Qué onda con las ondas gravitacionales? Una explicación sin ecuaciones. Dra. Rosa Martha Torres 27.mar.20181

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Qué onda con las ondas gravitacionales? Una explicación sin ecuaciones. Dra. Rosa Martha Torres 27.mar.20181"

Transcripción

1 Qué onda con las ondas gravitacionales? Una explicación sin ecuaciones 27.mar.20181

2 El estudio de la astronomía Surgió hace miles de años Las antiguas civilizaciones ya tenían registros astronómicos y eran capaces de predecir ciertos sucesos, como los eclipses solares Debido a que en aquellos tiempos todavía no se había inventado el telescopio, las observaciones eran hechas a simple vista, es decir, sólo teníamos la información de la luz visible que los ojos eran capaces de captar La luz es una onda electromagnética 2

3 Ondas Una onda se determina según la velocidad a la que viaja (v) y su longitud de onda ( ), o frecuencia ( ) Las ondas sonoras se desplazan a una velocidad de 330 m/s en aire La luz, al igual que el resto de las ondas electromagnéticas, viaja a aproximadamente 300,000 km/s, es decir, a la velocidad de la luz (c) 3

4 Elementos de una onda Un ciclo = distancia entre cresta y cresta Cresta Velocidad Línea de equilibrio Amplitud = longitud de onda Valle 4

5 El tamaño de una onda La nos dice cuánto mide una onda Es la longitud entre una cresta y otra, o entre un valle y el siguiente Las unidades de son los metros Una manera similar de medir el tamaño de una onda sería midiendo su frecuencia ( ), o dicho de otra manera, medir cuántas crestas o valles pasan por un punto en un segundo de tiempo Las unidades de son los Hertz (1/s) 5

6 Definición de onda Las ondas son PERTURBACIONES Y transportan ENERGÍA 6

7 Ondas electromagnéticas La luz visible son ondas electromagnéticas y las ondas de radio también lo son La diferencia entre la luz visible y las ondas de radio es que la luz visible tiene una metros, mientras que las ondas de radio tienen una 100 metros 7

8 Espectro electromagnético La luz visible forma parte del espectro electromagnético El espectro electromagnético está conformado por ondas con diferentes longitudes de onda, o frecuencias Las partes en las que está dividido el espectro electromagnético son (de mayor a menor longitud de onda): Ondas de radio: mayores que 187 mm Microondas : de mm Infrarrojo: de 1 mm a 750 nm (1nm = 1x10-9 m) Visible: de nm Ultravioleta: de nm Rayos X: de nm Rayos gamma: menores que 0.01 nm 8

9 Espectro electromagnético 9

10 Observaciones en el visible La astronomía nació con observaciones hechas en el visible, y sin ayuda de ningún instrumento Posteriormente en 1609 Galileo usó un telescopio para apuntar al cielo y le permitió observar objetos celestes Con la ayuda del telescopio lograba ver imágenes más nítidas y de objetos tan tenues que no se alcanzaban a observar a simple vista 10

11 Telescopio de Galileo 11

12 Con el paso del tiempo En los siglos siguientes, la astronomía siguió basándose en el estudio de la luz visible que emitían los objetos celestes La calidad de los telescopios iba mejorando con el tiempo El resto del espectro electromagnético seguía sin ser estudiado, ya que no existían los instrumentos necesarios para hacerlo Fue hasta la Segunda Guerra Mundial cuando fue inventado el radar, dispositivo para localizar y determinar distancias a objetos, como aviones y barcos Al terminar la guerra el radar fue usado para estudiar las ondas de radio provenientes del espacio Es así como se empezó a estudiar otra parte del espectro electromagnético dentro de la astronomía 12

13 Ondas de radio El estudio de las ondas de radio causó una revolución astronómica, ya que la información que éstas nos proveen es completamente diferente a la que podemos adquirir mediante el estudio de la luz visible Por ejemplo, los pulsares (estrellas de neutrones que emiten radiación periódica) fueron descubiertos gracias al estudio de las ondas de radio 13

14 Radiotelescopios 14

15 Observaciones actuales Actualmente se hacen observaciones en todas las bandas del espectro electromagnético Telescopio Espacial Spitzer en el infrarrojo Telescopio Espacial Hubble en luz visible Telescopio Espacial Galex en el ultravioleta Telescopio Espacial Chandra en rayos-x Telescopio Espacial Fermi en rayos gama El estudio en cada banda nos da información diferente sobre el objeto estudiado, ampliando así nuestro conocimiento sobre el universo 15

16 Einstein En 1915 Einstein publicó su trabajo sobre Relatividad General, diez años después de haber publicado su trabajo sobre Relatividad Especial En ambos trabajos se considera que el tiempo es una dimensión más en el espacio, es decir, se introdujo el concepto de espacio-tiempo A grandes rasgos, la diferencia entre la Relatividad Especial y la General es que en la primera no se considera el efecto de la fuerza de gravedad, y en la segunda sí 16

17 Velocidad de la luz (c) El primer postulado de la Relatividad Especial nos dice que la velocidad de la luz es la misma para cualquier observador Usando esta idea se deduce que no existe nada (ningún objeto o ningún tipo de señal) que pueda moverse más rápido que la velocidad de la luz (c 300,000 km/s) 17

18 Espacio-tiempo Por otro lado, la Relatividad General explica que el espacio-tiempo se curva debido a la presencia de objetos con masa Imaginemos que por ejemplo el Sistema Solar es una sábana extendida Si colocamos una esfera pesada sobre la sábana, su superficie se deformará c 18

19 Una masa alrededor de otra Si ahora lanzamos una esfera más pequeña y menos pesada, ésta permanecerá girando alrededor de nuestra esfera masiva Esto es lo mismo que ocurre con el Sol y la Tierra c 19

20 Masas bailando Si movemos a la esfera masiva, este movimiento será propagado a través de la sábana en forma de ondas, como cuando lanzamos una roca a un lago c 20

21 Ondas gravitacionales Este tipo de ondas son predichas en la Relatividad General de Einstein, y son llamadas ondas gravitacionales La Relatividad General también predice que las ondas gravitacionales, como las ondas electromagnéticas, se mueven a la velocidad de la luz Lo único que puede viajar a esta velocidad es las partículas sin masa, la luz y las ondas gravitacionales Aunque en principio puedan parecernos fenómenos iguales, el origen de las ondas electromagnéticas es completamente diferente al de las ondas gravitacionales 21

22 Ondas EM y gravitacionales Las ondas electromagnéticas se generan debido al movimiento de partículas cargadas aceleradas en presencia de un campo electromagnético Las ondas gravitacionales se generan debido al movimiento de grandes cantidades de masa en el espacio-tiempo Un objeto estático, por muy masivo que sea, no generará ondas gravitacionales Para su generación se requiere de que los objetos con masa se muevan 22

23 La fuerza gravitacional Es tan débil, que es muy difícil detectar fluctuaciones producidas por ella, a menos de que se trate de objetos muy masivos Algunos de los objetos que se espera generen una cantidad detectable de ondas gravitacionales son las explosiones de supernova, en las que una gran cantidad de masa es redistribuida; en los sistemas binarios de estrellas; en la formación de un agujero negro; en los choques de dos agujeros negros 23

24 La fuerza de gravedad Si dos personas empezaran a bailar uno alrededor del otro, también se crearían oscilaciones en el tejido del espacio-tiempo, pero estas serían extremadamente pequeñas y prácticamente indetectables La gravedad es muy débil en las escalas de las otras fuerzas del Universo, así que se necesita algo muy masivo y moviéndose muy rápido para crear las distorsiones que nosotros podemos detectar 24

25 Más o menos como una cama de agua No crean ondas: una masa pequeña, una masa grande, dos masas pequeñas moviéndose Sí crean ondas: dos masas grandes moviéndose 25

26 Radiación gravitacional La radiación gravitacional liberada por un sistema binario hace que el sistema pierda energía, o más bien dicho, que la energía sea transportada por las ondas Cuando las estrellas se encuentran muy separadas y se mueven lentamente, la radiación gravitacional que liberarán será muy baja Sin embargo, al irse encogiendo la órbita, más radiación es liberada, la energía se pierde más rápidamente y la órbita se encoge cada vez más 26

27 Dos estrellas de neutrones Si tenemos un sistema formado por dos estrellas de neutrones, la colisión entre las estrellas se dará cuando la separación sea de 20 km aproximadamente, y cada una se estará moviendo a 1/3 de la velocidad de la luz, debido a la atracción gravitacional de su compañera Las ondas gravitacionales generadas en estos casos tendrán típicamente frecuencias de 500 a 1000 Hz o 600 a 300 km: del tamaño de las ondas de radio 27

28 Dos estrellas de neutrones 28

29 Dos agujeros negros Cuando dos agujeros negros chocan, se unen formando un solo agujero negro Es durante el choque de los dos agujeros negros cuando se genera una cantidad importante de ondas gravitacionales Ya que los agujeros son muy grandes (pueden llegar a tener 2.5 millones de veces la masa del Sol), podemos suponer que chocarán cuando su separación sea de unos 30 millones de km, y la frecuencia característica de las ondas será de 1 mhz o 300,000,000 km: más grandes que las ondas de radio 29

30 Choque agujeros negros 30

31 Ondas gravitacionales La última gran diferencia entre ondas gravitacionales y electromagnéticas es que la radiación electromagnética es fácilmente absorbida por la materia en general Esto hace que la información que recibimos por medio de las ondas electromagnéticas esté distorsionada debido a la interacción de las ondas con la materia En cambio, las ondas gravitacionales atraviesan la materia sin verse afectadas por la presencia de ésta 31

32 Ondas gravitacionales Es por esto que detectar ondas gravitacionales es como recibir información invaluable sobre nuestro universo Probablemente estamos en el comienzo de una revolución astronómica comparable o mayor a la ocurrida cuando se dio el estudio de los objetos celestes en otras bandas del espectro electromagnético distintas a la luz visible 32

33 Cómo detectarlas? Si el espacio entre dos personas se estirase o se contrajera nadie notaría nada aunque entre ambas hubiera marcas situadas a igual distancia, porque estas marcas también se estirarían en esa malla c 33

34 Cómo detectarlas? Si el espacio entre dos puntos se estira, entonces la luz tarda más tiempo en ir de un punto a otro Y si el espacio se contrae, la luz tarda menos tiempo en cruzar los dos puntos c 34

35 LIGO Y es aquí donde entra en juego el experimento LIGO (Laser Interferometer Gravitational Wave Observatory) c 35

36 LIGO Hanford 36

37 LIGO Livingston 37

38 LIGO 38

39 LIGO 39

40 Ondas gravitacionales Si una onda gravitacional llega a la Tierra, se sentiría más o menos así (exagerando) 40

41 Ondas gravitacionales Lo que haría la onda es encoger y estirar los túneles de LIGO Para medir ese encogimiento y estiramiento, LIGO usa láseres que miden la distancia del túnel El instrumento se llama interferómetro porque mide la interferencia de la luz que viaja por un túnel y otro 41

42 Información de la onda La forma de la onda (lo que hace la onda) nos indica si se trata de una explosión de supernova o si se trata de una colisión de agujeros negros La intensidad de la onda nos dice del lugar que viene la onda, por ejemplo, si es muy débil entonces viene de muy lejos Y el tiempo de diferencia entre Hanford y Livingston nos dice la dirección que lleva la onda 42

43 Interferencia con LIGO 43

44 Simulación choque agujeros negros 44

45 Señal detectada con LIGO 45

46 De qué es la señal? La señal corresponde a los momentos finales, los últimos 0.2 segundos, en la colisión de un par de agujeros negros de 26 y 36 masas solares 46

47 De dónde proviene la señal? Es complicado saberlo LIGO lo que puede decirnos es en qué zona del cielo más o menos se encuentra 47

48 De dónde proviene la señal? 48

49 De dónde proviene la señal? 49

50 Onda para una supernova La onda gravitacional para una explosión de supernova o para dos estrellas de neutrones es diferente que para la colisión de dos agujeros negros c 50

51 Observatorios de ondas gravitacionales LIGO E. U. VIRGO Francia e Italia Geo 600 Alemania y Reino Unido TAMA 300 Japón 51

52 Observatorio LISA 52

53 Einstein Este descubrimiento es la prueba más contundente de la Teoría de la Relatividad General de Einstein 53

54 Ondas gravitacionales El estudio de ondas gravitacionales complementa al estudio que se ha hecho hasta el momento del Universo en el espectro electromagnético Esto es debido a que mediante las ondas gravitacionales se pueden estudiar fenómenos que son imposibles de observar mediante fotones Esto se debe a que las ondas gravitacionales nacen en zonas de muy alta densidad, lo que las hacen ser opacas a los fotones (los fotones no las pueden atravesar) En cambio, los fotones se producen en regiones tenues, donde no se producen ondas gravitacionales 54

55 Por qué no se ha conseguido antes? La precisión requerida es brutal Para el caso de agujeros negros, detectar una onda gravitacional es necesario poder decir cuándo algo ha cambiado en su longitud en unas pequeñas partes de 1023 Es como poder determinar que una barra de metros de longitud (10 veces más grande que la Galaxia) ha encogido sólo 5 mm El efecto de una onda gravitacional es tan minúsculo y tan fácilmente confundible con el ruido en el Universo que se necesita de una inteligente técnica de análisis de datos para llegar a ella Es como intentar identificar una canción que se susurra en una fiesta muy ruidosa desde el otro extremo de la sala 55

56 Por qué es importante el descubrimiento? Imagina que toda tu vida has estado sordo hasta un día en el que vuelves a recuperar este sentido Podrías explorar el mundo de una nueva forma gracias a tu nueva capacidad Esa es la razón de por qué detectar ondas gravitacionales es tan importante Supone una manera completamente nueva de estudiar el Universo Siempre que existe una nueva forma de observar el Universo descubrimos cosas que no esperábamos, cosas que no sabíamos que existían, y examinamos los límites de nuestro conocimiento de la física, testando nuestras actuales teorías sobre cómo funciona el mundo que nos rodea en el espacio 56

57 Fin 57

Midiendo la longitud de onda de la luz de un láser. Reyna Araceli Duarte Quiroga J. Zacarías Malacara H. Centro de Investigaciones en Óptica, A. C.

Midiendo la longitud de onda de la luz de un láser. Reyna Araceli Duarte Quiroga J. Zacarías Malacara H. Centro de Investigaciones en Óptica, A. C. Midiendo la longitud de onda de la luz de un láser. Reyna Araceli Duarte Quiroga J. Zacarías Malacara H. Centro de Investigaciones en Óptica, A. C. La luz del láser El láser, inventado en el año de 1960.

Más detalles

Origen y evolución inicial del Universo: Los mensajeros cósmicos

Origen y evolución inicial del Universo: Los mensajeros cósmicos Real Academia de Ciencias, Bellas Artes y Buenas Letras Luis Vélez de Guevara de Écija Origen y evolución inicial del Universo: Los mensajeros cósmicos Francisco González de Posada Écija, 11 de diciembre

Más detalles

POR PRIMERA VEZ UN FENÓMENO ASTRONÓMICO ES OBSERVADO SIMULTÁNEAMENTE POR SU EMISIÓN EN ONDAS GRAVITACIONALES Y LUZ

POR PRIMERA VEZ UN FENÓMENO ASTRONÓMICO ES OBSERVADO SIMULTÁNEAMENTE POR SU EMISIÓN EN ONDAS GRAVITACIONALES Y LUZ Instituto de Astronomía, UNAM POR PRIMERA VEZ UN FENÓMENO ASTRONÓMICO ES OBSERVADO SIMULTÁNEAMENTE POR SU EMISIÓN EN ONDAS GRAVITACIONALES Y LUZ Dos estrellas de neutrones que se fusionaron violentamente

Más detalles

MATERIA OSCURA. Motivos de su existencia Distribución Candidatos a materia oscura Formas de medida Conclusiones

MATERIA OSCURA. Motivos de su existencia Distribución Candidatos a materia oscura Formas de medida Conclusiones MATERIA OSCURA Motivos de su existencia Distribución Candidatos a materia oscura Formas de medida Conclusiones Segunda Ley de Kepler: Cuando el planeta está más alejado del Sol (afelio) su velocidad es

Más detalles

Ondas gravitacionales: Einstein tenía razón

Ondas gravitacionales: Einstein tenía razón Ondas gravitacionales: Einstein tenía razón Un equipo internacional detecta las ondas gravitacionales predichas hace un siglo por la teoría de la relatividad El fenómeno detectado es el resultado de una

Más detalles

RADIO: la escuchamos y nos permite investigar

RADIO: la escuchamos y nos permite investigar RADIO: la escuchamos y nos permite investigar Mariela A. Corti 1,2 (1) Instituto Argentino de Radioastronomía, CONICET (2) Facultad de Ciencias Astronómicas y Geofísicas, UNLP Newton, alrededor de 1666,

Más detalles

Física, ondas gravitacionales y grandes experimentos. Andrés Aceña

Física, ondas gravitacionales y grandes experimentos. Andrés Aceña Física, ondas gravitacionales y grandes experimentos La charla La física Relatividad general y ondas gravitacionales El experimento LIGO Qué se detectó? Qué viene para el futuro? Qué es la física? Ciencia

Más detalles

4 00:00:15,1 --> 00:00:19,0 la humanidad ha observado el cielo intentando comprender el Cosmos

4 00:00:15,1 --> 00:00:19,0 la humanidad ha observado el cielo intentando comprender el Cosmos The Hot And Energetic Universe - Spanish 1 00:00:05,500 --> 00:00:09,0 El Universo fue siempre la última frontera 2 00:00:09,200 --> 00:00:12,0 de la búsqueda humana del conocimiento. 3 00:00:13,0 -->

Más detalles

EL ESPECTRO ELECTROMAGNÉTICO

EL ESPECTRO ELECTROMAGNÉTICO FACULTAD DE CIENCIAS QUÍMICAS Espectrometría Objeto de Estudio Nº 1 LECTURA N 2 EL ESPECTRO ELECTROMAGNÉTICO Bibliografía: http://almaak.tripod.com/temas/espectro.htm Facultad de Ciencias Químicas F.C.Q.

Más detalles

La Página de los Jueves

La Página de los Jueves 158 Breviario para mis nietos Ibrahim González-Urbaneja La Página de los Jueves Copyright TXu 1-703-206 CUÁSAR O QUASAR Edición: Norka Salas CUÁSAR O QUASAR El término cuásar (en inglés, quasar) fue acuñado

Más detalles

Espectro electromagnético

Espectro electromagnético RADIOCOMUNICACIONES 11-03-2015 Espectro electromagnético La naturaleza de la luz ha sido estudiada desde hace muchos años por científicos tan notables como Newton y Max Plank. Para los astrónomos conocer

Más detalles

Las ondas gravitacionales

Las ondas gravitacionales Las ondas gravitacionales Qué son? De dónde vienen? Qué hacen? Por qué son interesantes? Tomás Ortín Miguel Instituto de Física Teórica UAM/CSIC Todos hemos oído que LIGO ha detectado ondas gravitacionales

Más detalles

Ondas gravitacionales y gravedad fuerte

Ondas gravitacionales y gravedad fuerte Ondas gravitacionales y gravedad fuerte Gustavo Niz Universidad de Guanajuato Reunión Anual División de Partículas y Campos - SMF Puebla, Mayo 2016. Septiembre de 2015 Antes sólo veíamos al Universo...

Más detalles

GW151226: OBSERVACIÓN DE ONDAS GRAVITACIONALES PROVENIENTES DE LA FUSIÓN DE UNA BINARIA DE AGUJEROS NEGROS DE 22 MASAS SOLARES

GW151226: OBSERVACIÓN DE ONDAS GRAVITACIONALES PROVENIENTES DE LA FUSIÓN DE UNA BINARIA DE AGUJEROS NEGROS DE 22 MASAS SOLARES GW151226: OBSERVACIÓN DE ONDAS GRAVITACIONALES PROVENIENTES DE LA FUSIÓN DE UNA BINARIA DE AGUJEROS NEGROS DE 22 MASAS SOLARES Unos meses después de la primera detección de ondas gravitacionales provenientes

Más detalles

Observables e Instrumentación en Astronomía

Observables e Instrumentación en Astronomía Observables e Instrumentación en Astronomía Información sobre el Universo: Radiación electromagnética, distribución. Otros observables: neutrinos, rayos cósmicos, ondas gravitatorias Efectos de la atmósfera

Más detalles

Estructura atómica: Trabajo en Clase y en Casa

Estructura atómica: Trabajo en Clase y en Casa Luz y Ondas Trabajo en clase: Estructura atómica: Trabajo en Clase y en Casa 1. Según la visión de Einstein sobre materia y energía Cuál es el vínculo común entre la luz y la materia? 2. Cómo funciona

Más detalles

El electromagnetismo es una característica asociada las partículas cargadas eléctricamente.

El electromagnetismo es una característica asociada las partículas cargadas eléctricamente. El electromagnetismo es una característica asociada las partículas cargadas eléctricamente. La interacción electromagnética se describe en términos de dos campos : El campo eléctrico E y el campo magnético

Más detalles

LOS OJOS DE LA ASTRONOMIA ES ATRAVÉS DE LA LUZ QUE OBTENEMOS LA INFORMACION DESDE EL COSMOS

LOS OJOS DE LA ASTRONOMIA ES ATRAVÉS DE LA LUZ QUE OBTENEMOS LA INFORMACION DESDE EL COSMOS LOS OJOS DE LA ASTRONOMIA ES ATRAVÉS DE LA LUZ QUE OBTENEMOS LA INFORMACION DESDE EL COSMOS Dr. Mario Pedreros Profesor Titular Director Departamento de Física Facultad de Ciencias -- Universidad de Tarapacá

Más detalles

El espectro electromagnético. CESAR s Booklet

El espectro electromagnético. CESAR s Booklet El espectro electromagnético El espectro electromagnético Los colores de la luz Seguramente hayas visto un arcoíris alguna vez, y seguramente también sepas la explicación científica de este fenómeno. Pero

Más detalles

Estrellas de Neutrones: en los límites de la Física José A. Pons Departament de Física Aplicada Universitat d Alacant

Estrellas de Neutrones: en los límites de la Física José A. Pons Departament de Física Aplicada Universitat d Alacant Estrellas de Neutrones: en los límites de la Física José A. Pons Departament de Física Aplicada Universitat d Alacant El Átomo Ernest Rutherford (1910) * El átomo está formado por electrones y protones

Más detalles

Introducción a Física de Partículas y Cosmología Un mundo cuántico y relativista

Introducción a Física de Partículas y Cosmología Un mundo cuántico y relativista Introducción a Física de Partículas y Cosmología Un mundo cuántico y relativista Angel M. Uranga Instituto de Física Teórica UAM/CSIC, Madrid angel.uranga@uam.es Un mundo relativista Relatividad General

Más detalles

Elementos: Ciencia y cultura Benemérita Universidad Autónoma de Puebla ISSN (Versión impresa): MÉXICO

Elementos: Ciencia y cultura Benemérita Universidad Autónoma de Puebla ISSN (Versión impresa): MÉXICO Elementos: Ciencia y cultura Benemérita Universidad Autónoma de Puebla elemento@siu.buap.mx ISSN (Versión impresa): 0187-9073 MÉXICO 2000 ONDAS GRAVITACIONALES Elementos: Ciencia y cultura, febrero-abril,

Más detalles

SCIENTIFIC CASE: Estudio de astros en varios rangos del espectro electromagnético. Responsable de material:

SCIENTIFIC CASE: Estudio de astros en varios rangos del espectro electromagnético. Responsable de material: SCIENTIFIC CASE: Estudio de astros en varios rangos del espectro electromagnético Curso 3ESO Miembros del equipo Escritor/a: Responsable de material: Lector/a: Portavoz: Embajador: Contexto Si miramos

Más detalles

GUIA DE FISICA TEORIAS DE LA LUZ Y ONDAS ELECTROMAGNETICAS

GUIA DE FISICA TEORIAS DE LA LUZ Y ONDAS ELECTROMAGNETICAS RBD: 8503-0 Misión del Instituto Superior de Comercio Eduardo Frei Montalva Contribuir a la formación de ciudadanos técnicos del Sector Administración y Comercio. GUIA DE FISICA TEORIAS DE LA LUZ Y ONDAS

Más detalles

Radiación. La radiación electromagnética

Radiación. La radiación electromagnética Radiación Curso Introducción a las Ciencias de la Tierra y el Espacio II La radiación electromagnética Es el portador de la información de los objetos astronómicos. Es la forma en que la energía electromagnética

Más detalles

I Unidad: Espectro electromagnético. Objetivo: Comprender el concepto de Espectro electromagnético

I Unidad: Espectro electromagnético. Objetivo: Comprender el concepto de Espectro electromagnético I Unidad: Espectro electromagnético Objetivo: Comprender el concepto de Espectro electromagnético Espectro electromagnético La naturaleza de la luz ha sido estudiada desde hace muchos años por científicos

Más detalles

Light sources characterization and coherence properties.i/caracterización de fuentes de luz y propiedades de coherencia.i

Light sources characterization and coherence properties.i/caracterización de fuentes de luz y propiedades de coherencia.i Light sources characterization and coherence properties.i/caracterización de fuentes de luz y propiedades de coherencia.i Prof. María L. Calvo 30 th April/30 de abril 2012 First ICO-ICTP-TWAS Central American

Más detalles

Nacimiento, vida y muerte de las estrellas

Nacimiento, vida y muerte de las estrellas 1 Nacimiento, vida y muerte de las estrellas Por Juanjo Gabiña La galaxia Andrómeda también conocida como Galaxia espiral M31 como todas las demás galaxias, es un colosal sistema cósmico integrado por

Más detalles

FÍSICA - 2º BACHILLERATO MOVIMIENTO ONDULATORIO - HOJA 1

FÍSICA - 2º BACHILLERATO MOVIMIENTO ONDULATORIO - HOJA 1 FÍSICA - 2º BACHILLERATO MOVIMIENTO ONDULATORIO - HOJA 1 1. Una onda transversal se propaga por una cuerda según la ecuación: y( x, = 0,4 cos(100t 0,5x) en unidades SI. Calcula: a) la longitud de onda

Más detalles

Emisión Gamma de galaxias Starburst

Emisión Gamma de galaxias Starburst Emisión Gamma de galaxias Starburst Introducción: astronomía de altas energías y emisión gamma La astronomía de altas energías estudia los fenómenos vinculados a partículas muy energéticas. Entre ellos,

Más detalles

Sólo estaban el mar en calma y el cielo en toda su extensión Popol Vuh

Sólo estaban el mar en calma y el cielo en toda su extensión Popol Vuh Noche de las Estrellas 2013 El Universo y el Agua sumérgete en el cielo! Sólo estaban el mar en calma y el cielo en toda su extensión Popol Vuh EL AGUA COMO INSTRUMENTO DE INVESTIGACIÓN ASTRONÓMICA SÚPER

Más detalles

GW170817: Observación de ondas gravitacionales procedentes de la espiral de una binaria de estrellas de neutrones

GW170817: Observación de ondas gravitacionales procedentes de la espiral de una binaria de estrellas de neutrones GW170817: Observación de ondas gravitacionales procedentes de la espiral de una binaria de estrellas de neutrones El 17 de agosto de 2017, a las 12:41:04 UTC (8:41:04 am EDT en Norteamérica, y 2:41:04

Más detalles

FÍSICA RELATIVISTA. Relatividad especial. José Luis Rodríguez Blanco

FÍSICA RELATIVISTA. Relatividad especial. José Luis Rodríguez Blanco FÍSICA RELATIVISTA Relatividad especial José Luis Rodríguez Blanco RELATIVIDAD EN LA FÍSICA CLÁSICA Principio de relatividad de Galileo. [Diálogo sobre los dos máximos sistemas del mundo ptolemaico y copernicano

Más detalles

Preguntas del capítulo Ondas electromagnéticas

Preguntas del capítulo Ondas electromagnéticas Preguntas del capítulo Ondas electromagnéticas 1. Isaac Newton fue uno de los primeros físicos en estudiar la luz. Qué propiedades de la luz explicó usando el modelo de partícula? 2. Quién fue la primer

Más detalles

VII Olimpiada Nacional de Astronomía y Astronáutica. Evaluación Nivel Enseñanza Media. Prueba de Alternativas

VII Olimpiada Nacional de Astronomía y Astronáutica. Evaluación Nivel Enseñanza Media. Prueba de Alternativas VII Olimpiada Nacional de Astronomía y Astronáutica NOMBRE COMPLETO: RUT: SEXO: FECHA DE NACIMIENTO: TELÉFONO: CORREO ELECTRÓNICO: DIRECCIÓN: CURSO: Evaluación Nivel Enseñanza Media Prueba de Alternativas

Más detalles

Programa curso CFG

Programa curso CFG Programa curso CFG 2011-2 FORMACIÓN GENERAL CFG 2011-2 ASTRONOMIA GENERAL I. Identificación Código Créditos : 5 Horario : Ma-Mi E (15:20 a 16:50) Número de sesiones semanales : 2 sesiones semanales Profesor

Más detalles

1º Fenómeno: La radiación de cuerpo negro. ! Radiación: Radiación térmica en forma de ondas electromagnéticas (OEM)

1º Fenómeno: La radiación de cuerpo negro. ! Radiación: Radiación térmica en forma de ondas electromagnéticas (OEM) FÍSICA CUANTICA:! Área de la física que surgió al analizar y explicar los fenómenos mecánicos que ocurren a escala microscópica (átomos y partículas atómicas)! A principios del siglo XX, una serie de fenómenos

Más detalles

La Teoría General de la Relatividad

La Teoría General de la Relatividad La Teoría General de la Relatividad En 1905, Albert Einstein publicó la teoría de la relatividad espacial, una teoría sobre el espacio y el tiempo. En los años siguientes, Einstein trabajó en el hecho

Más detalles

ESCUELA SECUNDARIA TÉCNICA AGUILA CCT: 28PST0039E TAMPICO, TAMAULIPAS CICLO ESCOLAR

ESCUELA SECUNDARIA TÉCNICA AGUILA CCT: 28PST0039E TAMPICO, TAMAULIPAS CICLO ESCOLAR INSTRUCCIONES: Imprime, recorta y pega los archivos pdf en tu cuaderno de ciencias. INSTRUMENTOS DE OBSERVACIÓN Simón García Los objetos celestes, aparte de los cuerpos del Sistema Solar, están tan lejos

Más detalles

Qué hay entre las estrellas? MEDIO INTERESTELAR.

Qué hay entre las estrellas? MEDIO INTERESTELAR. Qué hay entre las estrellas? Nuestra galaxia contiene unos 100.000 millones de estrellas en las que está contenida el 90% de su masa. Sin embargo las estrellas solo ocupan una pequeña parte del volumen

Más detalles

n Los universos de Tolomeo y Copérnico n Las herramientas del astrónomo n Observaciones en las que los astrónomos basan su modelo de Universo

n Los universos de Tolomeo y Copérnico n Las herramientas del astrónomo n Observaciones en las que los astrónomos basan su modelo de Universo n Los universos de Tolomeo y Copérnico n Las herramientas del astrónomo n Observaciones en las que los astrónomos basan su modelo de Universo n El universo de los astrónomos n Resumen - Conclusiones Tolomeo

Más detalles

El Sistema Solar. Amparo Herrera Ruiz. Colegio C.E.I.P.Sebastián de Córdoba.Úbeda. 3º A.

El Sistema Solar. Amparo Herrera Ruiz. Colegio C.E.I.P.Sebastián de Córdoba.Úbeda. 3º A. . Amparo Herrera Ruiz. Colegio C.E.I.P.Sebastián de Córdoba.Úbeda. 3º A. está formado por el Sol y 8 planetas. Los planetas son Mercurio,Venus, Tierra, Marte, Jupiter, Saturno y Urano. Nuestra estrella,

Más detalles

Para entender el mundo se debe invertir mucho más en investigación

Para entender el mundo se debe invertir mucho más en investigación 1 0 DE JUNIO DE 20 14 GUSTAVO romero, astrofísico argentino, visitará el paraguay Para entender el mundo se debe invertir mucho más en investigación Por Eduardo Quintana Para el astrofísico Gustavo Romero,

Más detalles

El Espectro Electromagnético

El Espectro Electromagnético El Espectro Electromagnético ONDAS ELECTROMAGNETICAS Se componen de un campo eléctrico y un campo magnético, ambos variando en el tiempo Su energía aumenta con la frecuencia Se distinguen ondas ionizantes

Más detalles

EVALUACIÓN. Nombre del alumno (a): Escuela: Grupo:

EVALUACIÓN. Nombre del alumno (a): Escuela: Grupo: EVALUACIÓN Nombre del alumno (a): Escuela: Grupo: PREGUNTAS Por: Yuri Posadas Velázquez Contesta lo siguiente y haz lo que se pide. 1. Menciona los problemas que la física clásica no pudo resolver y que

Más detalles

Estrellas Binarias. Gerardo Martínez Avilés. Desde que en la ciencia se unificaron la física terrestre y la física de los

Estrellas Binarias. Gerardo Martínez Avilés. Desde que en la ciencia se unificaron la física terrestre y la física de los Estrellas Binarias Gerardo Martínez Avilés Desde que en la ciencia se unificaron la física terrestre y la física de los fenómenos celestes, aproximadamente en el siglo XVII, la astronomía puede considerarse

Más detalles

DESARROLLO. La frecuencia tiene una relación inversa con el concepto de longitud de onda, a mayor frecuencia menor

DESARROLLO. La frecuencia tiene una relación inversa con el concepto de longitud de onda, a mayor frecuencia menor CONSIGNAS TP1 Teoría de la luz Desarrollar una investigación teniendo como base el origen de la luz como fenómeno físico y su comportamiento. Dicho trabajo práctico requiere rigor en los datos técnicos

Más detalles

Agujeros negros: fronteras del espacio-tiempo

Agujeros negros: fronteras del espacio-tiempo Agujeros negros: fronteras del espacio-tiempo Sergio Dain FaMAF-Universidad Nacional de Córdoba, CONICET 5 de agosto de 2009 Agujeros negros: fronteras del espacio-tiempo Sergio Dain FaMAF-Universidad

Más detalles

Física Cuántica y Modelos atómicos. Preguntas de Capítulo. 1. Cómo se determinó que los rayos catódicos poseían una carga negativa?

Física Cuántica y Modelos atómicos. Preguntas de Capítulo. 1. Cómo se determinó que los rayos catódicos poseían una carga negativa? Física Cuántica y Modelos atómicos. Preguntas de Capítulo 1. Cómo se determinó que los rayos catódicos poseían una carga negativa? 2. J. J. Thomson encontró que los rayos catódicos están partículas, a

Más detalles

TRANSMISIÓN DE LA ENERGÍA ENTRE DOS PUNTOS

TRANSMISIÓN DE LA ENERGÍA ENTRE DOS PUNTOS TRANSMISIÓN DE LA ENERGÍA ENTRE DOS PUNTOS Por desplazamiento de un cuerpo que posee energía Mediante ondas: se transmite la energía de una partícula que vibra Características del movimiento que propaga

Más detalles

El Universo es todo, sin excepciones.

El Universo es todo, sin excepciones. El Universo es todo, sin excepciones. Materia, energía, espacio y tiempo, todo lo que existe forma parte del Universo. La teoría del Big Bang explica cómo se formó. Dice que hace unos 15.000 millones de

Más detalles

El amanecer de la astrofísica de multi-mensajeros: observación de la fusión de un sistema binario de estrellas de neutrones

El amanecer de la astrofísica de multi-mensajeros: observación de la fusión de un sistema binario de estrellas de neutrones El amanecer de la astrofísica de multi-mensajeros: observación de la fusión de un sistema binario de estrellas de neutrones El 17 de agosto de 2017, astrónomos de todo el mundo fueron avisados de una observación

Más detalles

Radiación Electromagnética. Valentín Trainotti Walter G. Fano 18/06/2003

Radiación Electromagnética. Valentín Trainotti Walter G. Fano 18/06/2003 Radiación Electromagnética Valentín Trainotti Walter G. Fano 18/06/2003 1 Radiación Electromagnética 1 Radiación: Puesta en el espacio de una onda Electromagnética por parte de un elemento radiante Luz

Más detalles

Noticias: (Inscripción los jueves al final de la clase)

Noticias: (Inscripción los jueves al final de la clase) Abril 12: L. Marfán, F. Holz, N. Mertens Abril 17: N. Kappes, M. Fuhrmann, J.B. Puel Abril 19: J. Celhay, P. Morandé, A. Navarrete Abril 24: P. Güentulle, J. Arrau, G. Pérez Abril 26: R. Gómez, F. Maturana,

Más detalles

Transferencia de Calor por Radiación

Transferencia de Calor por Radiación INSTITUTO TECNOLÓGICO de Durango Transferencia de Calor por Radiación Dr. Carlos Francisco Cruz Fierro Revisión 1 67004.97 12-jun-12 1 INTRODUCCIÓN A LA RADIACIÓN ELECTROMAGNÉTICA 2 Dualidad de la Luz

Más detalles

Observatorios Particulares

Observatorios Particulares 1 2 1.1. Radiación Cherenkov Se denomina de esta forma a la radiación producida por una partícula cargada que se mueve más rápido que la velocidad de la luz en el medio El frente de onda de la radiación

Más detalles

La teoría atómica de Dalton (1808)

La teoría atómica de Dalton (1808) EL ÁTOMO Evolución de los modelos atómicos, partículas atómicas, masa y número atómico, mol, elementos e isótopos, modelo atómico contemporáneo, números cuánticos, principio de aufbau, principio de Pauli,

Más detalles

Ondas Gravitacionales: de su predicción a los premios Nobel Gravitational waves: from their prediction to Nobel Prizes

Ondas Gravitacionales: de su predicción a los premios Nobel Gravitational waves: from their prediction to Nobel Prizes Ondas Gravitacionales: de su predicción a los premios Nobel Gravitational waves: from their prediction to Nobel Prizes (Diciembre de 2017) El nombre de Albert Einstein ha estado llenando nuevamente las

Más detalles

ONDAS PARA COMPLETAR VUESTROS APUNTES DEL LIBRO

ONDAS PARA COMPLETAR VUESTROS APUNTES DEL LIBRO ONDAS PARA COMPLETAR VUESTROS APUNTES DEL LIBRO ONDAS Una onda es una perturbación que se propaga. Con la palabra perturbación se quiere indicar cualquier tipo de alteración del medio: una ondulación en

Más detalles

Introducción a las ondas

Introducción a las ondas Introducción a las ondas Una onda es una prolongación de una perturbación de alguna propiedad de un medio (densidad, presión, campo eléctrico, campo magnético, etc.) que se propaga a través del espacio

Más detalles

Origen del Universo: La teoría del Big Bang

Origen del Universo: La teoría del Big Bang Origen del Universo: La teoría del Big Bang La teoría del Big Bang es un modelo científico que trata de explicar el origen del Universo y su desarrollo posterior a partir de una Gran Explosión. Cómo surgió

Más detalles

Unidad II La Materia y sus transformaciones La Luz

Unidad II La Materia y sus transformaciones La Luz Unidad II La Materia y sus transformaciones La Luz Naturaleza de la Luz La mayor parte de lo que conocemos de nuestro entorno es adquirido mediante sentido de la vista, de aquí que resulta de mucha importancia

Más detalles

Estrellas de Neutrones Pulsares Supernovas Campos Magnéticos Binarias de Rayos X

Estrellas de Neutrones Pulsares Supernovas Campos Magnéticos Binarias de Rayos X 1 Estrellas de Neutrones Pulsares Supernovas Campos Magnéticos Binarias de Rayos X 3 Valle de México 4 Una Estrella de Neutrones en el Valle de México 5 Una Estrella de Neutrones en el Valle de México

Más detalles

Principios Básicos de la Radiación

Principios Básicos de la Radiación UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE ODONTOLOGÍA AREA BÁSICA CURSO: FÍSICO-MATEMÁTICA DOCENTES: DR. EDWIN LÓPEZ ING. FREDY CONTRERAS DOCUMENTO ELABORADO POR DRA. BRENDA MARÍA LÓPEZ LEIVA

Más detalles

Espectro Electromagnético Rubiel Leal Bernal Ing. De Sistemas Universidad de Nariño

Espectro Electromagnético Rubiel Leal Bernal Ing. De Sistemas Universidad de Nariño Espectro Electromagnético Rubiel Leal Bernal Ing. De Sistemas Universidad de Nariño Universidad de Nariño - Rubiel Leal B. 1 SEÑALES ANALOGAS Y DIGITALES Señales: Función de una o más variables que transportan

Más detalles

Olimpíada Argentina de Astronomía Examen de Preselección 2 de Septiembre de 2013

Olimpíada Argentina de Astronomía Examen de Preselección 2 de Septiembre de 2013 Docente/Tutor: Establecimiento Educativo: _ PRIMER NIVEL: Examen para alumnos de 1 er año, 2 do año y 3 er año. Sección A Completar la casilla con V o F (Verdadero o Falso) según corresponda. A.1) En la

Más detalles

RESOLUCIÓN DE LAS ACTIVIDADES DE FINAL DE UNIDAD PROPUESTAS EN EL LIBRO DEL ALUMNO

RESOLUCIÓN DE LAS ACTIVIDADES DE FINAL DE UNIDAD PROPUESTAS EN EL LIBRO DEL ALUMNO ENUNCIADOS Pág. 1 EL MOVIMIENTO ONDULATORIO 1 Cuando a un muelle se le aplica una fuerza de 20 N, sufre una deformación de 5 cm. Cuál es el valor de la constante de recuperación? Cuáles serán sus unidades?

Más detalles

Recordando. Primer Modelo atómico (1900) Segundo Modelo atómico (1910) J. J. Thomson Budín de pasas. E. Rutherford Modelo planetario

Recordando. Primer Modelo atómico (1900) Segundo Modelo atómico (1910) J. J. Thomson Budín de pasas. E. Rutherford Modelo planetario ANTECEDENTES DEL MODELO ACTUAL DEL ATOMO Raquel Villafrades Torres Universidad Pontificia Bolivariana Química General Química General Ingeniera Química Raquel Villafrades Torres Abril de 2009 Primer Modelo

Más detalles

ASTRONOMIA. Cronología del Universo. Antonio Bernal González. Twitter e

ASTRONOMIA. Cronología del Universo. Antonio Bernal González.  Twitter e ASTRONOMIA Cronología del Universo Antonio Bernal González puntovernal@telefonica.net www.puntovernal.webnode.es Twitter e Instagram: @puntovernal Programa: Los movimientos del cielo (26 de enero) La carta

Más detalles

TEMA 1: FÍSICA DE LAS RADIACIONES

TEMA 1: FÍSICA DE LAS RADIACIONES TEMA 1: FÍSICA DE LAS RADIACIONES 1. INTRODUCCIÓN. 2. ENERGÍA Y FUERZA. 3. MOVIMIENTO ONDULATORIO. 4. TEORÍA DE CAMPOS. 5. RADIACIÓN 6. ESTRUCTURA DE LA MATERIA. 7. ALTAS ENERGÍAS. 1 INTRODUCCIÓN. Radiación

Más detalles

Fı sica de Partı culas y Astropartı culas

Fı sica de Partı culas y Astropartı culas Fı sica de Partı culas y Astropartı culas Descubriendo lo más pequeño La física de partículas se encarga de estudiar lo más pequeño que conocemos: las partículas elementales. cm -2 m fm -15 m 1 cm= 2 m

Más detalles

En busca de la materia oscura. Dr. Pablo García Abia

En busca de la materia oscura. Dr. Pablo García Abia En busca de la materia oscura Dr. Pablo García Abia Radiación Elementos químicos (aparte de H y He) Estrellas Gas H y He Materia oscura Energía oscura Adaptado de Rocky Kolb Radiación Elementos químicos

Más detalles

RAYOS GAMMA Y RAYOS X (ROSAT, CTA, Integral, Chandra y XMM)

RAYOS GAMMA Y RAYOS X (ROSAT, CTA, Integral, Chandra y XMM) RAYOS GAMMA Y RAYOS X (ROSAT, CTA, Integral, Chandra y XMM) Hecho por Miguel García, María Monje, Rodrigo Parente, Manuel Priego y Claudia Cimadevilla ROSAT ROSAT Es un telescopio espacial de rayos X dirigido

Más detalles

Experimento 12 LÍNEAS ESPECTRALES. Objetivos. Teoría. Postulados de Bohr. El átomo de hidrógeno, H

Experimento 12 LÍNEAS ESPECTRALES. Objetivos. Teoría. Postulados de Bohr. El átomo de hidrógeno, H Experimento 12 LÍNEAS ESPECTRALES Objetivos 1. Describir el modelo del átomo de Bohr 2. Observar el espectro del H mediante un espectrómetro de rejilla 3. Medir los largos de onda de las líneas de la serie

Más detalles

1) Estellas de baja masa y masa intermedia (0.8 Mo < m < 8 Mo) 2) Estrellas de alta masa (8 Mo < m) a) 8 Mo < m < 25 Mo

1) Estellas de baja masa y masa intermedia (0.8 Mo < m < 8 Mo) 2) Estrellas de alta masa (8 Mo < m) a) 8 Mo < m < 25 Mo 1) Estellas de baja masa y masa intermedia (0.8 Mo < m < 8 Mo) 2) Estrellas de alta masa (8 Mo < m) a) 8 Mo < m < 25 Mo b) 25 Mo < m 25 Mo 0 Combustión del Carbono Estrellas supergigantes

Más detalles

Introducción a. Remota

Introducción a. Remota Introducción a la Percepción Remota La percepción remota se refiere a las actividades de registrar, observar y percibir objetos o eventos de un lugar distante (remoto). En un sentido estricto, la percepción

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO COLEGIO DE CIENCIAS Y HUMANIDADES PLANTEL ORIENTE. Nombre del alumno(a):

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO COLEGIO DE CIENCIAS Y HUMANIDADES PLANTEL ORIENTE. Nombre del alumno(a): UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO COLEGIO DE CIENCIAS Y HUMANIDADES PLANTEL ORIENTE EXAMEN EXTRAORDINARIO PARA LA ASIGNATURA DE FÍSICA II. PERIODO EA-2012-1. TURNO VESPERTINO. ELABORADO POR: JESÚS

Más detalles

Cosmología y la radiación fósil. Ariel G. Sánchez

Cosmología y la radiación fósil. Ariel G. Sánchez Cosmología y la radiación fósil Ariel G. Sánchez Cosmología y la radiación del fondo cósmico de microondas Contenidos: Que es la Cosmología? Que es la Radiación del Fondo de Microondas? De que esta hecho

Más detalles

MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS. Partícula Masa (g) Carga (Coulombs) Carga unitaria. Electrón

MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS. Partícula Masa (g) Carga (Coulombs) Carga unitaria. Electrón MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS Partícula Masa (g) Carga (Coulombs) Carga unitaria Electrón 9.10939 10-28 -1.6022 10-19 -1 Protón 1.67262 10-24 +1.6022 10-19 +1 Neutrón 1.67493 10-24 0

Más detalles

b) estrellas de alta masa: >4Ms

b) estrellas de alta masa: >4Ms evolución estelar evolución post-secuencia Principal b) estrellas de alta masa: >4Ms estrellas de SP con M > 4 Ms dejan remanentes > 1.4 Ms y no pueden ser sostenidos por la presión de los e- degenerados

Más detalles

MATERIAL 06. TEMA: MÉTODOS ESPECTROSCÓPICOS DE ANÁLISIS

MATERIAL 06. TEMA: MÉTODOS ESPECTROSCÓPICOS DE ANÁLISIS MATERIAL 06. TEMA: MÉTODOS ESPECTROSCÓPICOS DE ANÁLISIS La espectroscopia es el estudio de las interacciones de las radiaciones electromagnéticas con la materia (átomos y moléculas). Los métodos analíticos

Más detalles

ONDAS Y PERTURBACIONES

ONDAS Y PERTURBACIONES ONDAS Y PERTURBACIONES Fenómenos ondulatorios Perturbaciones en el agua (olas) Cuerda oscilante Sonido Radio Calor (IR) Luz / UV Radiación EM / X / Gamma Fenómenos ondulatorios Todos ellos realizan transporte

Más detalles

1ª PARTE (duración: 1 h 45 min)

1ª PARTE (duración: 1 h 45 min) Olimpiada de Física de la Región de Murcia 017 1ª PARTE (duración: 1 h 45 min) 1. Espectrómetro de masas Un espectrómetro de masas es un dispositivo que permite determinar la relación carga/masa de una

Más detalles

QUÍMICA INORGÁNICA I

QUÍMICA INORGÁNICA I QUÍMICA INORGÁNICA I QUÍMICA INORGÁNICA I QUÍMICA INORGÁNICA I 22/08/17 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 0 22/08/17 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 1 22/08/17 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA

Más detalles

Es una de las Teorías más importantes de nuestra era! Sabremos si podemos viajar en el Tiempo

Es una de las Teorías más importantes de nuestra era! Sabremos si podemos viajar en el Tiempo TEORÍA DE LA RELATIVIDAD Por qué estudiamos Relatividad? Es una de las Teorías más importantes de nuestra era! Sabremos si podemos viajar en el Tiempo Es la base para el estudio de la materia oscura uno

Más detalles

El Universo observable

El Universo observable El Universo observable p. 1/4 El Universo observable Sao Carlos, 20/05/2013 Héctor Vucetich Observatorio Astronómico Universidad Nacional de La Plata El Universo observable p. 2/4 Introducción Desde tiempos

Más detalles

RADIACIÓN SOLAR PRÁCTICA 3 COMPRENSIÓN DEL ESPECTRO ELECTROMAGNÉTICO EN LA REGIÓN DEL ESPECTRO SOLAR

RADIACIÓN SOLAR PRÁCTICA 3 COMPRENSIÓN DEL ESPECTRO ELECTROMAGNÉTICO EN LA REGIÓN DEL ESPECTRO SOLAR PRÁCTICA 3 RADIACIÓN SOLAR COMPRENSIÓN DEL ESPECTRO ELECTROMAGNÉTICO EN LA REGIÓN DEL ESPECTRO SOLAR Esta práctica fue elaborada con recursos del Fondo CONACyT-SENER, a través del proyecto 260155 Laboratorio

Más detalles

Teoría cuántica y la estructura electrónica de los átomos. Capítulo 7

Teoría cuántica y la estructura electrónica de los átomos. Capítulo 7 Teoría cuántica y la estructura electrónica de los átomos Capítulo 7 Propiedades de las ondas Longitud de onda (λ) es la distancia que existe entre dos puntos idénticos en una serie de ondas. Amplitud:

Más detalles

Introducción Estrellas de neutrones y púlsares Primera detección El peculiar púlsar en la nebulosa del cangrejo. Cuántos púlsares hay en nuestra

Introducción Estrellas de neutrones y púlsares Primera detección El peculiar púlsar en la nebulosa del cangrejo. Cuántos púlsares hay en nuestra Introducción Estrellas de neutrones y púlsares Primera detección El peculiar púlsar en la nebulosa del cangrejo. Cuántos púlsares hay en nuestra galaxia? Púlsar binario y Relatividad general Avance del

Más detalles

Idea Moderna de la Luz

Idea Moderna de la Luz Luz Aldo Villalón Newton: es un haz de partículas Huygens: es una onda Debido a la gran fama de Newton su modelo de partículas se acepta hasta el s. XVIII En el s. XIX se acepta el modelo ondulatorio S.

Más detalles

Formación estelar y las Cáscaras de HI: un fuerte vínculo

Formación estelar y las Cáscaras de HI: un fuerte vínculo Formación estelar y las Cáscaras de HI: un fuerte vínculo Mariela A. Corti 1,2 (1) Instituto Argentino de Radioastronomía, CONICET (2) Facultad de Ciencias Astronómicas y Geofísicas, UNLP Licenciatura

Más detalles

FIA 0111 martes jueves viernes 7 pm inscripción con Pedro Salas < Astronomía

FIA 0111 martes jueves viernes 7 pm inscripción con Pedro Salas < Astronomía Noticias: Marzo 13: R. Tamayo, S. Gaete Marzo 15: T. Barros, F. Valenzuela Marzo 20: P. Sandoval, J. Rivera, J. Huerta Marzo 22: V. Ortiz, G. Bisso, F. Cameron Marzo 27: M. Lyon, B. Escobar, C. Castillo

Más detalles

Ondas gravitacionales:

Ondas gravitacionales: Ondas gravitacionales: la nueva ventana al Universo Bert Janssen Dpto. de Física Teórica y del Cosmos & CAFPE Universidad de Granada B. Janssen (UGR) IES Las Salinas (Fuengirola), 19 enero 2018 1/40 Plan

Más detalles

Astronomía Planetaria

Astronomía Planetaria Astronomía Planetaria Clase 21 Objetos Compactos Mauricio Suárez Durán Escuela de Física Grupo Halley de Astronomía y Ciencias Aeroespaciales Universidad Industrial de Santander Bucaramanga, II semestre

Más detalles

Slide 1 / 52. Las Ondas Electromagnéticas Problemas de Práctica

Slide 1 / 52. Las Ondas Electromagnéticas Problemas de Práctica Slide 1 / 52 Las Ondas Electromagnéticas Problemas de Práctica Slide 2 / 52 Multiopcion Slide 3 / 52 1 Cuál de las siguientes teorías puede explicar la curvatura de las ondas detrás de los obstáculos en

Más detalles

Dpto. de Física y Química. IES N. Salmerón A. Ondas 6.2 ( )

Dpto. de Física y Química. IES N. Salmerón A. Ondas 6.2 ( ) CUESTIONES 1. (2004) a) Por qué la profundidad real de una piscina llena de agua es siempre mayor que la profundidad aparente? b) Explique qué es el ángulo límite y bajo qué condiciones puede observarse.

Más detalles

qué hay entre las estrellas? Vía Láctea: en una noche oscura podemos ver miles de estrellas y estructuras extendidas

qué hay entre las estrellas? Vía Láctea: en una noche oscura podemos ver miles de estrellas y estructuras extendidas qué hay entre las estrellas? Vía Láctea: en una noche oscura podemos ver miles de estrellas y estructuras extendidas Hasta principios del siglo XX se pensaba que el MIE estaba vacío Alnitak (ζ Orionis)

Más detalles

A.8) El radiotelescopio de Arecibo con sus 305 m de diámetro es el de mayor tamaño actualmente.

A.8) El radiotelescopio de Arecibo con sus 305 m de diámetro es el de mayor tamaño actualmente. Docente/Tutor: Establecimiento Educativo: _ SEGUNDO NIVEL: Examen para alumnos de 4 to año y años superiores. Sección A Completar la casilla con V o F (Verdadero o Falso) según corresponda. A.1) Pueden

Más detalles

StreetLights of the Universe

StreetLights of the Universe Estrellas StreetLights of the Universe Introducción Sólo podemos ver pequeños puntos brillantes aún con telescopios! Muy pocas se encuentran lo suficientemente cerca para estudiarlas. Muy, muy lejos...

Más detalles