMENTO DE CIENCIAS BÁSICAS TEMA: FRECUENCIA DE RESONANANCIA EN RLC 1. OBJETIVOS - Observar la variación de la amplitud de la corriente en un circuito RLC

Más detalles

PRACTICA Nº 1 MEDICIONES SOBRE CIRCUITOS ELECTRONICOS

PRACTICA Nº 1 MEDICIONES SOBRE CIRCUITOS ELECTRONICOS UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS CIRCUITOS ELECTRONICOS I EC1177 PRACTICA Nº 1 MEDICIONES SOBRE CIRCUITOS ELECTRONICOS OBJETIVO Familiarizar al estudiante con los conceptos fundamentales

Más detalles

TEMAS: Operación de un Osciloscopio Digital. Medición de Tiempos de crecimiento, Ancho de Banda de Amplificadores, Desfasaje e Índice de Modulación.

TEMAS: Operación de un Osciloscopio Digital. Medición de Tiempos de crecimiento, Ancho de Banda de Amplificadores, Desfasaje e Índice de Modulación. TEMAS: Operación de un Osciloscopio Digital. Medición de Tiempos de crecimiento, Ancho de Banda de Amplificadores, Desfasaje e Índice de Modulación. INTRODUCCION: Este Trabajo Práctico tiene como finalidad

Más detalles

INSTRUMENTOS DE MEDICION DE CORRIENTE ALTERNA. Interpretar las características nominales descritas en los instrumentos de medición para AC.

INSTRUMENTOS DE MEDICION DE CORRIENTE ALTERNA. Interpretar las características nominales descritas en los instrumentos de medición para AC. UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE CIRCUITOS ELÉCTRICOS EC 1081 PRACTICA Nº 8 INSTRUMENTOS DE MEDICION DE CORRIENTE ALTERNA Objetivos Interpretar las características

Más detalles

OSCILADORES SENOIDALES

OSCILADORES SENOIDALES 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). OSCILADORES SENOIDALES Objetivo general Verificar el correcto

Más detalles

1. Identificar los distintos modos de vibración de las columnas de aire en tubos abiertos y cerrados.

1. Identificar los distintos modos de vibración de las columnas de aire en tubos abiertos y cerrados. Laboratorio 4 Ondas estacionarias en una columna de aire 4.1 Objetivos 1. Identificar los distintos modos de vibración de las columnas de aire en tubos abiertos y cerrados. 2. Medir la velocidad del sonido

Más detalles

EC1281 LABORATORIO DE MEDICIONES ELÉCTRICAS PRELABORATORIO Nº 4 PRÁCTICA Nº 5 MEDICIONES CON EL OSCILOSCOPIO

EC1281 LABORATORIO DE MEDICIONES ELÉCTRICAS PRELABORATORIO Nº 4 PRÁCTICA Nº 5 MEDICIONES CON EL OSCILOSCOPIO EC1281 LABORATORIO DE MEDICIONES ELÉCTRICAS PRELABORATORIO Nº 4 PRÁCTICA Nº 5 MEDICIONES CON EL OSCILOSCOPIO CONSTRUCCIÓN DE UN CÍRCULO CON UNA SEÑAL SENO Y UNA COSENO IMAGEN EN LA PRESENTACIÓN X - Y FUNCIONES

Más detalles

PRÁCTICA N 6. Cómo influye el factor de atenuación X1 y X10 cuando se realiza una medida?

PRÁCTICA N 6. Cómo influye el factor de atenuación X1 y X10 cuando se realiza una medida? REPUBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DE EDUCACIÓN SUPERIOR INSTITUTO UNIVERSITARIO EXPERIMENTAL DE TECNOLOGÍA DE LA VICTORIA LA VICTORIA ESTADO ARAGUA DEPARTAMENTO DE ELECTRICIDAD LABORATORIO

Más detalles

Laboratorio 1 Medidas Eléctricas - Curso 2018

Laboratorio 1 Medidas Eléctricas - Curso 2018 Objetivo: Laboratorio 1 Medidas Eléctricas - Curso 2018 El objetivo de esta práctica es familiarizarse con el manejo del osciloscopio y los principios fundamentales de su funcionamiento. Materiales del

Más detalles

Práctica 5: Técnicas de Medida con Polímetro, Osciloscopio y Fuentes de señal

Práctica 5: Técnicas de Medida con Polímetro, Osciloscopio y Fuentes de señal DNI APELLIDOS, NOMBRE FECHA GRUPO A - B PROFESOR PRÁCTICAS PUNTUALIDAD LIMPIEZA NOTA: Se recuerda a los alumnos que durante esta sesión deberán demostrar conocimientos en el manejo del polímetro, fuente

Más detalles

EL OSCILOSCOPIO. Funcionamiento y Manejo

EL OSCILOSCOPIO. Funcionamiento y Manejo EL OSCILOSCOPIO. Funcionamiento y Manejo El componente principal de todo osciloscopio es el tubo de rayos catódicos (TRC). Éste, por medio de su pantalla, es capaz de reflejar una imagen que represente

Más detalles

Laboratorio N 3 Estudio de Corriente Alterna y de Inductancias

Laboratorio N 3 Estudio de Corriente Alterna y de Inductancias Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Física FI2003-6 Métodos Experimentales Laboratorio N 3 Estudio de Corriente Alterna y de Inductancias Integrantes: Carlos

Más detalles

Generador de Impulsos Inductivo

Generador de Impulsos Inductivo OSCILOSCOPIO SENSORES Generador de Impulsos Inductivo Está constituido por una corona dentada con ausencia de dos dientes, denominada rueda fónica, acoplada en la periferia del volante o polea, y un captador

Más detalles

PRACTICA Nº 4 EL OSCILOSCOPIO

PRACTICA Nº 4 EL OSCILOSCOPIO PRACTICA Nº 4 EL OSCILOSCOPIO Objetivos Comprender el principio de funcionamiento del osciloscopio analógico y estar en capacidad de identificar los diferentes bloques de controles en los instrumentos

Más detalles

Tema: Parámetros del Cableado Coaxial

Tema: Parámetros del Cableado Coaxial Tema: Parámetros del Cableado Coaxial Contenidos Impedancia característica. Velocidad de propagación. Onda reflejada. Línea de transmisión terminada con cargas. Objetivos Específicos Fundamentos de Cableado

Más detalles

LABORATORIO DE DISPOSITIVOS ELECTRÓNICOS PRÁCTICA N 1 CONOCIMIENTOS DEL EQUIPO Y EL PAQUETE DE SIMULACIÓN

LABORATORIO DE DISPOSITIVOS ELECTRÓNICOS PRÁCTICA N 1 CONOCIMIENTOS DEL EQUIPO Y EL PAQUETE DE SIMULACIÓN LABORATORIO DE DISPOSITIVOS ELECTRÓNICOS 1. TEMA PRÁCTICA N 1 2. OBJETIVOS CONOCIMIENTOS DEL EQUIPO Y EL PAQUETE DE SIMULACIÓN 2.1. Desarrollar en el estudiante suficiente habilidad para que utilice adecuadamente

Más detalles

Ondas estacionarias en una columna de aire

Ondas estacionarias en una columna de aire Laboratorio 4 Ondas estacionarias en una columna de aire 4.1 Objetivos 1. Identificar los distintos modos de vibración de las columnas de aire en un tubo abierto y cerrado. 2. Medir la velocidad del sonido

Más detalles

INTRODUCCIÓN A LAS TÉCNICAS DE MEDIDA

INTRODUCCIÓN A LAS TÉCNICAS DE MEDIDA INTRODUCCIÓN A LAS TÉCNICAS DE MEDIDA Esta documentación tiene como objetivo explicar las técnicas más habituales para realizar medidas en el. Asimismo propone varias recomendaciones para ejecutarlas de

Más detalles

En la figura se muestra la curva correspondiente V. t la figura, la medida de la tensión máxima es inmediata, mientras que la

En la figura se muestra la curva correspondiente V. t la figura, la medida de la tensión máxima es inmediata, mientras que la PRÁCTICA 3 El osciloscopio. Medida de corrientes variables Hasta este momento, hemos estado trabajando con corriente continua, esto es, una corriente eléctrica que se caracteriza por una intensidad constante

Más detalles

1. SUPERPOSICIÓN DE OSCILACIONES

1. SUPERPOSICIÓN DE OSCILACIONES . SUPERPOSICIÓN DE OSCILACIONES. OBJETIVOS Estudiar las características fundamentales del movimiento armónico simple (MAS). Determinar el periodo y la frecuencia en un MAS. Estudiar la superposición de

Más detalles

FS-415 Electricidad y Magnetismo II UNAH. Universidad Nacional Autónoma de Honduras. Facultad de Ciencias Escuela de Física.

FS-415 Electricidad y Magnetismo II UNAH. Universidad Nacional Autónoma de Honduras. Facultad de Ciencias Escuela de Física. Universidad Nacional Autónoma de Honduras Elaborado por: Ing. Francisco Solórzano Asesor: M.Sc. Maximino Suazo Facultad de Ciencias Escuela de Física Magnetostricción I. Objetivo 1. Analizar la respuesta

Más detalles

donde el ángulo de desfase será: ϕ = t d 360 o T

donde el ángulo de desfase será: ϕ = t d 360 o T donde el ángulo de desfase será: ϕ = t d 360 o T Modo de operar con el osciloscopio: Primero vemos como medir la tensión de pico, V P siguiente figura: y la tensión pico a pico, V P P. Siguiendo la Las

Más detalles

CARACTERISTICAS DE LOS DIODOS DE PROPÓSITO GENERAL CIRCUITOS RECTIFICADORES DE MEDIA ONDA Y ONDA COMPLETA

CARACTERISTICAS DE LOS DIODOS DE PROPÓSITO GENERAL CIRCUITOS RECTIFICADORES DE MEDIA ONDA Y ONDA COMPLETA UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS LABORATORIO DE ELECTRÓNICA EC2014 PRACTICA Nº 1 CARACTERISTICAS DE LOS DIODOS DE PROPÓSITO GENERAL CIRCUITOS RECTIFICADORES DE MEDIA ONDA Y ONDA

Más detalles

Universidad Nacional Autónoma de Honduras. Facultad de Ciencias. Escuela de Física

Universidad Nacional Autónoma de Honduras. Facultad de Ciencias. Escuela de Física Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Práctica de FS-415 Tema: Magnetostricción Elaborado por: Ing. Francisco Solórzano Asesor: M. Sc. Maximino Suazo I. OBJETIVOS

Más detalles

Laboratorio Circuitos no Lineales con AO

Laboratorio Circuitos no Lineales con AO Objetivos Laboratorio Circuitos no Lineales con AO Describir cómo funcionan los circuitos activos con diodos. Comprender el funcionamiento de una báscula Schmitt trigger Textos de Referencia Principios

Más detalles

EL VATIMETRO ANALOGICO. CIRCUITOS TRIFASICOS: CONEXION EN ESTRELLA Y EN DELTA.

EL VATIMETRO ANALOGICO. CIRCUITOS TRIFASICOS: CONEXION EN ESTRELLA Y EN DELTA. UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 2286 PRACTICA Nº 8 Objetivos EL VATIMETRO ANALOGICO. CIRCUITOS TRIFASICOS: CONEXION EN ESTRELLA

Más detalles

El VATIMETRO PRUEBAS SOBRE EL TRANSFORMADOR MONOFASICO DE TENSION

El VATIMETRO PRUEBAS SOBRE EL TRANSFORMADOR MONOFASICO DE TENSION UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE CIRCUITOS ELÉCTRICOS EC 1081 PRACTICA Nº 9 El VATIMETRO PRUEBAS SOBRE EL TRANSFORMADOR MONOFASICO DE TENSION Objetivos Usar

Más detalles

Trabajo Practico N 5 Contadores

Trabajo Practico N 5 Contadores Objetivo Trabajo Practico N 5 Contadores Familizarizarse con el principio de funcionamiento del contador y sus controles. Conocer el correcto uso del instrumento para realizar mediciones de forma óptima.

Más detalles

Laboratorio #4 Ley de Ohm

Laboratorio #4 Ley de Ohm Laboratorio #4 Ley de Ohm Objetivo: Estudiar la relación entre la diferencia de potencial V y la intensidad de corriente I en una resistencia eléctrica R conectada en un circuito de corriente continua.

Más detalles

INTEGRADOR Y DERIVADOR

INTEGRADOR Y DERIVADOR 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). INTEGRADOR Y DERIVADOR Objetivo general Verificar el funcionamiento

Más detalles

PRACTICA Nº 1 CONFIGURACIONES BASICAS DEL AMPLIFICADOR OPERACIONAL. * Realizar montajes de circuitos electrónicos sobre el protoboard.

PRACTICA Nº 1 CONFIGURACIONES BASICAS DEL AMPLIFICADOR OPERACIONAL. * Realizar montajes de circuitos electrónicos sobre el protoboard. UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS LAB. CIRCUITOS ELECTRONICOS EC3192 PRACTICA Nº 1 CONFIGURACIONES BASICAS DEL AMPLIFICADOR OPERACIONAL OBJETIVOS * Realizar montajes de circuitos

Más detalles

Verificar experimentalmente la operación teórica del oscilador basado en el puente de Wien.

Verificar experimentalmente la operación teórica del oscilador basado en el puente de Wien. Electrónica II. Guía 6 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales, aula 3.21 (Edificio 3, 2da planta). OSCILADOR DE PUENTE DE WIEN

Más detalles

Electricidad y Medidas Eléctricas II 2012. Departamento de Física Fac. de Cs. Fco. Mát. y Nat. - UNSL. Práctico de Laboratorio N 3

Electricidad y Medidas Eléctricas II 2012. Departamento de Física Fac. de Cs. Fco. Mát. y Nat. - UNSL. Práctico de Laboratorio N 3 Práctico de Laboratorio N 3 Circuito C Serie: Medidas de tensión y corriente, Dierencia de ase, Diagramas de ase. Objetivos: 1. Medir experimentalmente la dierencia de ase entre y C en un circuito serie

Más detalles

Trabajo Práctico 3 Osciloscopio básico

Trabajo Práctico 3 Osciloscopio básico INDICE: 1) Objetivo 2) Diagramas en bloque del osciloscopio 3) Controles del osciloscopio 4) Incertezas del osciloscopio 5) Midamos con el osciloscopio, 6) Modo Vertical XY (figuras de lissajous), 7) Modo

Más detalles

Sesión 6 Instrumentación básica y técnicas de medida

Sesión 6 Instrumentación básica y técnicas de medida Sesión 6 Instrumentación básica y técnicas de medida Componentes y Circuitos Electrónicos Isabel Pérez /José A. Garcia Souto www.uc3m.es/portal/page/portal/dpto_tecnologia_electronica/personal/isabelperez

Más detalles

Oscar Ignacio Botero H. Diana Marcela Domínguez P. SIMULADOR PROTEUS MÓDULO. VIRTUAL INSTRUMENTS MODE: (Instrumentos virtuales)

Oscar Ignacio Botero H. Diana Marcela Domínguez P. SIMULADOR PROTEUS MÓDULO. VIRTUAL INSTRUMENTS MODE: (Instrumentos virtuales) SIMULADOR PROTEUS MÓDULO VIRTUAL INSTRUMENTS MODE: (Instrumentos virtuales) En éste modo se encuentran las siguientes opciones 1. VOLTÍMETROS Y AMPERÍMETROS (AC Y DC) Instrumentos que operan en tiempo

Más detalles

FILTROS ACTIVOS DE PRIMER ORDEN. Objetivo general. Objetivos específicos. Materiales y equipo

FILTROS ACTIVOS DE PRIMER ORDEN. Objetivo general. Objetivos específicos. Materiales y equipo Electrónica II. Guía 4 FILTROS ACTIVOS DE PRIMER ORDEN Objetivo general Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales, aula 3.2 (Edificio

Más detalles

PRINCIPIOS FUNDAMENTALES DE MEDICIONES ELÉCTRICAS INSTRUMENTOS DE MEDICION PARA CORRIENTE DIRECTA (DC)

PRINCIPIOS FUNDAMENTALES DE MEDICIONES ELÉCTRICAS INSTRUMENTOS DE MEDICION PARA CORRIENTE DIRECTA (DC) UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRÓNICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELÉCTRICAS EC 1281 PRACTICA Nº 2 PRINCIPIOS FUNDAMENTALES DE MEDICIONES ELÉCTRICAS INSTRUMENTOS DE MEDICION PARA

Más detalles

INTRODUCCIÓN A LA CORRIENTE ALTERNA. USO DEL OSCILOSCOPIO

INTRODUCCIÓN A LA CORRIENTE ALTERNA. USO DEL OSCILOSCOPIO INTRODUCCIÓN A LA CORRIENTE ALTERNA. USO DEL OSCILOSCOPIO OBJETIVO Estudio de las diferentes partes de un osciloscopio y realización de medidas con este instrumento. Introducción Un osciloscopio consta

Más detalles

Práctica No 0: Parte C El Osciloscopio y el Generador de Señales

Práctica No 0: Parte C El Osciloscopio y el Generador de Señales Universidad Nacional Experimental del Táchira. Departamento de Ingeniería Electrónica. Núcleo de Instrumentación y Control. Bioinstrumentación I Revisada por: Prof. Rafael Volcanes, Prof. Lisbeth Román.

Más detalles

CIRCUITOS RC Y RL OBJETIVO. Parte A: Circuito RC EQUIPAMIENTO TEORÍA

CIRCUITOS RC Y RL OBJETIVO. Parte A: Circuito RC EQUIPAMIENTO TEORÍA CIRCUITOS RC Y RL OBJETIVO Estudiar empíricamente la existencia de constantes de tiempo características tanto para el circuito RC y el RL, asociadas a capacidades e inductancias en circuitos eléctricos

Más detalles

Laboratorio de Electricidad PRACTICA - 9 EL OSCILOSCOPIO. MEDIDAS DE TENSIÓN ALTERNA

Laboratorio de Electricidad PRACTICA - 9 EL OSCILOSCOPIO. MEDIDAS DE TENSIÓN ALTERNA PRACTICA - 9 EL OSCILOSCOPIO. MEDIDAS DE TENSIÓN ALTERNA I - Finalidades 1.- Introducción y uso del osciloscopio. 2.- Efectuar medidas de tensiones alternas con el osciloscopio. alor máximo, valor pico

Más detalles

UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 1281 PRACTICA Nº

UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 1281 PRACTICA Nº UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 1281 PRACTICA Nº 4 Objetivos EL OSCILOSCOPIO Comprender el principio de funcionamiento del osciloscopio

Más detalles

EC1081 LABORATORIO DE CIRCUITOS ELÉCTRICOS PRELABORATORIO Nº 4 EL OSCILOSCOPIO DIGITAL

EC1081 LABORATORIO DE CIRCUITOS ELÉCTRICOS PRELABORATORIO Nº 4 EL OSCILOSCOPIO DIGITAL EC1081 LABORATORIO DE CIRCUITOS ELÉCTRICOS PRELABORATORIO Nº 4 EL OSCILOSCOPIO DIGITAL OSCILOSCOPIO DIGITAL DIAGRAMA DE BLOQUES PANTALLA DEL OSCILOSCOPIO DIGITAL INFORMACIÓN EN LA PANTALLA DEL OSCILOSCOPIO

Más detalles

Introducción. Principio de operación.

Introducción. Principio de operación. Introducción. Las vibraciones mecánicas que tienen una frecuencia superior a los 20 Khz, no son audibles para el ser humano, razón por la cuál se las denomina de Ultrasonido ". Estas vibraciones se generan

Más detalles

USO DE INSTRUMENTOS DE LABORATORIO

USO DE INSTRUMENTOS DE LABORATORIO 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). USO DE INSTRUMENTOS DE LABORATORIO Objetivo General Obtener

Más detalles

CENTRO DE CIENCIA BÁSICA ESCUELA DE INGENIERÍA Curso Electricidad y Magnetismo

CENTRO DE CIENCIA BÁSICA ESCUELA DE INGENIERÍA Curso Electricidad y Magnetismo 1 PRÁCTICA DE LABORATORIO: LEY DE INDUCCIÓN LECTROMAGNÉTICA (Ley de Faraday - Henry) 1. OBJETIVOS: Determinar la relación entre la magnitud de la fuerza electromotriz inducida (f.e.m) y las variables involucradas

Más detalles

EL OSCILOSCOPIO. 2.- Describa el principio básico de presentación de una señal en la pantalla de un osciloscopio.

EL OSCILOSCOPIO. 2.- Describa el principio básico de presentación de una señal en la pantalla de un osciloscopio. UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 1281 PRACTICA Nº 4 Objetivos EL OSCILOSCOPIO Usar adecuadamente el osciloscopio para observar formas

Más detalles

Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción Teórica DIODO DE UNION

Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción Teórica DIODO DE UNION Electrónica I. Guía 1 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). DIODO DE UNION Objetivos generales Identificar

Más detalles

Laboratorio de Microondas, Satélites y Antenas. Práctica #8. Antenas de Microcinta - Enlace de Microondas

Laboratorio de Microondas, Satélites y Antenas. Práctica #8. Antenas de Microcinta - Enlace de Microondas Laboratorio de Microondas, Satélites y Antenas Práctica #8 Antenas de Microcinta - Enlace de Microondas Objetivo Evaluar la ganancia y ancho de haz de una antena de micro-strip Entender los factores determinantes

Más detalles

Práctica 1: Medidas Básicas e Instrumentación

Práctica 1: Medidas Básicas e Instrumentación Práctica 1: Medidas Básicas e Instrumentación Objetivo: Familiarizarse con el uso del multímetro digital, breadboard, power supply, osciloscopio y generador de señales que se encuentran en la mesa de su

Más detalles

INDUCCIÓN ELECTROMAGNÉTICA

INDUCCIÓN ELECTROMAGNÉTICA INDUCCIÓN ELECTROMAGNÉTICA OBJETIVOS: Estudio del fenómeno de autoinducción y de inducción mutua a partir del cálculo de las siguientes magnitudes: 1. El coeficiente de autoinducción, L, de una bobina

Más detalles

CORRIENTE ALTERNA. CIRCUITO RLC. MANEJO DEL OSCILOSCOPIO

CORRIENTE ALTERNA. CIRCUITO RLC. MANEJO DEL OSCILOSCOPIO eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA

Más detalles

PRACTICA Nº 2 CIRCUITOS NO LINEALES CON AMPLIFICADORES OPERACIONALES PREPARACIÓN TEÓRICA

PRACTICA Nº 2 CIRCUITOS NO LINEALES CON AMPLIFICADORES OPERACIONALES PREPARACIÓN TEÓRICA 9 PRACTICA Nº CIRCUITOS NO LINEALES CON AMPLIFICADORES OPERACIONALES PREPARACIÓN TEÓRICA.- INTRODUCCION En diversas situaciones se requiere el empleo de circuitos que modifican en forma no-lineal las señales

Más detalles

Objetivo general. Objetivos específicos. Materiales y equipo CIRCUITOS RECTIFICADORES. Electrónica I. Guía 3 1 / 9

Objetivo general. Objetivos específicos. Materiales y equipo CIRCUITOS RECTIFICADORES. Electrónica I. Guía 3 1 / 9 Electrónica I. Guía 3 1 / 9 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales, aula 3.21 (Edificio 3, 2da planta). CIRCUITOS RECTIFICADORES

Más detalles

Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 4

Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 4 Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 4 CARACTERISTICAS DEL MOSFET, AMPLIFICADOR SOURCE COMUN Objetivo:

Más detalles

CENTRO DE CIENCIA BÁSICA ESCUELA DE INGENIERÍA Curso Electricidad y Magnetismo LEY DE INDUCCIÓN LECTROMAGNÉTICA (Ley de Faraday - Henry)

CENTRO DE CIENCIA BÁSICA ESCUELA DE INGENIERÍA Curso Electricidad y Magnetismo LEY DE INDUCCIÓN LECTROMAGNÉTICA (Ley de Faraday - Henry) 1 LEY DE INDUCCIÓN LECTROMAGNÉTICA (Ley de Faraday - Henry) 1. PROPOSITO: Observar y cuantificar la fuerza electromotriz inducida (femi) en una bobina localizada dentro de un campo magnético producido

Más detalles

Filtros Activos de Segundo Orden

Filtros Activos de Segundo Orden Facultad Escuela Lugar de Ejecución : Ingeniería. : Electrónica : Fundamentos Generales (Edificio 3, 2da planta) Filtros Activos de Segundo Orden Objetivos Específicos Medir las tensiones de entrada y

Más detalles

OSCILOSCOPIO. - Un cañón de electrones que los emite, los acelera y los enfoca. - Un sistema deflector - Una pantalla de observación S

OSCILOSCOPIO. - Un cañón de electrones que los emite, los acelera y los enfoca. - Un sistema deflector - Una pantalla de observación S OSCILOSCOPIO Objetivos - Conocer los aspectos básicos que permiten comprender el funcionamiento del osciloscopio - Manejar el osciloscopio como instrumento de medición de magnitudes eléctricas de alta

Más detalles

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS NAVALES FÍSICA II. PRÁCTICAS DE LABORATORIO Electromagnetismo

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS NAVALES FÍSICA II. PRÁCTICAS DE LABORATORIO Electromagnetismo ESCUELA TÉCNICA SUPERIOR DE INGENIEROS NAVALES FÍSICA II PRÁCTICAS DE LABORATORIO Electromagnetismo ESCUELA TÉCNICA SUPERIOR DE INGENIEROS NAVALES PRÁCTICA 2 CAMPO MAGNÉTICO Y F.E.M. INDUCIDA Jesús GÓMEZ

Más detalles

PRACTICA Nº 3 DIODO ZENER, RECTIFICADOR DE ONDA COMPLETA Y REGULADOR CON ZENER

PRACTICA Nº 3 DIODO ZENER, RECTIFICADOR DE ONDA COMPLETA Y REGULADOR CON ZENER UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS CIRCUITOS ELECTRONICOS I EC1177 PRACTICA Nº 3 DIODO ZENER, RECTIFICADOR DE ONDA COMPLETA Y REGULADOR CON ZENER OBJETIVO Familiarizar al estudiante

Más detalles

PRÁCTICAS INTRODUCCIÓN A LA TECNOLOGÍA DE COMPUTADORES (Curso: 05/06) 1. (Práctica nº 2) Figura 1: Osciloscópio. Figura 2: Generador de Funciones

PRÁCTICAS INTRODUCCIÓN A LA TECNOLOGÍA DE COMPUTADORES (Curso: 05/06) 1. (Práctica nº 2) Figura 1: Osciloscópio. Figura 2: Generador de Funciones PRÁCTICAS INTRODUCCIÓN A LA TECNOLOGÍA DE COMPUTADORES (Curso: 05/06) 1 MANEJO DEL OSCILOSCOPIO (Práctica nº 2) 1. INSTRUMENTOS DE MEDIDA Figura 1: Osciloscópio Figura 2: Generador de Funciones Figura

Más detalles

UTFSM. Figura 1: Tubo de Rayos Catódicos y placas de Deflexión.

UTFSM. Figura 1: Tubo de Rayos Catódicos y placas de Deflexión. Parte I El Osciloscopio. [1] 1. El Tubo de Rayos Catódicos. La unidad básica de representación visual de un osciloscopio es el tubo de rayos catódicos (TRC). Este tubo puede considerarse como una botella

Más detalles

MEDICIONES EN AC CON EL OSCILOSCOPIO EL OSCILOSCOPIO DIGITAL

MEDICIONES EN AC CON EL OSCILOSCOPIO EL OSCILOSCOPIO DIGITAL UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 1281 PRACTICA Nº 8 MEDICIONES EN AC CON EL OSCILOSCOPIO EL OSCILOSCOPIO DIGITAL Familiarizarse

Más detalles

Laboratorio de Electrónica

Laboratorio de Electrónica Listado de materiales: Trabajo Práctico: ectificadores 4 Diodos 1N4001 1 esistencia de 1 KΩ/ ½W Preset 1 KΩ 1 Puente ectificador Integrado. 1 esistencia de 3,9 KΩ/ ½W Cables y herramientas básicas. 1 esistencia

Más detalles