Microcontroladores PIC

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Microcontroladores PIC"

Transcripción

1 Microcontroladores PIC Departamento de Electrónica Fundación San Valero Ventajas Existen varias razones por las cuales conviene utilizar PIC: Por la cantidad de información disponible sobre estos microcontroladores, y es que para las aplicaciones más habituales la elección de una versión adecuada de PIC es la mejor solución. Por su sencillez de manejo, tienen un juego de instrucciones reducido, de 35 en la gama media. Por su precio, que es comparativamente inferior al de sus competidores Por su velocidad y promedio de parámetros en consumo, tamaño, etc. Porque posee gran variedad de herramientas, tanto de software como de hardware, baratas y fáciles de utilizar. 1

2 de los PIC La arquitectura del procesador sigue el modelo Harvard: En esta arquitectura, la CPU se conecta de forma independiente y con buses distintos con la memoria de instrucciones y con la de datos y así permitir su acceso simultaneo. Bus de datos Bus de Instrucciones MEMORIA DE DATOS CPU 8 12 MEMORIA DE INSTRUCCIONES Se aplica la técnica de segmentación ( pipe-line ) en la ejecución de las instrucciones: La segmentación permite al procesador realizar al mismo tiempo la ejecución de una instrucción y la búsqueda del código de la siguiente. De esta forma se puede ejecutar cada instrucción en un ciclo (un ciclo de instrucción equivale a cuatro ciclos de reloj) excepto las instrucciones de salto que ocupan dos ciclos de los PIC El formato de todas las instrucciones es de la misma longitud: Las instrucciones de los microcontroladores de la gama baja tienen una longitud de 12 bits. Las de la gama media tienen 14 bits y más las de la gama alta. Esta característica es muy ventajosa en la optimización de la memoria de instrucciones y facilita enormemente la construcción de ensambladores y compiladores. Procesador RISC (Computador de Juego de instrucciones reducido): Los modelos de la gama baja disponen de un repertorio de 33 instrucciones, 35 los de la gama media y casi 60 los de la alta. Todas las instrucciones son ortogonales: Cualquier instrucción puede manejar cualquier elemento de la arquitectura como fuente o como destino. 2

3 de los PIC Arquitectura basada en un banco de registros: Esto significa que todos los objetos del sistema (puertas de E/S, temporizadores, posiciones de memoria, etc.) están implementados físicamente como registros. Diversidad de modelos de microcontroladores con prestaciones y recursos diferentes: La gran variedad de modelos de microcontroladores PIC permite que el usuario pueda seleccionar el más conveniente para su proyecto. Herramientas de soporte potentes y económicas: La empresa Microchip y otras que utilizan los PIC ponen a disposición de los usuarios numerosas herramientas para desarrollar hardware y software. Son muy abundantes los programadores, los simuladores software, los emuladores en tiempo real, Ensambladores, Compiladores C, Intérpretes y Compiladores BASIC, etc. Las gamas de PIC Gama baja: La gama baja de los PIC encuadra nueve modelos fundamentales en la actualidad. A muchos de estos microcontroladores de gama baja se les llama enanos porque solamente disponen de 8 patillas. La memoria de programa puede contener 512, 1 k. y 2 k palabras de 12 bits, y ser de tipo ROM, EPROM aunque también hay modelos con memoria OTP. La memoria de datos puede tener una capacidad comprendida entre 25 y 73 bytes. Sólo disponen de un temporizador (TMR0), un repertorio de 33 instrucciones y un número de patitas para soportar las E/S comprendido entre 12 y 20. El voltaje de alimentación admite un valor muy flexible comprendido entre 2 y 6,25 V, lo cual posibilita el funcionamiento mediante pilas corrientes teniendo en cuenta su bajo consumo (menos de 2 ma a 5 V y 4 MHz ). 3

4 Las gamas de PIC : Sistema POR (POWER ON RESET): Todos los PIC tienen la facultad de generar un auto reset al conectarles la alimentación. Perro guardián (Watchdog): Existe un temporizador que produce un reset automáticamente si no es recargado antes de que pase un tiempo prefijado. Así se evita que el sistema quede "colgado" dado en esa situación el programa no recarga dicho temporizador y se genera un reset. Código de protección: Cuando se procede a realizar la grabación del programa, puede protegerse para evitar su lectura. Líneas de E/S de alta corriente: Las líneas de E/S de los PIC pueden proporcionar o absorber una corriente de salida comprendida entre 20 y 25 ma, capaz de excitar directamente ciertos periféricos. Las gamas de PIC : Modo de reposo (bajo consumo o SLEEP): Ejecutando una instrucción (SLEEP), la CPU y el oscilador principal se detienen y se reduce notablemente el consumo. Existen dos restricciones importantes de la gama baja y es que la pila solo dispone de dos niveles, lo que supone no poder encadenar más de dos subrutinas y además no admiten interrupciones. Gama Media Admiten interrupciones, poseen comparadores de magnitudes analógicas, convertidores A/D, puertos serie y diversos temporizadores. Disponen de una memoria de instrucciones del tipo OTP que resulta mucho más económica en la implementación de prototipos y pequeñas series. Otros disponen de una memoria de instrucciones tipo EEPROM, que, al ser borrables eléctricamente, son mucho más fáciles de reprogramar que las EPROM, que tienen que ser sometidas a rayos ultravioleta durante un tiempo determinado para realizar dicha operación. 4

5 Las gamas de PIC Gama Alta: Los dispositivos PIC17C4X responden a microcontroladores de arquitectura abierta pudiéndose expansionar en el exterior al poder sacar los buses de datos, direcciones y control. Así se pueden configurar sistemas similares a los que utilizan los microprocesadores convencionales, siendo capaces de ampliar la configuración interna del PIC añadiendo nuevos dispositivos de memoria y de E/S externas. Esta facultad obliga a estos componentes a tener un elevado número de patitas comprendido entre 40 y 44. Admiten interrupciones, poseen puerto serie, varios temporizadores y mayores capacidades de memoria, que alcanza los 8k palabras en la memoria de instrucciones y 454 bytes en la memoria de datos. Microchip ha lanzado varios modelos de microcontroladores de gran potencia y velocidad, y se destinan a aplicaciones muy avanzadas. Con un patillaje que llega desde las 28 hasta las 84 patillas, la memoria de código alcanza las 64k palabras y una frecuencia de 40 MHz. Departamento de Electrónica Fundación San Valero 5

6 del Toda la información que grabamos (memoria de programa y de datos) se puede modificar con el microcontrolador conectado a la aplicación. (ICSP = In-Circuit Serial Programing ). La arquitectura de la CPU es de tipo HARVARD. Filosofía tipo RISC (juego de instrucciones reducido). 35 instrucciones muy simples y todas son ejecutadas en un ciclo, excepto las de salto que emplean dos. Memoria de datos tipo EEPROM. Los ciclos de lectura/escritura se aproximan de veces, manteniendo la información más de 40 años. Memoria de programa tipo FLASH. De iguales prestaciones que la EEPROM pero con mejor rendimiento. Los ciclos de lectura/escritura están en torno a veces. del Protección de programa mediante la activación de un código de protección. Una pila con 8 niveles, para poder controlar los saltos a interrupciones o subrutinas. El TIMER 0 es un contador/temporizador de 8 bits. El WATCHDOG TIMER (WDT), o perro guardián, es un temporizador cuya base de tiempos es independiente, formada por una red R C interna que el microcontrolador posee. Hay 4 posibles fuentes de interrupción internas/externas, las cuales pueden ser habilitadas o deshabilitadas por software. La frecuencia de trabajo máxima puede ser de 10 MHz en el 16F84 y de 20MHz en el 16F84A. 6

7 del Está fabricado en tecnología CMOS, por lo que su consumo es muy reducido: Menos de 2mA trabajando con una alimentación de 5 V a 4 MHz. 15 μa trabajando con una alimentación de 2 V a 5 5 KHz. Sobre 1 μa trabajando en reposo. Amplio margen de la tensión de alimentación, de 2 V a 5 5 V. Alta capacidad de corriente por terminal: 25 ma. Detección de falta de alimentación. del 7

8 Patillaje Patillaje del VDD y VSS: Terminales de alimentación. Puede estar entre 2 y 5 5 V. MCLR: Es el reset principal del PIC (Master Clear). Se produce cuando la tensión en dicho Terminal desciende entre 1 2 y 1 7 V. El fabricante define este reset como Power-on Reset (POR), o reset interno. 0SC1/CLKIN, OSC2/CLKOUT: Terminales para la conexión del oscilador externo, proporcionando la frecuencia de trabajo o frecuencia del reloj principal. El PIC puede funcionar de cuatro formas distintas: RC: El oscilador está construido con una red R C. La frecuencia de oscilación puede ir desde algunas decenas de hercios hasta los 4 MHz. La estabilidad de frecuencia es la menor de las cuatro opciones. En el Terminal OSC2/CLKOUT tendremos la cuarta parte de la frecuencia del oscilador principal. HS: Oscilador de alta frecuencia. Puede utilizarse tanto un cristal de cuarzo como un resonador cerámico. XT: Trabajamos a frecuencias medias. Puede utilizarse un oscilador cerámico como un cristal de cuarzo. LP: Oscilador de bajo consumo. Trabaja con cristales de cuarzo. Patillaje Patillaje del OSC FREC. C1 C2 HS 4 MHz pf pf 10 MHz pf pf XT 100 MHz pf pf 2 MHz pf pf 4 MHz pf pf LP 32 MHz pf pf 200 MHz pf pf RA0 RA4: Terminales de entrada/salida del puerto A. Pueden suministrar una corriente por cada Terminal de 20 ma. Pero la suma de las cinco líneas del puerto A no puede exceder de 50 ma. La corriente absorbida por cada Terminal puede ser de 25 ma, pero la suma de las cinco líneas no puede exceder de 80 ma. El pin RA4 tiene una doble función, seleccionable por programa: Es la entrada del contador/temporizador TMR0 8

9 Patillaje Patillaje del RB0 RB7:Terminales de entrada/salida del puerto B. Pueden suministrar una corriente por cada Terminal de 20 ma. Pero la suma de las ocho líneas no puede exceder de 100 ma. La corriente absorbida por cada línea puede ser de 25 ma. Pero la suma de las ocho líneas no puede exceder de 150 ma. El pin RB0 tiene una doble función, seleccionable por programa: Es la entrada de interrupción externa, es decir INT. Los pines RB4 al RB7 tienen una doble función, seleccionable por programa: Entrada de interrupción externa por cambio de estado. El puerto B tiene una opción, seleccionable por programa, la cual nos permite conectar a cada Terminal una resistencia de alto valor a positivo, esto es, resistencia pull-up (ideal para aplicaciones en lectura de teclados). EL PIC 16F84 SE CARACTERIZA POR DISPONER DE: Procesador segmentado pipeline. Procesador tipo RISC. Disponer de arquitectura tipo HARVARD. Formato de instrucciones ortogonal. Una misma longitud de instrucciones (14 bits). Arquitectura basada en banco de registros. PROCESADOR SEGMENTADO PIPELINE Permite realizar simultáneamente la ejecución de una instrucción y la búsqueda del código de la siguiente instrucción. De esta manera se puede ejecutar una instrucción en un ciclo máquina. Cada ciclo máquina equivale a cuatro ciclos de reloj. 9

10 PROCESADOR TIPO RISC Las CPUs dependiendo del tipo de instrucciones que utilizan pueden clasificarse en: CISC: (Complex Instruction Set Computer): Computadores de juego de instrucciones complejo. Repertorio de instrucciones elevado (unas 80). Algunas muy sofisticadas y potentes. Requieren de muchos ciclos máquina para ejecutar las instrucciones complejas. RISC: (Reduced Instruction Set Computer): Computadores de juego de instrucciones reducido. Repertorio de instrucciones muy reducido (35 en nuestro caso). Son muy simples. Suelen ejecutarse en un ciclo máquina. Los RISC deben tener estructura pipeline y ejecutar todas las instrucciones a la misma velocidad. SISC: (Specific Instruction Set Computer): Computadora de juego de instrucciones específico. ARQUITECTURA VON NEWMAN Dispone de una única memoria principal en la que se almacenan datos e instrucciones. A esta memoria se accede a través de un sistema de buses único: Bus de datos. Bus de direcciones. Bus de control. 10

11 ARQUITECTURA HARVARD Este modelo dispone de dos memorias: Memoria de datos Memoria de programa. Además, cada memoria dispone de su respectivo bus, lo que permite que la CPU pueda acceder de forma independiente y simultánea a la memoria de datos y a la de direcciones. Como los buses son independientes, estos pueden tener distintas direcciones. ARQUITECTURA ORTOGONAL Cualquier instrucción puede utilizar cualquier elemento de la arquitectura como fuente o destino. En la ALU se realizan las operaciones lógico-aritméticas con dos operandos, uno que recibe desde el registro W, que hace las veces de acumulador y otro que puede venir de cualquier registro interno. El resultado de la operación se puede depositar en cualquier registro. Esta funcional da un carácter completamente ortogonal a las instrucciones, posibilitando que los operandos fuente y destino estén ubicados en cualquier registro. 11

12 CICLOS DE INSTRUCCIÓN Si la frecuencia máxima de reloj es de 10 MHz, lo que determina un ciclo de reloj de 100 ns. El ciclo de instrucción, en el que se ejecutan la mayoría de las instrucciones se compone de 4 ciclos de reloj, que a 10 MHz supone una duración de 400 ns por instrucción. En realidad, cada instrucción conlleva dos ciclos de instrucción, el primero destinado a la fase de búsqueda o fetch y el otro a la fase de ejecución o execute. Sin embargo, la estructura segmentada del procesador permite realizar simultáneamente la fase de ejecución de una instrucción y la de búsqueda de la siguiente, por tanto, una instrucción es ejecutada en un ciclo de instrucción, o sea, en cuatro ciclos máquina. CICLOS DE INSTRUCCIÓN 12

13 CICLOS DE INSTRUCCIÓN EJEMPLO Si la frecuencia del reloj principal es de 4 MHz, un ciclo de instrucción tardará en realizarse: T oscilación del reloj principal = 1 / F del reloj principal 1 / 4 MHz = 250 ns. Ciclos de instrucción = T oscilación del reloj principal ns 4 = 1 μs. Si en nuestro programa tenemos unas 100 instrucciones, la ejecución completa tardará: 100 1μs = 100 μs ARQUITECTURA BASADA EN BANCO DE REGISTROS Todos los elementos del sistema, es decir, temporizadores, puertos de entrada / salida, posiciones de memoria, etc., están implementados físicamente como registros. Todos los registros participan activamente en la ejecución de las instrucciones. Es muy importante conocer su manejo al ser ortogonales. 13

14 DIAGRAMA DE BLOQUES DEL PIC 16C84 Y 16F84 Memoria de programa: 1K x 14 bits (EEPROM en el 16C84 y FLASH en el 16F84). Memoria de datos dividida en dos áreas: Área RAM formada por 22 registros de propósito específico (SFR) y 36 de propósito general (GPR) en el 16C84 y 68 registros de propósito general (GPR) en el 16F84. Área EEPROM formada por 64 bytes. ALU de 8 bits y registro de trabajo W del que normalmente recibe un operando que puede ser cualquier registro, memoria, puerto de entrada/salida o el propio código de instrucción. Recursos conectados al bus de datos: PORTA de 5 bits. (RA0..RA4) PORTB de 8 bits. (RA0.RA7) Temporizador con Preescaler TMR0. Contador de programa de 13 bits: Lo que en teoría permitiría direccional 4K de memoria, aunque sólo se dispone de 1K de memoria implementada. ESTRUCTURA DE LA MEMORIA DE DATOS DE LOS PIC 16C84 Y 16F84 14

15 ORGANIZACIÓN DE LA MEMORIA DE DATOS La memoria de datos está dividida en dos zonas claramente diferenciadas: Área RAM estática, compuesta por dos bancos de registros de 128 bytes cada uno, aunque sólo los 80 primeros de cada banco se encuentran implementados físicamente en el PIC. El banco de registros específicos (SFR) compuesto por 24 posiciones tamaño byte, aunque dos de ellas no son operativas. Algunos de los registros específicos se encuentran duplicados en la misma dirección de los dos bancos, para simplificar su acceso. El registro STATUS o ESTADO se encuentra en la posición 03h y 83h. ORGANIZACIÓN DE LA MEMORIA DE DATOS El banco de registros de propósito general (GPR) formado por 68 posiciones de memoria de las que sólo son operativas las 36 posiciones del banco 0, porque los del banco 1 se mapean sobre el banco 0, es decir, cuando se apunta a un registro general del banco 1, se accede al mismo del banco 0. Para seleccionar el banco a acceder hay que manipular el bit 5 (RP0) del registro STATUS. ConRP0 = 0 se accede al banco 0 yconrp0 = 1 se accede al banco 1. Después de un Reset se selecciona automáticamente el banco 0. Área de EEPROM que dispone de 64 bytes donde opcionalmente se pueden almacenar datos que no se pierden al desconectar la alimentación. 15

16 BREVE DESCRIPCIÓN DE CADA UNO DE LOS REGISTROS ESPECIALES INDF: Utilizado en el direccionamiento indirecto, no está implementado físicamente en el microcontrolador. TMR0: Registro en el que tendremos el valor del TIMER 0. PCL: Tendremos los 8 bits de menos peso del contador de programa. STATUS: Contiene información sobre es estado de la ALU y reset, y es utilizado para seleccionar los bancos de la memoria de datos en el direccionamiento directo e indirecto. FSR: Utilizado en el direccionamiento indirecto de la memoria de datos, actúa como puntero. PUERTO A: utilizado para la lectura/escritura en el puerto A. BREVE DESCRIPCIÓN DE CADA UNO DE LOS REGISTROS ESPECIALES PUERTO B: utilizado para la lectura/escritura en el puerto B. EEDATA: Contiene los datos de una posición de la memoria de datos de tipo EEPROM. EEADR: Contiene la dirección de una posición de la memoria de datos de tipo EEPROM. PCLATH: Tendremos los cinco bits de menos peso del contador de programa. INTCON: Contiene información de las interrupciones provocadas por el puerto B, el TIMER 0, el Terminal INT y también la habilitación de dichas interrupciones. OPTION: Configuración del pre-escaler, TIMER 0 y de las interrupciones del Terminal INT y del puerto B. 16

17 BREVE DESCRIPCIÓN DE CADA UNO DE LOS REGISTROS ESPECIALES TRIS A: Registro para la configuración de las líneas del Puerto A como entradas o salidas. TRIS B: Registro para la configuración de las líneas del Puerto B como entradas o salidas. EECON1: Este registro es con el que se controlan los procesos de lectura/escritura en la EEPROM. EECON2: Este registro es utilizado para la realización de la secuencia de grabación de la EEPROM. Puertos I/O PUERTOS DE ENTRADA / SALIDA Disponemos de dos puertos denominados PORTA y PORTB que se encuentran en la posición de memoria SFR 05h y 06h respectivamente del Banco 0. Las líneas de estos puertos se pueden programar individualmente como entrada o como salida. Para configurar como entrada deberemos colocar un 1 en el bit asociado del registro de configuración del puerto. Para configurar como salida deberemos colocar un 0 en el bit asociado del registro de configuración del puerto. Configuración de PORTA en registro TRISA en dirección de memoria 05h del Banco 1. Configuración del PORTB en registro TRISB en dirección de memoria 06h del Banco 1. 17

18 Puertos I/O PUERTOS DE ENTRADA / SALIDA El PORTA: (Dirección 05h del Banco 0). Dispone de 5bits.(RA0 - RA4). Su registro de configuración es el TRISA. (05h del Banco 1) RA0 RA3 admiten niveles TTL de entrada y CMOS de salida. RA4 T0CK1 proporciona una buena inmunidad al ruido. Si se configura como salida es de colector abierto. RA4 multiplexa su función de E/S con la entrada de impulsos externos para TMR0. Cada línea de salida puede suministrar una corriente máxima de 20 ma. (Configuración como salida). Si se configura como entrada puede absorber una corriente máxima de 25 ma. El PORTA tiene una limitación máxima de corriente de absorción cuando está configurado como entrada de 80 ma. en total y de una corriente de salida total máxima de 50 ma. Con un reset todas las líneas quedan configuradas como entradas. Puertos I/O EL PORTB: (Dirección 06h del Banco 0). Formado por 8 líneas de E/S (RB0 RB7). Su registro de configuración es el TRISB. (06h del Banco 1). RB0/INT tiene doble función: E/S del puerto y la de petición de interrupción externa. A todas las líneas de este puerto se les puede conectar una resistencia de pull-up de un valor elevado conectadas a la tensión de alimentación. Para esta operación hay que programar el registro OPTION en el bit RBPU =0, afectando a todas las líneas del puerto. Con un reset todas las líneas quedan configuradas como entradas y se desactivan las resistencias de pull-up. Las líneas RB4 RB7 cuando actúan como entradas, se les puede programar para generar una interrupción si alguna de ellas cambia de estado lógico. Esto es interesante en el control de teclados. El cambio de una de las señales de entrada produce una interrupción que se refleja en el flag RBIF del registro INTCON. En modo de programación la línea RB6 soporta la grabación yelbitrb7 se utiliza como entrada de datos serie. 18

19 Puertos I/O Registros más importantes Puertos I/O 19

20 Puertos I/O Ejemplo de un modelo 20

21 Ejemplo de un modelo Ejemplo de un modelo 21

Características PIC16F84

Características PIC16F84 Departamento de Electrónica Fundación San Valero del Toda la información que grabamos (memoria de programa y de datos) se puede modificar con el microcontrolador conectado a la aplicación. (ICSP = In-Circuit

Más detalles

Sistemas con Microprocesadores I

Sistemas con Microprocesadores I Sistemas con Microprocesadores I 1 Microcontroladores Introducción Harvard vs. von-neumann Clasificación del procesador Segmentado o Pipeline Ortogonal vs. No ortogonal 2 Microcontroladores PIC Siglas

Más detalles

MICROCONTROLADORES PIC16F84 ING. RAÚL ROJAS REÁTEGUI

MICROCONTROLADORES PIC16F84 ING. RAÚL ROJAS REÁTEGUI MICROCONTROLADORES PIC16F84 ING. RAÚL ROJAS REÁTEGUI DEFINICIÓN Es un microcontrolador de Microchip Technology fabricado en tecnología CMOS, completamente estático es decir si el reloj se detiene los datos

Más detalles

MICROCONTROLADORES. 1. El PIC 16F84A es un microcontrolador de: a) 16 bits b) 8 bits c) 4 bits d) 32 bits e) 64 bits

MICROCONTROLADORES. 1. El PIC 16F84A es un microcontrolador de: a) 16 bits b) 8 bits c) 4 bits d) 32 bits e) 64 bits 1. El PIC 16F84A es un microcontrolador de: a) 16 bits b) 8 bits c) 4 bits d) 32 bits e) 64 bits MICROCONTROLADORES 2. La memoria de programa del PIC 16F84A es de tipo: a) ROM b) OTP c) RAM d) EPROM e)

Más detalles

Microcontroladores PIC

Microcontroladores PIC Microcontroladores PIC Procesador RISC. Arquitectura Harvard Pipeline Formato de instrucciones ortogonal Arquitectura basada en banco de registros Distintos periféricos: temporizadores, puertos paralelo/serie,

Más detalles

Microcontroladores ( C)

Microcontroladores ( C) Microcontroladores ( C) Bibliografia: Hoja de datos del PIC 16F84 y 16F628 (www.microchip.com) Microcontroladores PIC: la clave del diseño (biblioteca) Microcontroladores PIC: diseño práctico de aplicaciones

Más detalles

MICROCONTROLADORES PIC BÁSICO (PIC 16F84A / 16F627)

MICROCONTROLADORES PIC BÁSICO (PIC 16F84A / 16F627) MICROCONTROLADORES PIC BÁSICO (PIC 16F84A / 16F627) TEMARIO Objetivo: El estudiante comprenderá la evolución de los microcontroladores y microprocesadores así como sus diferencias, desarrollara su habilidad

Más detalles

Introducción a la arquitectura PIC

Introducción a la arquitectura PIC 18 de septiembre de 2012 Contenido 1 Microprocesadores y Microcontroladores 2 3 4 Microprocesadores y Microcontroladores Microcomputadora consiste básicamente de: Unidad central de procesamiento (CPU),

Más detalles

Elección de un microcontrolador

Elección de un microcontrolador Elección de un microcontrolador Decisión multivariable. No hay un óptimo evidente Factores: Herramientas de desarrollo Base de conocimientos Precio y disponibilidad Familia versátil y en desarrollo Cantidad

Más detalles

Tema 4. Organización de la memoria

Tema 4. Organización de la memoria Tema 4 Organización de la memoria 1 ARQUITECTURA DEL PIC16F84 Tema 4. Organización de la memoria Memoria de programa tipo ROM Flash de 1024 registros de 14 bits Memoria de datos dividida en dos áreas:

Más detalles

Arquitectura de Computadores II

Arquitectura de Computadores II Facultad de Ingeniería Universidad de la República Instituto de Computación Temas Repaso de conceptos Microcontroladores CISC vs RISC CISC Complex Instruct Set Computers RISC Reduced Instruct Set Computers

Más detalles

Taller de Firmware. Introducción al PIC16F877. Facultad de Ingeniería Instituto de Com putación

Taller de Firmware. Introducción al PIC16F877. Facultad de Ingeniería Instituto de Com putación Taller de Firmware Introducción al PIC16F877 Facultad de Ingeniería Instituto de Com putación Contenido Introducción a los microcontroladores PIC. Presentación del PIC 16F877. Introducción a los microcontroladores

Más detalles

TEMA 5 LA MEMORIA DE DATOS MEMORIA RAM D.P.E. DESARROLLO DE PROYECTOS 1

TEMA 5 LA MEMORIA DE DATOS MEMORIA RAM D.P.E. DESARROLLO DE PROYECTOS 1 TEMA 5 LA MEMORIA DE DATOS MEMORIA RAM D.P.E. DESARROLLO DE PROYECTOS 1 Estructura De La Memoria Ram (1) La memoria de datos RAM está dividida en dos partes diferenciadas: 1.- Zona SFR o zona de Registros

Más detalles

UNIVERSIDAD NACIONAL DE COLOMBIA SEDE BOGOTÁ FACULTAD DE INGENIERÍA INGENIERÍA MECATRÓNICA

UNIVERSIDAD NACIONAL DE COLOMBIA SEDE BOGOTÁ FACULTAD DE INGENIERÍA INGENIERÍA MECATRÓNICA UNIVERSIDAD NACIONAL DE COLOMBIA SEDE BOGOTÁ FACULTAD DE INGENIERÍA INGENIERÍA MECATRÓNICA INTRODUCCIÓN AL PIC NOMENCLATURA ARQUITECTURA. TEMPORIZACIÓN. SET DE INSTRUCCIONES. MODOS DE DIRECCIONAMIENTO.

Más detalles

Microcontrolador PIC16F84: Arquitectura

Microcontrolador PIC16F84: Arquitectura Microcontrolador PIC16F84: Arquitectura La arquitectura del PIC es tipo Harvard: Mem. de Programa (instrucciones) (tipo FLASH) Control DIR DATOS µp (tipo RISC, pipeline de 2 etapas) Control DIR DATOS 14

Más detalles

MICROCONTROLADOR PIC DE MICROCHIP

MICROCONTROLADOR PIC DE MICROCHIP MICROCONTROLADOR PIC DE MICROCHIP PIC16F877-28-PIN 8-BIT CMOS FLASH MICROCONTROLLER PIC16F877: ESTRUCTURA INTERNA Bus de Datos Bus de Datos (programa) Registro de trabajo (acumulador) Conversor A/D Contador/Temporizador

Más detalles

UNIVERSIDAD TECNOLÓGICA DE LA MIXTECA. Ingeniería en Electrónica EL MICROCONTROLADOR PIC16F84 PRESENTA: M. C. Felipe Santiago Espinosa

UNIVERSIDAD TECNOLÓGICA DE LA MIXTECA. Ingeniería en Electrónica EL MICROCONTROLADOR PIC16F84 PRESENTA: M. C. Felipe Santiago Espinosa UNIVERSIDAD TECNOLÓGICA DE LA MIXTECA Ingeniería en Electrónica EL MICROCONTROLADOR PIC16F84 PRESENTA: M. C. Felipe Santiago Espinosa Noviembre de 2007 Objetivos 2 Que los participantes adquieran el conocimiento

Más detalles

RECURSOS FUNDAMENTALES

RECURSOS FUNDAMENTALES RECURSOS FUNDAMENTALES Los recursos que se considerarán son : Temporizadores Puertos de E/S La Palabra de Configuración EEPROM de datos 1 TEMPORIZADORES Una labor habitual en los programas de control suele

Más detalles

ARQUITECTURA DEL PIC16F84A

ARQUITECTURA DEL PIC16F84A ARQUITECTURA DEL PIC16F84A Arquitectura interna del PIC16F84A CPU ALU Decodificador de Instrucciones - Buses Registro de trabajo W PC Contador de Programa Organización de la memoria Memoria de Programa

Más detalles

Arquitectura de Computadoras

Arquitectura de Computadoras Arquitectura de Computadoras Dr. Andrés David García García Escuela de Diseño, Ingeniería y Arquitectura Departamento de Mecatrónica 1 Microprocesadores y Periféricos Objetivos: Analizar la arquitectura

Más detalles

INTERIOR DEL PROCESADOR

INTERIOR DEL PROCESADOR 1 INTERIOR DEL PROCESADOR En esta sección se pretende: Conocer la arquitectura y funcionamiento de los microcontroladores de la familia PIC16X8X La organización de su memoria, y Sus registros de funciones

Más detalles

INDICE Capitulo 1. Microcontroladores Programables: La Solución está en un CHIP Capitulo 2. Microcontroladores de 8 BITS: Los <<PIC>>

INDICE Capitulo 1. Microcontroladores Programables: La Solución está en un CHIP Capitulo 2. Microcontroladores de 8 BITS: Los <<PIC>> INDICE Prólogo XIII Capitulo 1. Microcontroladores Programables: La Solución está en un CHIP 1 1.1. Qué es un microcontrolador? 1 1.1.1. Diferencia entre microprocesador y microcontrolador 3 1.4. Arquitectura

Más detalles

Registros SFR vistos hasta ahora: Microcontroladores PIC

Registros SFR vistos hasta ahora: Microcontroladores PIC Registros SFR vistos hasta ahora: Microcontroladores PIC Microcontroladores PIC: Timer Características del Timer TMR0: Cumple básicamente la función de contador de eventos (o divisor de frecuencia). El

Más detalles

MICROCONTROLADOR PIC DE MICROCHIP

MICROCONTROLADOR PIC DE MICROCHIP MICROCONTROLADOR PIC DE MICROCHIP Sistema Microprocesador (varios C.I. en una PCB) Microcontrolador (único C.I.) MICROCONTROLADOR PIC DE MICROCHIP PIC16F877-28-PIN 8-BIT CMOS FLASH MICROCONTROLLER Manuel

Más detalles

PIC 18F45XX CARACTERÍSTICAS GENERALES

PIC 18F45XX CARACTERÍSTICAS GENERALES PIC 18F45XX CARACTERÍSTICAS GENERALES 1. Características generales CPU con arquitectura Harvard (77 instrucciones) Todas las instrucciones constan de 1 sola palabra de 16 bits (2 bytes) excepto las de

Más detalles

2.2-1 Visión Interna PIC16F873/876. SBM

2.2-1 Visión Interna PIC16F873/876. SBM 2.2-1 Visión Interna PIC16F873/876. 1 2.2-2 Visión Interna PIC16F874/877. 2 2.2-3 Sistema de memoria. Tienen arquitectura Harvard, separa la memoria de datos y la memoria de programa, y se accede a ellas

Más detalles

PIC16C5X (GAMA BAJA) Solo en dispositivos de 28 pins. Encapsulado y patillaje:

PIC16C5X (GAMA BAJA) Solo en dispositivos de 28 pins. Encapsulado y patillaje: PIC6C5X (GAMA BAJA) Oscilador RESET SLEEP WatchDog Timer (WDT) Protección de código e IDs Periféricos: Timer/Contador de 8bits (T) con prescaler compartido para WDT o TMR Hasta 3 puertos I/O (RA,RB,RC)

Más detalles

Arquitectura y Periféricos

Arquitectura y Periféricos Arquitectura y Periféricos Departamento de Electrónica Fundación San Valero Características fundamentales: Arquitectura RISC avanzada Harvard: 16- bit con 8- bit de datos. 77 instrucciones Desde 18 a 80

Más detalles

Capítulo 3. Microcontroladores 3.1 Definiciones

Capítulo 3. Microcontroladores 3.1 Definiciones Capítulo 3. Microcontroladores En este capítulo se define el microcontrolador, con una breve semblanza histórica sobre procesadores. Se habla más detenidamente sobre los PICs y se muestran características

Más detalles

ÍNDICE CAPÍTULO 1 FUNDAMENTOS DE LOS MICROCONTROLADORES

ÍNDICE CAPÍTULO 1 FUNDAMENTOS DE LOS MICROCONTROLADORES ÍNDICE CAPÍTULO 1 FUNDAMENTOS DE LOS MICROCONTROLADORES 1.1 Introducción 1.2 Fundamentos de los procesadores digitales secuenciales 1.2.1 Introducción 1.2.2 Arquitectura interna 1.2.2.1 Procesadores digitales

Más detalles

Tema 4 LA MEMORIA DE PROGRAMAS

Tema 4 LA MEMORIA DE PROGRAMAS Tema 4 LA MEMORIA DE PROGRAMAS Introducción (1) Como es habitual en todos los µprocesadores y µcontroladores el programa que se ejecutará,, se encuentra grabado en una memoria no volátil, estando este

Más detalles

Taller de Firmware. Introducción a los Microcontroladores. Facultad de Ingeniería Instituto de Computación

Taller de Firmware. Introducción a los Microcontroladores. Facultad de Ingeniería Instituto de Computación Taller de Firmware Introducción a los Microcontroladores Facultad de Ingeniería Instituto de Computación Contenido Microcontroladores Características del hardware Arquitectura Desarrollo de software Microcontroladores

Más detalles

PANORAMA GENERAL DE LOS µc

PANORAMA GENERAL DE LOS µc PANORAMA GENERAL DE LOS µc Sistemas Digitales II Este tipo de dispositivos en la actualidad se encuentran en los supermercados, artículos electrodomésticos, instrumentos musicales, juguetes, equipo automotriz

Más detalles

Qué es un Microcontrolador?

Qué es un Microcontrolador? Qué es un Microcontrolador? Es un circuito integrado programable que contiene todos los componentes de un computadora, aunque de limitadas prestaciones y se destina a gobernar una sola tarea. Cómo se compone

Más detalles

LOS PIC16F87X. Características Generales. IES Juan de la Cierva (Madrid). Desarrollo de Productos Electrónicos

LOS PIC16F87X. Características Generales. IES Juan de la Cierva (Madrid). Desarrollo de Productos Electrónicos LOS PIC6F87X Características Generales D. de B L O Q U E S Los Pic6F87X Fernando Remiro D. de B L O Q U E S Características () Procesador de arquitectura RISC avanzada Juego de solo 35 instrucciones con

Más detalles

Qué es un Microcontrolador?

Qué es un Microcontrolador? Qué es un Microcontrolador? Es un circuito integrado programable que contiene todos los componentes de un computadora, aunque de limitadas prestaciones y se destina a gobernar una sola tarea. Cómo se compone

Más detalles

Tema: Microprocesadores

Tema: Microprocesadores Universidad Nacional de Ingeniería Arquitectura de Maquinas I Unidad I: Introducción a los Microprocesadores y Microcontroladores. Tema: Microprocesadores Arq. de Computadora I Ing. Carlos Ortega H. 1

Más detalles

xl PIC16F877

xl PIC16F877 4.6.8.- PIC16F877 xl 4.6.9.- PIC 16F84 xli xlii 4.7.- ANEXO3 4.7.1.- El Microcontrolador PIC16F84: Este microcontrolador es un Circuito Integrado Programable o PIC por sus siglas en Inglés: (Programmable

Más detalles

Capítulo 1. Introducción a los PIC de 8 bits

Capítulo 1. Introducción a los PIC de 8 bits Capítulo 1. Introducción a los PIC de 8 bits 1.1 Memorias y Registros Entre los componentes básicos de un microcontrolador podemos definir el contador, sus registros, la memoria, el watchdog timer, el

Más detalles

UNIVERSIDAD TECNICA DE AMBATO NOVENO SEMESTRE INGENIERIA ROBOTICA MICROCONTROLADORES Y SU APLICACION EN ROBOTICA PROFESOR: UTA 2009 ING. G.

UNIVERSIDAD TECNICA DE AMBATO NOVENO SEMESTRE INGENIERIA ROBOTICA MICROCONTROLADORES Y SU APLICACION EN ROBOTICA PROFESOR: UTA 2009 ING. G. MICROCONTROLADORES Y SU APLICACION EN UTA 2009 PROFESOR: ING. G. ALMEIDA SEMESTRE MARZO - JULIO 2009 OBJETIVOS DISTINGUIR LOS ASPECTOS GENERALES, CARACTERISTICAS Y FUNCIONAMIENTO DE UN MICROCONTROLADOR.

Más detalles

Sistemas con Microprocesadores I

Sistemas con Microprocesadores I Sistemas con Microprocesadores I 1 El ambiente de desarrollo MPLAB IDE El Entorno MPLAB IDE Creando código de usuario Creando un Proyecto Selección del Dispositivo y ventana de salida Selección de herramientas

Más detalles

Guía de Aprendizaje. Unidad: Armado y Diseño de Circuitos Digitales.

Guía de Aprendizaje. Unidad: Armado y Diseño de Circuitos Digitales. Guía de Aprendizaje Curso: Tercero Medio B Unidad: Armado y Diseño de Circuitos Digitales. Objetivo: Conocer microcontroladores PIC 16F628A, y su programación en lenguaje C. Contenido: Circuitos Digitales,

Más detalles

PRODUCTO P05 SOFTWARE EMBEBIDO PARA EL CONTROL DEL CIRCUITO GENERADOR DE CORRIENTE DE LAS FORMAS DE ONDAS PARA ELECTROTERAPIA

PRODUCTO P05 SOFTWARE EMBEBIDO PARA EL CONTROL DEL CIRCUITO GENERADOR DE CORRIENTE DE LAS FORMAS DE ONDAS PARA ELECTROTERAPIA PRODUCTO P05 SOFTWARE EMBEBIDO PARA EL CONTROL DEL CIRCUITO GENERADOR DE CORRIENTE DE LAS FORMAS DE ONDAS PARA ELECTROTERAPIA Actividades: A05-1: Elaboración del diagrama de flujo de las funciones de control

Más detalles

PRÁCTICA 4 LOS BITS DE CONFIGURACIÓN DEL PIC16F628

PRÁCTICA 4 LOS BITS DE CONFIGURACIÓN DEL PIC16F628 Los Bits de Configuración del PIC16F628 44 PRÁCTICA 4 LOS BITS DE CONFIGURACIÓN DEL PIC16F628 OBJETIVOS Identificar cada uno de los bits de configuración que rigen el funcionamiento del PIC16F628. Verificar

Más detalles

El PIC16F84. Capítulo 1. Pines y funciones Arquitectura Características especiales El PIC16C84 Compatibilidad con otras familias

El PIC16F84. Capítulo 1. Pines y funciones Arquitectura Características especiales El PIC16C84 Compatibilidad con otras familias Capítulo 1 El PIC16F84 Pines y funciones Arquitectura Características especiales El PIC16C84 Compatibilidad con otras familias Curso avanzado de Microcontroladores PIC 3 4 Curso avanzado de Microcontroladores

Más detalles

Tarjeta entrenadora de microcontrolador PIC16F84.

Tarjeta entrenadora de microcontrolador PIC16F84. Resumen Tarjeta entrenadora de microcontrolador PIC16F84. Omar Ivan Gaxiola Sánchez, Modesto Guadalupe Medina Melendrez, Manuel de Jesús Acosta Portillo, Mijail Romero Delgado, Misael Romero Delgado. INSTITUTO

Más detalles

Contenido MICROCONTROLADORES PIC16F877A Y PIC16F887 / SALVATIERRA. Alfaomega. 3.4 Soporte Muestras... 25

Contenido MICROCONTROLADORES PIC16F877A Y PIC16F887 / SALVATIERRA. Alfaomega. 3.4 Soporte Muestras... 25 Contenido Introducción 1 Parte 1 Conceptos básicos 3 1.0 Componentes de un MCU... 3 1.1 Partes básicas... 3 1.1.1 ALU (Unidad lógica aritmética). 4 1.1.2 I/O (INPUT/OUTPUT)... 4 1.1.3 Memoria (RAM, ROM...

Más detalles

Asignaturas antecedentes y subsecuentes

Asignaturas antecedentes y subsecuentes PROGRAMA DE ESTUDIOS Microprocesadores Área a la que pertenece: Área de Formación Integral Profesional Horas teóricas: 3 Horas prácticas: 2 Créditos: 8 Clave: F0176 Asignaturas antecedentes y subsecuentes

Más detalles

INSTITUTO TECNOLOGICO DEL MAR, Mazatlán

INSTITUTO TECNOLOGICO DEL MAR, Mazatlán INSTITUTO TECNOLOGICO DEL MAR, Mazatlán APUNTES DE LA MATERA DE: MICROPROCESADORES I DEPARTAMENTO DE INGENIERIA ELECTRONICA PROF: ING: RUFINO J. DOMINGUEZ ARELLANO 1.1. CARACTERISTICAS DE LA FAMILIA 51

Más detalles

Microcontroladores. Manual PIC 16F84A. Ingº Luis Alvarado Cáceres

Microcontroladores. Manual PIC 16F84A. Ingº Luis Alvarado Cáceres Microcontroladores Manual PIC 16F84A Ingº Luis Alvarado Cáceres Separata Nº 4 Manual Microcontrolador PIC16F84A Un microcontrolador es un circuito integrado programable que contiene todos los componentes

Más detalles

Contenidos. Arquitectura de ordenadores (fundamentos teóricos) Elementos de un ordenador. Periféricos

Contenidos. Arquitectura de ordenadores (fundamentos teóricos) Elementos de un ordenador. Periféricos Arquitectura de ordenadores (fundamentos teóricos) Representación de la información Estructura de un microprocesador Memorias Sistemas de E/S Elementos de un ordenador Microprocesador Placa base Chipset

Más detalles

CAPÍTULO IV MICROCONTROLADOR PIC

CAPÍTULO IV MICROCONTROLADOR PIC CAPÍTULO IV MICROCONTROLADOR PIC 4.1. HISTORIA DE LOS MICROCONTROLADORES Inicialmente cuando no existían los microprocesadores las personas se ingeniaban en diseñar circuitos electrónicos y los resultados

Más detalles

MICROCONTROLADORES : COMPILADOR MPLAB 16FXX, UNA INTRODUCCION. ING. YESID EUGENIO SANTAFE RAMON DOCENTE PROGRAMA DE INGENIERIA ELECTRONICA

MICROCONTROLADORES : COMPILADOR MPLAB 16FXX, UNA INTRODUCCION. ING. YESID EUGENIO SANTAFE RAMON DOCENTE PROGRAMA DE INGENIERIA ELECTRONICA MICROCONTROLADORES : COMPILADOR MPLAB 16FXX, UNA INTRODUCCION. ING. YESID EUGENIO SANTAFE RAMON DOCENTE PROGRAMA DE INGENIERIA ELECTRONICA [] Tendencias Video Walls & Virtual-Real Meetings In the Office

Más detalles

INTRODUCCIÓN A LOS MICROPROCESADORES Y MICROCONTROLADORES

INTRODUCCIÓN A LOS MICROPROCESADORES Y MICROCONTROLADORES INTRODUCCIÓN A LOS MICROPROCESADORES Y MICROCONTROLADORES TEC Digital ÍNDICE Parte I Microprocesadores Parte II Memorias Parte III Periféricos Parte IV Integración de periféricos, memorias y microprocesadores

Más detalles

Microcontroladores PIC de Microchip: generalidades

Microcontroladores PIC de Microchip: generalidades Microcontroladores PIC de Microchip: generalidades PIC significa Peripheral Interface Controller Los fabrica ARIZONA MICROCHIP TECHNOLOGY. Fábrica principal: Chandler (Arizona). Otras en Tender (Arizona),

Más detalles

ESTRUCTURA BÁSICA DEL µc AT89C51

ESTRUCTURA BÁSICA DEL µc AT89C51 Desde mediados de la década de los 80 s gran parte de los diseños basados en la automatización (electrodomésticos, sencillas aplicaciones Industriales, instrumentación medica, control numérico, etc.) utilizaban

Más detalles

ARQUITECTURA DE VON NEUMANN Y HARVARD

ARQUITECTURA DE VON NEUMANN Y HARVARD ARQUITECTURA DE VON NEUMANN Y HARVARD ARQUITECTURA VON NEUMANN En esta arquitectura se observa que las computadoras utilizan el mismo dispositivo de almacenamiento para datos e instrucciones conectados

Más detalles

MICROCONTROLADORES: FUNDAMENTOS Y APLICACIONES CON PIC. Autores: Fernando E. Valdés Pérez Ramon Pallàs Areny. Título de la obra:

MICROCONTROLADORES: FUNDAMENTOS Y APLICACIONES CON PIC. Autores: Fernando E. Valdés Pérez Ramon Pallàs Areny. Título de la obra: Título de la obra: MICROCONTROLADORES: FUNDAMENTOS Y APLICACIONES CON PIC Autores: Fernando E. Valdés Pérez Ramon Pallàs Areny Composición y preimpresión: Carles Parcerisas Civit (3Q Editorial) Reservados

Más detalles

tarea determinada y, debido a su reducido tamaño, suele ir incorporado en el propio dispositivo al que gobierna.

tarea determinada y, debido a su reducido tamaño, suele ir incorporado en el propio dispositivo al que gobierna. * * Es un circuito integrado programable que contiene todos los componentes de un computadora * Se emplea para controlar el funcionamiento de una tarea determinada y, debido a su reducido tamaño, suele

Más detalles

EVOLUCIÓN HISTÓRICA DE LOS µp

EVOLUCIÓN HISTÓRICA DE LOS µp EVOLUCIÓN HISTÓRICA DE LOS µp El primer procesador fue inventado por los Babilonios en el año 500 ac En 1642 se perfeccionó la primera calculadora por Blas Pascal A mediados del siglo pasado se inventaron

Más detalles

Informática Industrial Parte I

Informática Industrial Parte I Facilitadores MsC. Jesús Pérez A. Dr. Eladio Dapena Gonzalez Contenido Microprocesadores Arquitecturas PIC 2 Dr. Eladio Dapena G / MsC. Jesus Perez.A. 1 3 Dentro del campo de la producción industrial,

Más detalles

Introducción a los microcontroladores. Decanato de Postgrado Mayo de 2011

Introducción a los microcontroladores. Decanato de Postgrado Mayo de 2011 Introducción a los microcontroladores Decanato de Postgrado Mayo de 2011 Microcontroladores aaaaa Un microcontrolador (Micro Controller Unit, MCU), es un circuito integrado programable, construido con

Más detalles

SISTEMAS ELECTRONICOS DIGITALES DIRECCIONAMIENTO DE REGISTROS

SISTEMAS ELECTRONICOS DIGITALES DIRECCIONAMIENTO DE REGISTROS SISTEMAS ELECTRONICOS DIGITALES DIRECCIONAMIENTO DE REGISTROS Las líneas de entrada-salida digitales del PIC16X84 llamadas puertas(puertos), PUERTA A Y PUERTA B, que se denominan PA y PB. En este caso

Más detalles

CONCEPTOS BÁSICOS. + Intensidad

CONCEPTOS BÁSICOS. + Intensidad CONCEPTOS BÁSICOS Si en una frase tuviera que definir que es un microcontrolador, creo que lo más acertado sería definirlo como un controlador de entrada/ salida con capacidad de decisión. Para poder explicar

Más detalles

Microcontroladores PIC

Microcontroladores PIC Microcontroladores PIC 1 Características generales: Arquitectura Harvard, procesador segmentado. Compatibilidad software entre los modelos de la misma gama. Sencillez de uso y herramientas de desarrollo

Más detalles

Microprocesadores, Tema 2:

Microprocesadores, Tema 2: Microprocesadores, Tema 2: Introducción al Microcontrolador PIC18 Guillermo Carpintero, guiller@ing.uc3m.es Universidad Carlos III de Madrid Diagrama de bloques PIC microcontrollers: An introduction to

Más detalles

Universidad Nacional de Ingeniería Arquitectura de Maquinas I. Unidad III: Introduccion a los Microcontroladores PIC MICROCHIP

Universidad Nacional de Ingeniería Arquitectura de Maquinas I. Unidad III: Introduccion a los Microcontroladores PIC MICROCHIP Universidad Nacional de Ingeniería Arquitectura de Maquinas I Unidad III: Introduccion a los Microcontroladores PIC MICROCHIP Qué es un Microcontrolador? Es un circuito integrado que incluye en su interior

Más detalles

I - Oferta Académica Materia Carrera Plan Año Período PROCESADORES I ING.ELECT.O.S.D 13/ cuatrimestre 15/13 -CD

I - Oferta Académica Materia Carrera Plan Año Período PROCESADORES I ING.ELECT.O.S.D 13/ cuatrimestre 15/13 -CD Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ciencias Físico Matemáticas y Naturales Departamento: Fisica Area: Area V: Electronica y Microprocesadores (Programa del año

Más detalles

TUTORIAL II parte A. Observemos el diagrama de pines del microcontrolador 16F877A:

TUTORIAL II parte A. Observemos el diagrama de pines del microcontrolador 16F877A: 1 TUTORIAL II parte A OBJETIVOS Conocer el manejo de puertos del microcontrolador 16F877A, registros TRIS y PORT. Familiarizarse con las principales instrucciones del lenguaje y la estructura de un programa

Más detalles

INDICE Programa Entrada Unidad de control Unidad aritmética y lógica (ALU)

INDICE Programa Entrada Unidad de control Unidad aritmética y lógica (ALU) INDICE Capitulo 1. Qué es un computador? 1.1. Introducción 1 1.2. El computador como dispositivo electrónico 2 1.3. Cómo se procesa la información? 3 1.4.Diagrama de bloques de un computador 1.4.1. Información

Más detalles

Memoria ROM. Circuitos de interfaz. Figura 1.

Memoria ROM. Circuitos de interfaz. Figura 1. 1.- Introducción a los Microcontroladores. 1.1.- Introducción. El microcontrolador nace cuando las técnicas de integración han progresado lo bastante para permitir su fabricación; pero también porque,

Más detalles

Características Técnicas del PIC 16F84

Características Técnicas del PIC 16F84 Características Técnicas del PIC 16F84 Repertorio de 35 Instrucciones. Todas las instrucciones se ejecutan en un solo ciclo excepto las de salto que necesitan dos. Versiones de 4 MHz (PIC16F84-04) y 10

Más detalles

ÍNDICE INTRODUCCIÓN...17

ÍNDICE INTRODUCCIÓN...17 ÍNDICE INTRODUCCIÓN...17 CAPÍTULO 1. MICROCONTROLADORES...19 1.1 MICROCONTROLADOR...19 1.1.1 Controlador y microcontrolador...19 1.1.2 Diferencia entre microprocesador y microcontrolador...21 1.1.3 Aplicaciones

Más detalles

- FUNDAMENTOS TEÓRICOS - EJEMPLOS DE APLICACIÓN. 09/01/2009 Ing. José A. Picón - - (0416)

- FUNDAMENTOS TEÓRICOS - EJEMPLOS DE APLICACIÓN. 09/01/2009 Ing. José A. Picón -  - (0416) MICROPROCESADORES Y MICROCONTROLADORES - FUNDAMENTOS TEÓRICOS - EJEMPLOS DE APLICACIÓN 09/01/2009 Ing. José A. Picón - www.joseapicon.com.ve - (0416) 9519990 Informes de Laboratorio Entregar informe con

Más detalles

La Familia del Microcontrolador 8051

La Familia del Microcontrolador 8051 La Familia del Microcontrolador 8051 Generalidades de la familia del 8051 Es uno de los µc s más viejos (Intel MCS-51 en 1981) y probablemente el más popular, ya que ha sido comercializado por un gran

Más detalles

II) MICROCONTROLADORES

II) MICROCONTROLADORES II) MICROCONTROLADORES 1- Descripción y Características Son dispositivos electrónicos digitales sincrónicos programables que para funcionar necesitan, además de alimentación y señales externas, un programa,

Más detalles

Programación y diseño de dispositivos mediante Microcontroladores PIC.

Programación y diseño de dispositivos mediante Microcontroladores PIC. Microcontroladores - Robots - Automatismos - Programación Programación y diseño de dispositivos mediante Microcontroladores PIC. Dr. Eugenio Martín Cuenca Ing. Jose María Moreno Balboa Facultad de Ciencias.

Más detalles

CAPITULO 4. LOS DSPs

CAPITULO 4. LOS DSPs LOS DSPs 4 Los DSPs 4.1 Introducción Los procesadores digitales de señales (DSPs) pueden ser de naturaleza programable o dedicada. Los procesadores de señales programables permiten flexibilidad de implementación

Más detalles

Lenguaje Ensamblador sobre PIC 16F84

Lenguaje Ensamblador sobre PIC 16F84 Lenguaje Ensamblador sobre PIC 16F84 Roberto Vargas Toledo Iván Figueroa Monsalve El presente trabajo se nos muestra la programación de ensamblador orientada a la programación de PIC 16F84, microcontrolador

Más detalles

Preguntas claves (y sus respuestas)

Preguntas claves (y sus respuestas) 1 Preguntas claves (y sus respuestas) Qué es un microprocesador? Es un Circuito Integrado Secuencial Síncrono Qué necesita para funcionar? Qué hace? Para qué? Una tensión continua estable (5V, 3.3V, 2.5V,

Más detalles

Capítulo 2. Microcontroladores: Características y aplicaciones generales

Capítulo 2. Microcontroladores: Características y aplicaciones generales 1. Definición Capítulo 2. Microcontroladores: Características y aplicaciones generales Recibe el nombre de controlador el dispositivo que se emplea para el gobierno de uno o varios procesos. Por ejemplo,

Más detalles

Señales de interfase del Z80

Señales de interfase del Z80 Señales de interfase del Z80 El microprocesador Z80 está integrado en una pastilla de 40 pines. Estos terminales pueden agruparse funcionalmente como muestra la figura: Bus de direcciones El bus de direcciones

Más detalles

Microchip Tips & Tricks...

Microchip Tips & Tricks... ARTICULO TECNICO Microchip Tips & Tricks... Por el Departamento de Ingeniería de EduDevices. TIP Nº 21 TIMER 1 de Bajo Consumo (Low Power). Las aplicaciones que requieran que el Timer1 tenga un cristal

Más detalles

Contenidos: Definiciones:

Contenidos: Definiciones: Contenidos: Definiciones. Esquema de un ordenador. Codificación de la información. Parámetros básicos de un ordenador. Programas e instrucciones. Proceso de ejecución de una instrucción. Tipos de instrucciones.

Más detalles

TEMA 4 ESTRUCTURA VON-NEUMANN DEL COMPUTADOR DIGITAL

TEMA 4 ESTRUCTURA VON-NEUMANN DEL COMPUTADOR DIGITAL TEMA 4 ESTRUCTURA VON-NEUMANN DEL COMPUTADOR DIGITAL 1. ESTRUCTURA GENERAL DE UN COMPUTADOR VON-NEUMANN. Unidad de memoria (UM) Unidad Aritmético Lógica (UAL) Unidad de control (UC) Buses. Unidades de

Más detalles

Sistemas de Computadoras

Sistemas de Computadoras Sistemas de Computadoras Índice Concepto de Computadora Estructura de la Computadora Funcionamiento de la Computadora Historia de las Computadoras Montando una Computadora Computadora Un sistema de cómputo

Más detalles

MICROCONTROLADORES PIC

MICROCONTROLADORES PIC MICROCONTROLADORES PIC LOS TIMER DE LOS 16F87x TEMA EL TIMER 1 CCFF D.P.E. MÓDULO DE PROYECTOS 1 Diagrama de Bloques del TIMER1 CCFF D.P.E. MÓDULO DE PROYECTOS 2 INTRODUCCIÓN El módulo TIMER1 es un temporizador/contador

Más detalles

B) Arquitectura generalizada de una computadora

B) Arquitectura generalizada de una computadora Microprocesadores B) Arquitectura generalizada de una computadora LAS COMPONENTES PRINCIPALES UNA MICROCOMPUTADORA SON: La Unidad Central de Procesamiento,CPU constituido por el Microprocesador Microprocesadores

Más detalles

Arquitectura (Procesador familia 80 x 86 )

Arquitectura (Procesador familia 80 x 86 ) Arquitectura (Procesador familia 80 x 86 ) Diseño de operación Basada en la arquitectura Von Newman Memoria CPU asignadas direcciones I / O BUS: Es un canal de comunicaciones Bus de direcciones: Contiene

Más detalles

Sistema de Desarrollo para el Microcontrolador PIC18F452

Sistema de Desarrollo para el Microcontrolador PIC18F452 ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIÓN Sistema de Desarrollo para el Microcontrolador PIC18F452 Alumno: Andrés Valverde Villarán Tutora: Carmen Aracil Fernández Sevilla,

Más detalles

ORGANIZACIÓN DE LA MEMORIA

ORGANIZACIÓN DE LA MEMORIA Existen dos tipos de memoria en todos los µc, memoria de programa y memoria de datos. La primera (EPROM, EEPROM, FLASH, etc) contiene los códigos de operación que se ejecutarán para seguir una secuencia

Más detalles

Tema 2 INTRODUCCION A LOS MICROCONTROLADORES

Tema 2 INTRODUCCION A LOS MICROCONTROLADORES Tema 2 INTRODUCCION A LOS MICROCONTROLADORES 1 2.1 Introducción 2.2 Características 2.3 Los microcontroladores más utilizados 2.4 Lenguajes de programación 2.5 Herramientas de desarrollo 2 2.1. Introducción

Más detalles

Lógica cableada: Lógica programada:

Lógica cableada: Lógica programada: 1-1 Lógica cableada: Circuitos vistos en Diseño Lógico (Combinatoria, Modo reloj, RTL, ) Función fija determinada en el momento del diseño por las conexiones físicas entre los componentes del circuito

Más detalles

II:~~~~~ INTRODUCCION ALOSMICRO- CONTROLADORES RISC. -PIC DE MICROCHIPS- INTRODUCOÓN. Resumen

II:~~~~~ INTRODUCCION ALOSMICRO- CONTROLADORES RISC. -PIC DE MICROCHIPS- INTRODUCOÓN. Resumen , INTRODUCCION ALOSMICRO- CONTROLADORES RISC. -PIC DE MICROCHIPS- Tito Flórez C. Departamento de Ingeniería de Sistemas. Universidad Nacional de Colombia. Resumen Los microcontroladores han prestado una

Más detalles

Microcontroladores. Unidad 1

Microcontroladores. Unidad 1 Microcontroladores Unidad 1 1.1 Conceptos básicos Ordenador o Computadora Sistema de calculo de propósito general que incorpora una unidad central de proceso, memoria y dispositivos de entrada y salida.

Más detalles

Vista de Alto Nivel del Funcionamiento del Computador Interconectividad

Vista de Alto Nivel del Funcionamiento del Computador Interconectividad Vista de Alto Nivel del Funcionamiento del Computador Interconectividad Del capítulo 3 del libro Organización y Arquitectura de Computadores William Stallings Concepto de Programa Sistemas cableados son

Más detalles

PIC16F882/883/884/886/887 4 MÓDULO DEL OSCILADOR (CON EL FAIL-SAFE CLOCK MONITOR) 4.1. Apreciación Global

PIC16F882/883/884/886/887 4 MÓDULO DEL OSCILADOR (CON EL FAIL-SAFE CLOCK MONITOR) 4.1. Apreciación Global 4 MÓDULO DEL OSCILADOR (CON EL FAIL-SAFE CLOCK MONITOR) 4.1. Apreciación Global El módulo del Oscilador tiene una gran variedad de fuentes del reloj y características de la selección que le permiten ser

Más detalles

Sistema electrónico digital (binario) que procesa datos siguiendo unas instrucciones almacenadas en su memoria

Sistema electrónico digital (binario) que procesa datos siguiendo unas instrucciones almacenadas en su memoria 1.2. Jerarquía de niveles de un computador Qué es un computador? Sistema electrónico digital (binario) que procesa datos siguiendo unas instrucciones almacenadas en su memoria Es un sistema tan complejo

Más detalles

Programación y diseño de dispositivos mediante microcontroladores PIC

Programación y diseño de dispositivos mediante microcontroladores PIC Metodología de Programación, Programación en C, Aplicaciones electrónicas 1 / 7 Programación y diseño de dispositivos mediante microcontroladores PIC Hemos elegido el microcontrolador PIC16F84 por las

Más detalles