2. Operación del Diodo. Electrónica Analógica

Tamaño: px
Comenzar la demostración a partir de la página:

Download "2. Operación del Diodo. Electrónica Analógica"

Transcripción

1 2. Operación del Diodo Electrónica Analógica

2 Temas: Operación del Diodo Operación de un diodo Característica de voltaje-corriente de un diodo Modelos del diodo Ideal Práctico Completo Exponencial Pequeña señal a baja frecuencia Pspice/Spice AC a alta frecuencia

3 Objetivos Utilizar un diodo en aplicaciones comunes Operación del Diodo Analizar la característica de voltaje-corriente de un diodo Explicar cómo difieren los modelos de diodos Explicar y analizar la operación de rectificadores de media onda Explicar y analizar la operación de rectificadores de onda completa Explicar y analizar la operación y las características de filtros y reguladores de fuentes de alimentación Explicar y analizar la operación de circuitos limitadores y sujetadores con diodos Explicar y analizar la operación de multiplicadores de voltaje con diodos Interpretar y utilizar una hoja de datos de un diodo Solución de fallas de fuentes de potencia y circuitos de diodo

4 El Diodo Operación de un Diodo Como se ha mencionado, un diodo está hecho de una pequeña pieza de material semiconductor, usualmente Silicio, en el que una mitad está dopada con una región p y la otra mitad está dopada con una región n teniendo una unión pn con una región de empobrecimiento. La región p se denomina ánodo y está conectada a un terminal conductor. La región n se denomina cátodo y está conectada a un segundo terminal conductor

5 El Diodo Operación de un Diodo

6 Polarización de un Diodo Operación de un Diodo Como ya se aprendió, en el punto de equilibrio ningún electrón se mueve a través de la unión pn. En general el término polarización se refiere al uso de un voltaje de cc para establecer ciertas condiciones de operación para un dispositivo electrónico. En relación con un diodo existen dos condiciones: en directa y en inversa. Cualquiera de estas condiciones de polarización se establece conectando un voltaje de cc suficiente y con la polaridad apropiada a través de la unión pn.

7 Polarización en directa Operación de un Diodo

8 Polarización en directa Operación de un Diodo Un diodo polarizado en directa que muestra el flujo de portadores mayoritarios y el voltaje debido al potencial de barrera a través de la región de empobrecimiento.

9 Polarización en directa Operación de un Diodo Como las cargas iguales se repelen, el lado negativo de la fuente de voltaje de polarización empuja a los electrones libres, los cuales son los portadores mayoritarios en la región n, hacia la unión pn. Este flujo de electrones libre se llama corriente de electrones. El lado negativo de la fuente también genera un flujo continuo de electrones a través de la conexión externa (conductor) y hacia la región n como muestra la figura. La fuente de voltaje de polarización proporciona suficiente energía a los electrones libres para que venzan el potencial de barrera de la región de empobrecimiento y continúen moviéndose hacia la región p. Una vez que llegan a la región p, estos electrones de conducción han perdido suficiente energía para combinarse de inmediato con los huecos presentes en la banda de valencia.

10 Polarización en directa Operación de un Diodo Entonces, los electrones quedan en la banda de valencia de la región p simplemente porque perdieron demasiada energía al vencer el potencial de barrera y permanecer en la banda de conducción. Como las cargas diferentes se atraen, el lado positivo de la fuente de voltaje de polarización atrae los electrones de valencia hacia el extremo izquierdo de la región p. Los huecos en la región p proporcionan el medio o ruta para que estos electrones de valencia se desplacen hacia la región p. Los electrones de valencia se desplazan de un hueco al siguiente hacia la izquierda. Los huecos, que son portadores mayoritarios en la región p, efectivamente (no en realidad) se desplazan a la derecha hacia la unión, como ilustra la figura. Este flujo efectivo de huecos es la corriente de huecos. También se ve que el flujo de electrones de valencia a través de la región p crea la corriente de huecos y los huecos son el único medio para que estos electrones fluyan.

11 Polarización en directa Operación de un Diodo A medida que los electrones salen de la región p a través de la conexión externa (conductor) en dirección al lado positivo de la fuente de voltaje de polarización, dejan huecos en la región p; al mismo tiempo, estos electrones se convierten en electrones de conducción en el conductor metálico. Recuerde que la banda de conducción de un conductor se traslapa con la banda de valencia de modo que se requiere mucho menos energía para que un electrón sea un electrón libre en un conductor que en un semiconductor, y que los conductores metálicos no tienen huecos en su estructura. Existe disponibilidad continua de huecos que efectivamente se mueven hacia la unión pn para combinarse con la corriente continua de electrones cuando atraviesan la unión pn hacia la unión p.

12 Operación de un Diodo Efecto de la polarización en directa en la región de empobrecimiento A medida que fluyen más electrones hacia la región de empobrecimiento, el número de iones se reduce. Conforme más huecos fluyen hacia la región de empobrecimiento del otro lado de la unión pn, el número de iones negativos se reduce. Esta reducción de iones positivos y negativos durante la polarización en directa hace que la región de empobrecimiento se estreche.

13 Operación de un Diodo Efecto de la polarización en directa en la región de empobrecimiento La región de empobrecimiento se estrecha y se produce una caída de voltaje a través de la unión pn cuando el diodo está polarizado en directa.

14 Operación de un Diodo Efecto del potencial de barrera durante la polarización en directa Cuando se aplica polarización en directa, los electrones libres reciben suficiente energía de la fuente de voltaje de polarización para vencer el potencial de barrera y escalar la colina de energía, atravesando así la región de empobrecimiento. La energía que requieren los electrones para pasar a través de la región de empobrecimiento es igual al potencial de barrera. En otras palabras, los electrones ceden una cantidad de energía equivalente al potencial de barrera cuando atraviesan la región de empobrecimiento. Esta pérdida de energía produce una caída de voltaje a través de la unión pn igual al potencial de barrera (0.7 V. Ocurre una caída de voltaje adicional a través de las regiones p y n debido a la resistencia interna del material. En el caso de un material semiconductor dopado, esta resistencia, llamada resistencia dinámica, es muy pequeña y casi siempre se puede despreciar.

15 Polarización Inversa Operación de un Diodo La polarización inversa es la condición que en escencia evita la circulación de corriente a través del diodo. En la figura se muestra una fuente de voltaje de cc conectada a través de un diodo en la dirección que produce polarización en inversa. Este voltaje de polarización externo se designa como VPOLARIZACIÓN, como en el caso de polarización en directa. Observe que el lado positivo de VPOLARIZACIÓN está conectado a la región n del diodo y el lado negativo está conectado a la región p. Observe también que la región de empobrecimiento se muestra mucho más ancha que la condición de polarización en directa o equilibrio.

16 Polarización Inversa Operación de un Diodo

17 Polarización Inversa Operación de un Diodo El diodo durante el corto tiempo de transición inmediatamente después de que se aplica el voltaje de polarización en inversa

18 Polarización Inversa Operación de un Diodo La figura ilustra lo que sucede cuando un diodo se polariza en inversa. Como las cargas diferentes se atraen, el lado positivo de la fuente de voltaje de polarización jala los electrones libres, los cuales son los portadores mayoritarios en la región n, lejos de la unión pn. A medida que los electrones fluyen hacia el lado positivo de la fuente de voltaje, se crean iones positivos adicionales. Esto produce el ensanchamiento de la región de empobrecimiento y el consecuente empobrecimiento de los portadores mayoritarios. En la región p, los electrones procedentes del lado negativo de la fuente de voltaje entran como electrones de valencia y se desplazan de hueco en hueco hacia la región de empobrecimiento, donde crean iones negativos adicionales. Esto ensancha la región de empobrecimiento y agota los portadores mayoritarios. El flujo de electrones de valencia puede ser considerado como huecos que están siendo jalados hacia el lado positivo.

19 Polarización Inversa Operación de un Diodo El flujo inicial de portadores de carga es transitorio y subsiste sólo durante un lapso muy corto después de que se aplica el voltaje de polarización en inversa. Conforme la región de empobrecimiento se ensancha, la disponibilidad de portadores mayoritarios se reduce. A medida que más regiones n y p se quedan sin portadores mayoritarios, la intensidad del campo eléctrico entre los iones positivos y negativos se incrementa hasta que el potencial a través de la región de empobrecimiento es igual al voltaje de polarización, VPOLARIZACIÓN. En ese momento, la corriente de transición en esencia cesa, excepto por una muy pequeña corriente en inversa que casi siempre se puede despreciar.

20 Polarización Inversa Operación de un Diodo Corriente en inversa. La corriente extremadamente pequeña que existe en la condición de polarización en inversa después de que la corriente de transición se disipa es provocada por los portadores minoritarios en las regiones n y p producidos por pares de electrón-hueco generados térmicamente. El pequeño número de electrones minoritarios libres en la región p son empujados hacia la unión pn por el voltaje de polarización negativo. Cuando estos electrones llegan a la región de empobrecimiento ancha, descienden la colina de energía, se combinan con huecos minoritarios presentes en la región n como electrones de valencia, fluyen hacia el voltaje de polarización positivo y se crea una pequeña corriente de huecos. La banda de conducción de la región p está a un nivel de energía mucho más alto que la banda de conducción en la región n. Así pues, los portadores minoritarios pasan con facilidad a través de la región de empobrecimiento porque no requieren energía adicional.

21 Polarización Inversa Corriente en Inversa. Operación de un Diodo La extremadamente pequeña corriente en inversa en un diodo polarizado en inversa se debe a los portadores minoritarios provenientes de pares de electrón-hueco térmicamente generados.

22 Polarización Inversa Operación de un Diodo Ruptura en inversa. Normalmente, la corriente en inversa es tan pequeña que se puede despreciar. No obstante, si el voltaje de polarización en inversa externo se incrementa a un valor llamado voltaje de ruptura, la corriente en inversa se incrementará drásticamente. Esto es lo que sucede. El alto voltaje de polarización en inversa proporciona energía a los electrones minoritarios, así que a medida que adquieren velocidad a través de la región p chocan con átomos con suficiente energía para sacar a los electrones de valencia de su órbita para enviarlos hacia la banda de conducción. Los electrones de conducción recién creados también contienen mucha energía y repiten el proceso. Si un electrón expulsa a sólo otros dos electrones de su órbita de valencia durante su recorrido a través de la región p, los números se multiplican con rapidez. A medida que estos electrones de alta energía pasan a través de la región de empobrecimiento, su energía es suficiente para atravesar la región n como electrones de conducción en lugar de combinarse con huecos.

23 Polarización Inversa Operación de un Diodo Ruptura en inversa. La multiplicación de los electrones de conducción recién descrita se conoce como efecto avalancha y la corriente en inversa puede incrementarse dramáticamente si no se toman las medidas pertinentes para limitar la corriente. Cuando no se limita la corriente en inversa, el calentamiento resultante daña permanentemente el diodo. La mayoría de los diodos no son operados en condición de ruptura en inversa, pero si se limita la corriente (por ejemplo mediante la adición de un resistor limitador en serie), el diodo no sufre daños permanentes.

24 Efectos Capacitivos de la unión PN Operación de un Diodo Hay dos mecanismos de almacenamiento de carga en la unión PN. Uno está asociado con la carga almacenada en la región de agotamiento, y el otro está asociado con la carga almacenada en los portadores minoritarios en materiales tipo p y n como un resultado de la concentración de perfiles establecidos por la inyección de portadores. Si bien la primera es más fácil de ver cuando la función está polarizada inversamente, la segunda es efectiva sólo cuando la unión está polarizada en directa. Los diodos polarizados en directa y en inversa tienen una capacitancia asociada con la unión pn. Esta capacitancia es importante en condiciones de señal dinámica porque evita que el voltaje a través del diodo cambie instantáneamente.

25 Efectos Capacitivos de la unión PN Operación de un Diodo Capacitancia de Unión o de Empobrecimiento (Agotamiento). C J Bajo polarización inversa, el ancho de la región de empobrecimiento aumenta más allá de su valor de polarización cero, por lo tanto la cantidad de carga en la región de agotamiento también aumenta. Dado que la carga en el diodo está cambiando con voltaje, resulta una capacitancia.

26 Efectos Capacitivos de la unión PN Operación de un Diodo Capacitancia de Unión o de Empobrecimiento (Agotamiento). C J La ecuación muestra que la capacitancia del diodo cambia con la tensión aplicada. La capacitancia disminuye a medida que aumenta la polarización inversa, exhibiendo una relación inversa de raíz cuadrada. Esta capacitancia controlada por voltaje puede ser muy útil en ciertos circuitos electrónicos. Los diodos se pueden diseñar con perfiles de impureza (llamados perfiles hiper-abruptos) optimizados específicamente para el funcionamiento como condensadores controlados por voltaje. Como en el caso de los diodos Zener, existe un símbolo especial para el diodo de capacitancia variable. Enlaces a hojas de datos para una serie de diodos de capacitancia variable se pueden encontrar en el sitio web de MCD.

27 Efectos Capacitivos de la unión PN Capacitancia de Difusión. C d Operación de un Diodo Cuando la unión está polarizada en directa, la región de agotamiento se hace más estrecha y la capacidad de agotamiento aumenta porque la tensión de polarización v D es positiva. Sin embargo, un gran número de portadores minoritarios son inyectados en la unión bajo la condición de polarización directa. Habrá un exceso de portadores de carga minoritaria cerca de la capa de agotamiento, y esto causará un gran efecto de almacenamiento de carga. El exceso de concentración será más alto cerca del borde de la capa de agotamiento y disminuirá exponencialmente hacia cero con la distancia desde la unión.

28 Característica de voltaje-corriente de un diodo Característica V-I en condición de polarización en directa Las mediciones de polarización en directa muestran cambios generales en VF e IF a medida que se incrementa el VPOLARIZACIÓN.

29 Característica de voltaje-corriente de un diodo Característica V-I en condición de polarización en directa Relación de voltaje y corriente en un diodo polarizado en directa.

30 Característica de voltaje-corriente de un diodo Característica V-I en condición de polarización en directa Resistencia dinámica. A diferencia de la resistencia lineal, la resistencia del diodo polarizado en directa no es constante a lo largo de toda la curva. Como la resistencia cambia al ir recorriendo la curva V-I, se llama resistencia dinámica o de ca. Las resistencias internas de los dispositivos electrónicos en general se expresan mediante la letra r minúscula cursiva con un apóstrofo, en lugar de la R estándar. La resistencia dinámica de un diodo se expresa como r D. Debajo de la inflexión de la curva, la resistencia es más grande porque la corriente se incrementa muy poco con un cambio dado del voltaje La resistencia comienza a disminuir en la región de la inflexión de la curva y se vuelve pequeña por encima de la inflexión donde la corriente sufre un gran cambio con un cambio dado del voltaje.

31 Característica de voltaje-corriente de un diodo Característica V-I en condición de polarización en inversa Cuando se aplica un voltaje de polarización en inversa a través de un diodo, existe sólo una corriente en inversa extremadamente pequeña (I R ) a través de la unión pn. Con 0 V a través del diodo, no existe corriente en inversa. A medida que se incrementa gradualmente el voltaje de polarización en inversa, existe una corriente en inversa muy pequeña y el voltaje a través del diodo se incrementa. Cuando el voltaje de polarización aplicado se incrementa a un valor en el que el voltaje en inversa a través del diodo (V R ) alcanza el valor de ruptura (V BR ), la corriente en inversa comienza a incrementarse con rapidez. A medida que continúa incrementándose el voltaje de polarización, la corriente continúa incrementándose muy rápido, pero el voltaje a través del diodo se incrementa muy poco por encima de V BR. La ruptura, con excepciones, no es un modo normal de operación de la mayoría de los dispositivos con unión pn.

32 Característica de voltaje-corriente de un diodo Característica V-I en condición de polarización en inversa Trazo de la curva V-I. El voltaje en inversa en el diodo (V R ) se incrementa a la izquierda a lo largo del eje horizontal y la corriente en inversa (I R ) se incrementa hacia abajo a lo largo del eje vertical. Existe muy poca corriente en inversa (casi siempre mao na) hasta que el voltaje en inversa a través del diodo alcanza aproximadamente el valor de ruptura (V BR ) en la inflexión de la curva. Después de este punto, el voltaje en inversa permanece a aproximadamente V BR, pero I R se incrementa muy rápido y el resultado es un sobrecalentamiento y posibles daños si la corriente no se limita a un nivel seguro. Curva de característica V-I para un diodo polarizado en inversa

33 Característica de voltaje-corriente de un diodo Curva Característica V-I Completa La curva de la característica V-I para un diodo

34 Característica de voltaje-corriente de un diodo Efectos de la Temperatura Para un diodo polarizado en directa, a medida que se incrementa la temperatura, la corriente de polarización en directa se incrementa para un valor dado del voltaje de polarización en directa. Además, con un valor dado de la corriente de polarización en directa, el voltaje de polarización en directa se reduce. El potencial de barrera se reduce 2 mv por cada grado de incremento de la temperatura. Para un diodo polarizado en inversa, a medida que se incrementa la temperatura la corriente de polarización en inversa se incrementa.

35 Efectos de la Temperatura Característica de voltaje-corriente de un diodo Figure 4.9 Temperature dependence of the diode forward characteristic. At a constant current, the voltage drop decreases by approximately 2 mv for every 1 C increase in temperature.

36 Conexiones de Polarización Modelos del diodo

37 Modelos del diodo El Modelo Ideal del diodo. Polarización Directa

38 Modelos del diodo El Modelo Ideal del diodo. Polarización Inversa

39 Modelos del diodo Modelo Práctico de un diodo. Polarización Directa

40 Modelos del diodo Modelo Práctico de un diodo. Polarización Inversa

41 Modelos del diodo Modelo Completo del diodo. Polarización Directa

42 Modelos del diodo Modelo Completo del diodo. Polarización Inversa

43 Modelo Completo del diodo. Ejercicios Modelos del diodo

44 Modelo Exponencial Modelos del Diodo

45 Modelo Exponencial Modelos del Diodo El coeficiente de emisión n depende del material y de la construcción física del diodo. Para los diodos de germanio, n se considera 1. Para diodos de silicio, el valor predicho de n es 2 con corrientes muy pequeñas o grandes; Pero para la mayoría de los diodos de silicio prácticos, el valor de n se sitúa en el intervalo de 1,1 a 1,8.

46 Modelo Exponencial Modelos del Diodo

47 Modelo Exponencial Polarización Directa Modelos del Diodo Polarización Inversa

48 Análisis gráfico usando el modelo exponencial Modelos del Diodo

49 Modelos del Diodo Modelo de Pequeña Señal a Baja Frecuencia En los circuitos electrónicos, una fuente de corriente continua establece normalmente el punto de funcionamiento de la corriente continua de los dispositivos electrónicos, incluidos los diodos, y una señal de corriente alterna se suele entonces superponer en el punto de funcionamiento. De este modo, el punto de funcionamiento, que consta tanto de una componente de CC como de una señal de CA, variará con la magnitud de la señal de CA Dado que la característica i D -v D de un diodo es no lineal, la corriente de diodo i D también variará de forma no lineal con la tensión de señal de CA. La magnitud de la señal de CA es generalmente pequeña, sin embargo, por lo que el punto de funcionamiento cambia sólo por una pequeña cantidad. Por lo tanto, la pendiente de la característica (Di D frente a Dv D ) puede aproximarse linealmente. Bajo esta condición, podemos representar el diodo como una resistencia para determinar la respuesta del circuito a esta pequeña señal AC. Es decir, la característica de diodo no lineal puede linealizarse en el punto de funcionamiento.

50 Modelo de Pequeña Señal a Baja Frecuencia Modelos del Diodo

51 Modelo de Pequeña Señal a Baja Frecuencia Modelos del Diodo

52 Modelo del Diodo en Pspice/Spice Modelos del Diodo

53 Modelo del Diodo AC a alta frecuencia Modelos del Diodo Un diodo práctico, exhibe algunos efectos capacitivos que necesitan ser incorporados en cualquier modelo de alta frecuencia con el fin de obtener la respuesta dependiente del tiempo de un circuito de diodo. Hemos visto que existe una capa de agotamiento en la unión pn polarizada inversamente de diodos. Es decir, hay una región empobrecida de portadores, que separa dos regiones de conductividad relativamente buena. Así tenemos en esencia un condensador de placa paralela, con silicio como el dieléctrico (Capacitancia de Unión C j ). Además, hay una inyección de un gran número de portadores minoritarios bajo condiciones de polarización directa. Por lo tanto, existen dos tipos de capacitancia: agotamiento y difusión (Capacitancia de Difusión C d ).

54 Modelo del Diodo AC a alta frecuencia Modelos del Diodo

ESTRUCTURA DEL ÁTOMO

ESTRUCTURA DEL ÁTOMO ESTRUCTURA DEL ÁTOMO BANDAS DE VALENCIA Y DE CONDUCCIÓN MECANISMOS DE CONDUCCIÓN EN UN SEMICONDUCTOR SEMICONDUCTORES *Semiconductor *Cristal de silicio *Enlaces covalentes. Banda de valencia *Semiconductor

Más detalles

CURSO TALLER ACTIVIDAD 16 DIODOS I. DIODO RECTIFICADOR

CURSO TALLER ACTIVIDAD 16 DIODOS I. DIODO RECTIFICADOR CURSO TALLER ACTIVIDAD 16 DIODOS I. DIODO RECTIFICADOR Un diodo es un dispositivo semiconductor. Los dispositivos semiconductores varían sus propiedades al variar la temperatura (son sensibles a la temperatura).

Más detalles

SEMICONDUCTORES. Silicio intrínseco

SEMICONDUCTORES. Silicio intrínseco Tema 3: El Diodo 0 SEMICONDUCTORES Silicio intrínseco 1 SEMICONDUCTORES Conducción por Huecos A medida que los electrones se desplazan a la izquierda para llenar un hueco, el hueco se desplaza a la derecha.

Más detalles

El Diodo TEMA 3. ÍNDICE 3.1. LA UNIÓN P-N EN EQUILIBRIO 3.2. POLARIZACIÓN DIRECTA E INVERSA 3.3. ECUACIÓN DEL DIODO IDEAL

El Diodo TEMA 3. ÍNDICE 3.1. LA UNIÓN P-N EN EQUILIBRIO 3.2. POLARIZACIÓN DIRECTA E INVERSA 3.3. ECUACIÓN DEL DIODO IDEAL TEMA 3 El Diodo El Diodo ÍNDICE 3.1. LA UNIÓN P-N EN EQUILIBRIO 3.2. POLARIZACIÓN DIRECTA E INVERSA 3.3. ECUACIÓN DEL DIODO IDEAL 3.4. FENÓMENOS DE AVALANCHA Y ZENER 3.5. OTROS TIPOS DE DIODOS. MODELOS

Más detalles

A.1. El diodo. - pieza básica de la electrónica: unión de un semiconductor de tipo p y otro de tipo n es un elemento no lineal

A.1. El diodo. - pieza básica de la electrónica: unión de un semiconductor de tipo p y otro de tipo n es un elemento no lineal A.1.1. Introducción A.1. El diodo - pieza básica de la electrónica: unión de un semiconductor de tipo p y otro de tipo n es un elemento no lineal A.1.2. Caracterización del diodo - al unirse la zona n

Más detalles

El Diodo. Lección Ing. Jorge Castro-Godínez. II Semestre Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica

El Diodo. Lección Ing. Jorge Castro-Godínez. II Semestre Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica El Diodo Lección 03.1 Ing. Jorge Castro-Godínez Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica II Semestre 2013 Jorge Castro-Godínez El Diodo 1 / 29 Contenido 1 Modelo del Diodo

Más detalles

Si un material tipo P y otro de tipo N se juntan mecánicamente para formar un único cristal, esa juntura se llama juntura PN o diodo de juntura.

Si un material tipo P y otro de tipo N se juntan mecánicamente para formar un único cristal, esa juntura se llama juntura PN o diodo de juntura. CURSO: SEMICONDUCTORES UNIDAD 1: EL DIODO - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA 1. INTRODUCCIÓN Los dispositivos de estado sólido, tales como los diodos de juntura y los transistores se fabrican de

Más detalles

Principios Básicos Materiales Semiconductores

Principios Básicos Materiales Semiconductores Principios Básicos Materiales Semiconductores Definición De Semiconductor Los semiconductores son materiales cuya conductividad varía con la temperatura, pudiendo comportarse como conductores o como aislantes.

Más detalles

Universidad de Carabobo Facultad de Ingeniería Departamento de Electrónica y Comunicaciones Electrónica I Prof. César Martínez Reinoso

Universidad de Carabobo Facultad de Ingeniería Departamento de Electrónica y Comunicaciones Electrónica I Prof. César Martínez Reinoso Guía de Ejercicios Parte II. Unión PN y Diodos 1. Una unión P-N tiene un dopado de átomos aceptantes de 10 17 cm -3 en el material tipo P y un dopado de impurezas donantes de 5*10 15 cm -3 en el lado N.

Más detalles

ELECTRONICA GENERAL. Tema 2. Teoría del Diodo.

ELECTRONICA GENERAL. Tema 2. Teoría del Diodo. Tema 2. Teoría del Diodo. 1.- En un diodo polarizado, casi toda la tensión externa aplicada aparece en a) únicamente en los contactos metálicos b) en los contactos metálicos y en las zonas p y n c) la

Más detalles

1. Identificar los electrodos de un diodo (de Silicio o de Germanio).

1. Identificar los electrodos de un diodo (de Silicio o de Germanio). EL DIODO SEMICONDUCTOR Objetivos 1. Identificar los electrodos de un diodo (de Silicio o de Germanio). 2. Probar el estado de un diodo utilizando un ohmetro. 3. Obtener curvas características de un diodo.

Más detalles

Copyright The McGraw-Hill Companies, Inc. Queda prohibida su reproducción o visualización sin permiso del editor.

Copyright The McGraw-Hill Companies, Inc. Queda prohibida su reproducción o visualización sin permiso del editor. Electrónica Tema 1 Semiconductores Contenido Consideraciones previas: Fuentes de corriente Teorema de Thevenin Teorema de Norton Conductores y Semiconductores Unión p-n Fundamentos del diodo 2 Fuente de

Más detalles

Accionamientos eléctricos Tema VI

Accionamientos eléctricos Tema VI Dispositivos semiconductores de potencia. ELECTRÓNICA DE POTENCIA - Con el nombre de electrónica de potencia o electrónica industrial, se define aquella rama de la electrónica que se basa en la utilización

Más detalles

DIODO. Definición: Dispositivo Semiconductor Dos terminales Permite la Circulación de corriente ( I ) en un solo sentido

DIODO. Definición: Dispositivo Semiconductor Dos terminales Permite la Circulación de corriente ( I ) en un solo sentido DIODO Definición: Dispositivo Semiconductor Dos terminales Permite la Circulación de corriente ( I ) en un solo sentido Símbolo y convenciones V - I: V F - - V R I F I R DIODO Ideal vs. Semiconductor DIODO

Más detalles

TEMA 1.2 UNIÓN PN. DIODO. TEMA 1 SEMICONDUCTORES. DIODO. FUNDAMENTOS DE ELECTRÓNICA

TEMA 1.2 UNIÓN PN. DIODO. TEMA 1 SEMICONDUCTORES. DIODO. FUNDAMENTOS DE ELECTRÓNICA TEMA 1.2 UNIÓN PN. DIODO. TEMA 1 SEMICONDUCTORES. DIODO. FUNDAMENTOS DE ELECTRÓNICA 09 de octubre de 2014 TEMA 1.2 UNIÓN PN. DIODO. Introducción. Unión PN en equilibrio térmico Unión PN polarizada Modelos

Más detalles

RECTIFICADORES MONOFASICOS NO CONTROLADOS

RECTIFICADORES MONOFASICOS NO CONTROLADOS UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERIA QUIMICA Y TEXTIL CONTROLES ELECTRICOS Y AUTOMATIZACION EE - 621 RECTIFICADORES MONOFASICOS NO CONTROLADOS TEMAS Diodos semiconductores, Rectificadores

Más detalles

Diodo. Materiales Eléctricos. Definición: Símbolo y Convenciones V - I: 10/06/2015

Diodo. Materiales Eléctricos. Definición: Símbolo y Convenciones V - I: 10/06/2015 Materiales Eléctricos Diodo Definición: Dispositivo Semiconductor Dos terminales Permite la Circulación de corriente ( I ) en un solo sentido Símbolo y Convenciones V - I: V F - - V R I F I R 1 Relación

Más detalles

INTEGRANTES (Apellido, nombres) FIRMA SECCION NOTA

INTEGRANTES (Apellido, nombres) FIRMA SECCION NOTA UNIVERSIDAD TECNOLÓGICA DE EL SALVADOR FACULTAD DE INFORMATICA Y CIENCIAS APLICADAS ESCUELA DE CIENCIAS APLICADASDEPARTAMENTO DE MATEMATICA Y CIENCIAS CATEDRA FISICA ASIGNATURA: FUNDAMENTOS DE FISICA APLICADA

Más detalles

Práctica 1 del DIODOS. Objetivos Identificar y btener la curva característica del diodo

Práctica 1 del DIODOS. Objetivos Identificar y btener la curva característica del diodo Práctica 1 del DIODOS. Objetivos Identificar y btener la curva característica del diodo Material y equipo Diodo 1N4148, Protoboard, fuente de voltaje DC, Manual ECG, Volmetro Marco Teórico 1. TEORIA DEL

Más detalles

Electrónica Analógica I Prof. Ing. Mónica L. González. Diodo Zener: características y especificaciones en hojas de datos

Electrónica Analógica I Prof. Ing. Mónica L. González. Diodo Zener: características y especificaciones en hojas de datos Diodo Zener: características y especificaciones en hojas de datos Cuando la tensión inversa aplicada a un diodo de juntura PN excede cierto valor denominado tensión de ruptura la corriente inversa crece

Más detalles

SEMICONDUCTORES (parte 2)

SEMICONDUCTORES (parte 2) Estructura del Silicio y del Germanio SEMICONDUCTORES (parte 2) El átomo de Silicio (Si) contiene 14 electrones dispuestos de la siguiente forma: 2 electrones en la primer capa (capa completa), 8 electrones

Más detalles

Física de semiconductores. El diodo

Física de semiconductores. El diodo Fundamentos Físicos y Tecnológicos de la Informática Física de semiconductores. El diodo El diodo. Ley del diodo. Curvas características. Modelos eléctricos. Otros tipos de diodos: Zener y LED. Aplicación

Más detalles

RECTIFICACIÓN DE MEDIA ONDA

RECTIFICACIÓN DE MEDIA ONDA RECTIFICACIÓN DE MEDIA ONDA I. OBJETIVOS Definir lo que es una fuente de baja tensión. Analizar los componentes a utilizar. Montaje del circuito. Análisis de tensión (AC-DC). Determinar las gráficas a

Más detalles

1 Rectificador de media onda

1 Rectificador de media onda PRÁCTICA 3 NOMBRE: NOMBRE: NOMBRE: GRUPO: FECHA: 1 Rectificador de media onda 1.1 Objetivos Se pretende que el alumno conozca las características esenciales del diodo como elemento de circuito mediante

Más detalles

Práctica Nº 4 DIODOS Y APLICACIONES

Práctica Nº 4 DIODOS Y APLICACIONES Práctica Nº 4 DIODOS Y APLICACIONES 1.- INTRODUCCION El objetivo Los elementos que conforman un circuito se pueden caracterizar por ser o no lineales, según como sea la relación entre voltaje y corriente

Más detalles

SEMICONDUCTORES (parte 2)

SEMICONDUCTORES (parte 2) Estructura del licio y del Germanio SEMICONDUCTORES (parte 2) El átomo de licio () contiene 14 electrones dispuestos de la siguiente forma: 2 electrones en la primer capa (capa completa), 8 electrones

Más detalles

TEMA 7: Desviaciones respecto a la ecuación de Shockley: el diodo real

TEMA 7: Desviaciones respecto a la ecuación de Shockley: el diodo real Índice TEMA 7: Desviaciones respecto a la ecuación de Shockley: el diodo real 7.1 7.1. INTRODUCCIÓN 7.1 7.2. DESIACIONES BAJO POLARIZACIÓN DIRECTA 7.3 7.3. DESIACIONES BAJO POLARIZACIÓN INERSA 7.6 7.3.1.

Más detalles

DIODOS. Área Académica: Licenciatura en Ingeniería Industrial. Profesor(a):Juan Carlos Fernández Ángeles. Periodo: Enero- Junio 2018

DIODOS. Área Académica: Licenciatura en Ingeniería Industrial. Profesor(a):Juan Carlos Fernández Ángeles. Periodo: Enero- Junio 2018 DIODOS Área Académica: Licenciatura en Ingeniería Industrial Profesor(a):Juan Carlos Fernández Ángeles Periodo: Enero- Junio 2018 Qué es un diodo? El diodo es un elemento semiconductor de estado sólido

Más detalles

Sesión 7 Fundamentos de dispositivos semiconductores

Sesión 7 Fundamentos de dispositivos semiconductores Sesión 7 Fundamentos de dispositivos semiconductores Componentes y Circuitos Electrónicos Isabel Pérez / José A García Souto www.uc3m.es/portal/page/portal/dpto_tecnologia_electronica/personal/isabelperez

Más detalles

TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA. FÍSICA DE SEMICONDUCTORES

TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA. FÍSICA DE SEMICONDUCTORES TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA. FÍSICA DE SEMICONDUCTORES TTEEMAA 11: :: IINTTRRODUCCCCIIÓN AA LLAA EELLEECCTTRRÓNIICCAA... FFÍÍSSIICCAA DEE SSEEMIICCONDUCCTTORREESS 11 1) Cuál de los siguientes

Más detalles

Diodos, Tipos y Aplicaciones

Diodos, Tipos y Aplicaciones Diodos, Tipos y Aplicaciones Andrés Morales, Camilo Hernández, David Diaz C El diodo ideal es un componente discreto que permite la circulación de corriente entre sus terminales en un determinado sentido,

Más detalles

Electrónica. Tema 2 Diodos. Copyright The McGraw-Hill Companies, Inc. Queda prohibida su reproducción o visualización sin permiso del editor.

Electrónica. Tema 2 Diodos. Copyright The McGraw-Hill Companies, Inc. Queda prohibida su reproducción o visualización sin permiso del editor. Electrónica Tema 2 Diodos Contenido Ideas básicas Aproximaciones Resistencia interna y Resistencia en continua Rectas de carga Diodo zener Dispositivos optoelectrónicos Diodo Schottky 2 Diodo Es un dispositivo

Más detalles

UNIVERSIDAD DE LEON. Departamento de Ingeniería Eléctrica y Electrónica TEMA 1 TEORÍA GENERAL DE SEMICONDUCTORES

UNIVERSIDAD DE LEON. Departamento de Ingeniería Eléctrica y Electrónica TEMA 1 TEORÍA GENERAL DE SEMICONDUCTORES UNIVERSIDAD DE LEON Departamento de Ingeniería Eléctrica y Electrónica TEMA 1 TEORÍA GENERAL DE SEMICONDUCTORES Electrónica Básica, Industrial e Informática Luis Ángel Esquibel Tomillo Introducción Para

Más detalles

Código de colores. Resistencias

Código de colores. Resistencias Resistencias La función de las resistencias es oponerse al paso de la comente eléctrica.su magnitud se mide en ohmios ( ) y pueden ser variables o fijas. El valor de las resistencias variables puede ajustarse

Más detalles

Dispositivos semiconductores 2da Clase

Dispositivos semiconductores 2da Clase Introducción a la Electrónica Dispositivos semiconductores 2da Clase Semiconductores: Silicio Estructura ra cristalina La distribución espacial de los átomos dentro de un material determina sus propiedades.

Más detalles

Otros tipos de Diodos. ITESM Campus Monterrey, Departamento de Ing. Eléctrica

Otros tipos de Diodos. ITESM Campus Monterrey, Departamento de Ing. Eléctrica Otros tipos de Diodos Diodo Schottky Se forma uniendo un metal como platino o aluminio a un silicio tipo p o n. Utilizado en circuitos integrados en donde se requiera conmutación a altas velocidades Voltaje

Más detalles

3.1. Conceptos básicos sobre semiconductores

3.1. Conceptos básicos sobre semiconductores 1 3.1. Conceptos básicos sobre semiconductores Estructura interna de los dispositivos electrónicos La mayoría de los sistemas electrónicos se basan en dispositivos semiconductores Resistencia: R=ρL/S Materiales

Más detalles

Interpretación de las hojas de datos de diodos

Interpretación de las hojas de datos de diodos 1 Interpretación de las hojas de datos de diodos En las hojas de datos dadas por el fabricante de cualquier dispositivo electrónico encontramos la información necesaria como para poder operar al dispositivo

Más detalles

1] Indique una secuencia posible de operaciones que permita obtener un diodo como el esquematizado.

1] Indique una secuencia posible de operaciones que permita obtener un diodo como el esquematizado. GUIA DE LECTURA/PROBLEMAS. DIODOS. CONTENIDOS La unión p-n, zona de carga espacial, polarización directa e inversa, curvas características, capacidad asociada a la unión p-n y circuitos con diodos. Resolución:

Más detalles

COMPONENTES ELECTRÓNICOS ANALÓGICOS Página 1 de 7

COMPONENTES ELECTRÓNICOS ANALÓGICOS Página 1 de 7 COMPONENTES ELECTRÓNICOS ANALÓGICOS Página 1 de 7 SEMICONDUCTORES Termistores Foto resistores Varistores Diodo Rectificador Puente Rectificador Diodo de Señal Diodo PIN Diodo Zener Diodo Varactor Fotodiodo

Más detalles

UNIVERSIDAD POLITECNICA SALESIANA UNIDAD2: SEMICONDUCTORES ING. JUAN M. IBUJÉS VILLACÍS, MBA

UNIVERSIDAD POLITECNICA SALESIANA UNIDAD2: SEMICONDUCTORES ING. JUAN M. IBUJÉS VILLACÍS, MBA UNIVERSIDAD POLITECNICA SALESIANA UNIDAD2: SEMICONDUCTORES ING. JUAN M. IBUJÉS VILLACÍS, MBA Qué es un semiconductor? Es un material con una resistividad menor que un aislante y mayor que un conductor.

Más detalles

EC 1113 CIRCUITOS ELECTRÓNICOS

EC 1113 CIRCUITOS ELECTRÓNICOS EC 1113 CIRCUITOS ELECTRÓNICOS PRESENTACIÓN PERSONAL SECCIÓN 1 Prof. María Isabel Giménez de Guzmán Correo electrónico: mgimenez@usb.ve HORARIO Y UBICACIÓN SECCIÓN Martes: 9:30 a 11:30 am ELE 218 Jueves:

Más detalles

Ecuación Característica del diodo

Ecuación Característica del diodo Ecuación Característica del diodo La ecuación característica del diodo de acuerdo al modelo Shockley es: ( ) con ; k = Constante de Boltzmann, q = Carga del electrón y T = temperatura. En este documento

Más detalles

MATERIALES ELECTRICOS JUNTURA PN

MATERIALES ELECTRICOS JUNTURA PN MATERIALES ELECTRICOS JUNTURA PN Consideremos por separado un Semiconductor Tipo N y un semiconductor tipo P. Analicemos el Diagrama de Bandas de cada uno por separado. El semiconductor Tipo N tendrá una

Más detalles

RECTIFICANDO SEÑALES ALTERNAS MEDIANTE EL USO DE DIODOS

RECTIFICANDO SEÑALES ALTERNAS MEDIANTE EL USO DE DIODOS RECTIFICANDO SEÑALES ALTERNAS MEDIANTE EL USO DE DIODOS AUTORÍA ANGEL MANUEL RUBIO ORTEGA TEMÁTICA TECNOLOGÍA. ELECTRÓNICA ETAPA ESO, BACHILLERATO Resumen Debido al gran interés que suscita el funcionamiento

Más detalles

Sistemas eléctricos, de seguridad y confortabilidad

Sistemas eléctricos, de seguridad y confortabilidad Sistemas eléctricos, de seguridad y confortabilidad Tema 4. Fundamentos de Electrónica 4.1 Introducción 4.2 Componentes básicos. Verificación y aplicaciones 4.3 Rectificadores Definición de electrónica

Más detalles

APLICACIONES DE LOS SEMICONDUCTORES EN DISPOSITIVOS ELECTRICOS

APLICACIONES DE LOS SEMICONDUCTORES EN DISPOSITIVOS ELECTRICOS APLICACIONES DE LOS SEMICONDUCTORES EN DISPOSITIVOS ELECTRICOS GRUPO 3 Rubén n Gutiérrez González María a Urdiales García María a Vizuete Medrano Índice Introducción Tipos de dispositivos Unión n tipo

Más detalles

Apuntes sobre la capacitancia del diodo

Apuntes sobre la capacitancia del diodo Apuntes sobre la capacitancia del diodo Considérese un material de silicio dopado tipo N que posee aproimadamente N D electrones libres/cm moviéndose en forma aleatoria en la capa de conducción en diferentes

Más detalles

Unidad didáctica: "Electrónica Analógica"

Unidad didáctica: Electrónica Analógica Unidad didáctica: "Electrónica Analógica" 1.- Introducción. 2.- La resistencia. 3.- El condensador. 4.- El diodo. 5.- El transistor. 1.- Introducción. La electrónica se encarga de controlar la circulación

Más detalles

TIRISTORES. Dispositivos pnpn RECTIFICADOR CONTROLADO DE SILICIO (SCR)

TIRISTORES. Dispositivos pnpn RECTIFICADOR CONTROLADO DE SILICIO (SCR) TIRISTORES INTRODUCCION El diodo semiconductor de dos capas ha dado lugar a dispositivos de tres, cuatro e incluso cinco capas. Se considerará primero una familia de dispositivos pnpn de cuatro capas:

Más detalles

UNIDAD TEMATICA 3: TRANSITORES DE UNION BIPOLAR (BJT S)

UNIDAD TEMATICA 3: TRANSITORES DE UNION BIPOLAR (BJT S) UNIDAD TEMATICA 3: TRANSITORES DE UNION BIPOLAR (BJT S) 1.-Operación del transistor bipolar El transistor de unión bipolar (del inglés Bipolar Junction Transistor, o sus siglas BJT) es un dispositivo electrónico

Más detalles

UD6.- TEORIA DE SEMICONDUCTORES EL DIODO

UD6.- TEORIA DE SEMICONDUCTORES EL DIODO UD6. TEORIA DE SEMICONDUCTORES EL DIODO Centro CFP/ES CONSTITUCIÓN INTERNA DE LA MATERIA Moléculas y Átomos 1 CONSTITUCIÓN INTERNA DE LA MATERIA Clasificación de los cuerpos CONSTITUCIÓN INTERNA DE LA

Más detalles

TRANSISTOR BIPOLAR: TEMA 2.1

TRANSISTOR BIPOLAR: TEMA 2.1 TRANSISTOR BIPOLAR: TEMA 2.1 Zaragoza, 12 de noviembre de 2013 ÍNDICE TRANSISTOR BIPOLAR Tema 2.1 Introducción Las corrientes en el BJT Ecuaciones de Ebers Moll TRANSISTOR BIPOLAR Tema 2.1 Introducción

Más detalles

DIODO DE UNIÓN P N TECNOLOGÍA ELECTRÓNICA (2009/2010) BRÉGAINS, JULIO IGLESIA, DANIEL LAMAS, JOSÉ TE (09/10). TEMA 2: DIODO DE UNIÓN PN.

DIODO DE UNIÓN P N TECNOLOGÍA ELECTRÓNICA (2009/2010) BRÉGAINS, JULIO IGLESIA, DANIEL LAMAS, JOSÉ TE (09/10). TEMA 2: DIODO DE UNIÓN PN. DIODO DE UNIÓN P N TECNOLOGÍELECTRÓNIC(2009/2010) BRÉGAINS, JULIO IGLESIA, DANIEL LAMAS, JOSÉ DEPARTAMENTO DE ELECTRÓNICA Y SISTEMAS SÍMBOLO Y ESTRUCTURAS DEL DIODO PN 2 DE 30 CIRCUITO ABIERTO UNIÓN P

Más detalles

Marco Antonio Artiga Montelegre. Semiconductores

Marco Antonio Artiga Montelegre. Semiconductores Marco Antonio Artiga Montelegre Semiconductores El átomo está compuesto de núcleo (protones y neutrones) y electrones. Entre los electrones y protones se ejercen fuerzas de atracción. Las fuerzas se deben

Más detalles

LA UNIÓN P-N. La unión p-n en circuito abierto. Diapositiva 1 FUNDAMENTOS DE DISPOSITIVOS ELECTRONICOS SEMICONDUCTORES

LA UNIÓN P-N. La unión p-n en circuito abierto. Diapositiva 1 FUNDAMENTOS DE DISPOSITIVOS ELECTRONICOS SEMICONDUCTORES Diapositiva 1 LA UNÓN PN La unión pn en circuito abierto FUNDAMENTOS DE DSPOSTOS ELECTRONCOS SEMCONDUCTORES A K Zona de deplexión Unión p n Contacto óhmico ones de impurezas dadoras ones de impurezas aceptoras

Más detalles

CIRCUITOS ELECTRICOS, COMPONENTES ELECTRÓNICOS, Y APARATOS DE MEDIDA

CIRCUITOS ELECTRICOS, COMPONENTES ELECTRÓNICOS, Y APARATOS DE MEDIDA CIRCUITOS ELECTRICOS, COMPONENTES ELECTRÓNICOS, Y APARATOS DE MEDIDA Joaquín Agulló Roca 3º ESO CIRCUITOS ELECTRICOS MAGNITUDES ELECTRICAS La carga eléctrica (q) de un cuerpo expresa el exceso o defecto

Más detalles

El Transistor BJT 1/11

El Transistor BJT 1/11 l Transistor JT 1/11 1. ntroducción Un transistor es un dispositivo semiconductor de tres terminales donde la señal en uno de los terminales controla la señal en los otros dos. Se construyen principalmente

Más detalles

El diodo semiconductor. Tutorial de Electrónica

El diodo semiconductor. Tutorial de Electrónica El diodo semiconductor Tutorial de Electrónica Introducción Los diodos son dispositivos electrónicos cuyo funcionamiento consiste en permitir el paso de la corriente en un sentido y oponerse en el opuesto.

Más detalles

Semiconductores. La característica común a todos ellos es que son tetravalentes

Semiconductores. La característica común a todos ellos es que son tetravalentes Semiconductores Un semiconductor es un dispositivo que se comporta como conductor o como aislante dependiendo del campo eléctrico en el que se encuentre. Elemento Grupo Electrones en la última capa Cd

Más detalles

COMPONENTES ELECTRÓNICOS

COMPONENTES ELECTRÓNICOS Página 1 de 6 COMPONENTES ELECTRÓNICOS RESISTENCIAS Cualquier elemento localizado en el paso de una corriente eléctrica sea esta corriente continua o corriente alterna y causa oposición a que ésta circule

Más detalles

FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica

FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica LABORATORIO DE ELECTRÓNICA DE POTENCIA 1. TEMA PRÁCTICA N 9 RECTIFICADOR MONOFÁSICO

Más detalles

CEDEHP Profesor: Agustín Solís M. Medición y análisis de componentes y circuitos electrónicos CUESTIONARIO NRO. 2. El Transistor

CEDEHP Profesor: Agustín Solís M. Medición y análisis de componentes y circuitos electrónicos CUESTIONARIO NRO. 2. El Transistor CUESTIONARIO NRO. 2 El Transistor 1.- El transistor es un dispositivo electrónico semiconductor que cumple funciones de? R: amplificador, oscilador, conmutador o rectificador. 2.- El término "transistor"

Más detalles

Sistemas de comunicaciones vía Fibra Óptica II

Sistemas de comunicaciones vía Fibra Óptica II Sistemas de comunicaciones vía Fibra Óptica II UNIVERSIDAD TECNOLOGICAS DE LA MIXTECA INGENIERÍA EN ELECTRÓNICA NOVENO SEMESTRE DICIEMBRE 2005 M.C. MARIBEL TELLO BELLO TRANSMISORES DE FIBRA ÓPTICA TRANSMISORES

Más detalles

5. Transistor de Unión Bipolar BJT. Electrónica Analógica

5. Transistor de Unión Bipolar BJT. Electrónica Analógica 5. Transistor de Unión Bipolar BJT Electrónica Analógica Temas: Estructura de un BJT Operación básica de un BJT Características y parámetros de un BJT El BJT como amplificador El BJT como interruptor Transistor

Más detalles

GUIA TERCER PARCIAL FÍSICA III GUÍA TERCER PARCIAL 1

GUIA TERCER PARCIAL FÍSICA III GUÍA TERCER PARCIAL 1 GUIA TERCER PARCIAL 1. Qué es electrodinámica? Es la parte de la física y la electricidad que estudia las cargas eléctricas en movimiento y los fenómenos originados por este. 2. Qué son las fuentes de

Más detalles

La corriente de difusión depende de los portadores minoritarios que saltan la barrera Corriente de electrones:

La corriente de difusión depende de los portadores minoritarios que saltan la barrera Corriente de electrones: 7.3 El diodo de unión: el dispositivo Dispositivo: unión P-N con contactos Característica I(V): curva corriente-ddp aplicada Corriente positiva: interiormente de P hacia N V = 0 Corriente de huecos: +

Más detalles

Dispositivos Semiconductores 2do Cuatrimestre de 2012

Dispositivos Semiconductores  2do Cuatrimestre de 2012 DIODOS ESPECIALES Introducción Este apunte es una introducción general a diversos diodos con propiedades eléctricas especiales. Para comprender en detalle el funcionamiento de estos dispositivos se requieren

Más detalles

Tema 1: Teoría de Semiconductores INDICE

Tema 1: Teoría de Semiconductores INDICE INDICE 1. Semiconductor intrínseco 2. Conducción por huecos (h + ) y electrones (e - ) 3. Semiconductor extrínseco: material tipo N (MTN) y tipo P (MTP) 4. Deriva y difusión de portadores 5. La unión P-N:

Más detalles

Hasta el momento, todos los reguladores que hemos presentado en nuestras notas contenían como elemento conmutador a un tiristor.

Hasta el momento, todos los reguladores que hemos presentado en nuestras notas contenían como elemento conmutador a un tiristor. Reguladores (cont.) Hasta el momento, todos los reguladores que hemos presentado en nuestras notas contenían como elemento conmutador a un tiristor. NOTA: Un tiristor es un dispositivo semiconductor de

Más detalles

El transistor de efecto de campo

El transistor de efecto de campo 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA ONCE SEGUNDO 6 DOCENTE(S) DEL AREA:NILSON YEZID VERA CHALA COMPETENCIA: USO Y APROPIACION DE LA TECNOLOGIA NIVEL DE COMPETENCIA: INTERPRETATIVA

Más detalles

Tema 2: Diodos y circuitos con diodos INDICE

Tema 2: Diodos y circuitos con diodos INDICE INDICE 1. Características del diodo: Corriente de conducción, corriente de saturación corriente zener y corriente de avalancha 2. Análisis de circuitos con diodos: la línea de carga. Ejemplo. 3. Modelos

Más detalles

Resultado: V (Volt) I (A)

Resultado: V (Volt) I (A) Ejercicios relativos al diodo de unión pn 1. Una unión pn abrupta de germanio tiene las siguientes concentraciones de impurezas: N A = 5 10 14 cm -3. N D = 10 16 cm -3 ε r = 16.3 ε 0 = 8.854 10-12 F m

Más detalles

LABORATORIO DE ELECTRÓNICA1 PRACTICA Nº 2 El Diodo. Estudio del componente

LABORATORIO DE ELECTRÓNICA1 PRACTICA Nº 2 El Diodo. Estudio del componente LABORATORIO DE ELECTRÓNICA1 PRACTICA Nº 2 El Diodo. Estudio del componente Objetivos: 1. Comprobar el estado de un diodo semiconductor e identificar el cátodo (zona N) y el ánodo (zona P). 2. Realizar

Más detalles

TEMA 2 : DISPOSITIVOS Y COMPONENTES ELECTRÓNICOS

TEMA 2 : DISPOSITIVOS Y COMPONENTES ELECTRÓNICOS UNIVERSIDAD DE LEON Departamento de Ingeniería Eléctrica y Electrónica TEMA 2 : DISPOSITIVOS Y COMPONENTES ELECTRÓNICOS Electrónica Básica, Industrial e Informática Luis Ángel Esquibel Tomillo EL DIODO

Más detalles

INTRODUCCIÓN A LA ELECTRÓNICA

INTRODUCCIÓN A LA ELECTRÓNICA INTRODUCCIÓN A LA ELECTRÓNICA LA ELECTRICIDAD. CONCEPTOS BÁSICOS. Los átomos de lo materiales conductores tienen electrones en su capa externa que pueden saltar fácilmente de unos átomos a otros. Los electrones

Más detalles

LABORATORIO DE ELECTRÓNICA DE POTENCIA PRÁCTICA N 8

LABORATORIO DE ELECTRÓNICA DE POTENCIA PRÁCTICA N 8 ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica 1. TEMA

Más detalles

Tema 3: COMPONENTES NO LINEALES: DIODOS

Tema 3: COMPONENTES NO LINEALES: DIODOS Tema 3: COMPOETES O LIEALES: DIODOS Mª del Carmen Coya Párraga Fundamentos de Electrónica 1 Índice: 3.1) Introducción a los elementos de circuitos no lineales: Propiedades básicas. Análisis gráfico con

Más detalles

LABORATORIO DE FISICA III PRACTICA 4 TRANSFROMADORES Y RECTIFICADORES

LABORATORIO DE FISICA III PRACTICA 4 TRANSFROMADORES Y RECTIFICADORES LABORATORIO DE FISICA III En la figura anteriores grafica de un lado el voltaje de entrada y del otro, el voltaje de la resistencia. A continuación se aprecia una representación del diodo cuando está polarizado

Más detalles

TEORÍA DEL DIODO. Tema Unión p-n. Diodo sin polarizar 2.- Polarización del diodo Polarización inversa Polarización directa.

TEORÍA DEL DIODO. Tema Unión p-n. Diodo sin polarizar 2.- Polarización del diodo Polarización inversa Polarización directa. Tema 2 TEORÍA DEL DIODO. 1.- Unión p-n. Diodo sin polarizar 2.- Polarización del diodo. 2.1.- Polarización inversa. 2.2.- Polarización directa. 3.- Curva característica del diodo. 4.- El diodo como elemento

Más detalles

Electrónica Analógica. Conferencia #4 Funcionamiento y características del transistor bipolar.

Electrónica Analógica. Conferencia #4 Funcionamiento y características del transistor bipolar. Electrónica Analógica Conferencia #4 Funcionamiento y características del transistor bipolar. Transistor bipolar. Principio de funcionamiento. Modelos y representación del BJT. Modos de operación. Bibliografía:

Más detalles

Diodos y Transistores

Diodos y Transistores Componentes electrónicos básicos Diodos y Diodos rectificadores Un diodo no es más que la unión de un material semiconductor tipo N, llamado cátodo o negativo, con uno tipo P, llamado ánodo o positivo,

Más detalles

P A R T A D O. El tiristor. A. Introducción. Electrónica Industrial

P A R T A D O. El tiristor. A. Introducción. Electrónica Industrial A 3.3 P A R T A D O A. Introducción 45 3.3 Se denominan tiristores a todos aquellos componentes semiconductores con dos estados estables cuyo funcionamiento se basa en la realimentación regenerativa de

Más detalles

Electrónica. Transistores de efecto de campo. Introducción a la Electrónica

Electrónica. Transistores de efecto de campo. Introducción a la Electrónica Introducción a la Electrónica Transistores de efecto de campo Introducción a la Electrónica Características La corriente es controlada a travez de un campo eléctrico establecido por el voltaje aplicado

Más detalles

SCR, TRIAC Y DIAC. Electrónica de Potencia

SCR, TRIAC Y DIAC. Electrónica de Potencia SCR, TRIAC Y DIAC Electrónica de Potencia INTRODUCCIÓN Para comprender cada uno de los dispositivos a exponer debemos saber que un tiristor tiene tres terminales un ánodo, un cátodo y una compuerta. Cuando

Más detalles

ISEI JOSE ALFREDO MARTINEZ PEREZ DISPOSITIVOS ELECTRONICOS. Práctica 6. Aplicaciones de los diodos: REGULACIÓN.

ISEI JOSE ALFREDO MARTINEZ PEREZ DISPOSITIVOS ELECTRONICOS. Práctica 6. Aplicaciones de los diodos: REGULACIÓN. JOSE ALFREDO MARTINEZ PEREZ DISPOSITIVOS ELECTRONICOS Práctica 6 Aplicaciones de los diodos: REGULACIÓN. Objetivo: En esta práctica el estudiante conocerá una de las aplicaciones más importantes del diodo

Más detalles

INDICE. Prologo I: Prologo a la electrónica Avance Breve historia Dispositivos pasivos y activos Circuitos electrónicos

INDICE. Prologo I: Prologo a la electrónica Avance Breve historia Dispositivos pasivos y activos Circuitos electrónicos Prologo I: Prologo a la electrónica Avance Breve historia Dispositivos pasivos y activos Circuitos electrónicos INDICE Circuitos discretos e integrados Señales analógicas y digitales Notación 3 Resumen

Más detalles

EL DIODO DE POTENCIA

EL DIODO DE POTENCIA EL DIODO DE POTENCIA Ideas generales sobre diodos de unión PN Ecuación característica del diodo: V V T i = I S (e -1) donde: V T = k T/q I S = A q n i2 (D p /(N D L p )+D n /(N A L n )) Operación con polarización

Más detalles

DIODO SEMICONDUCTOR. Figura 7 Diodo ideal (a) Símbolo (b) curva característica.

DIODO SEMICONDUCTOR. Figura 7 Diodo ideal (a) Símbolo (b) curva característica. DIODO SEMICONDUCTOR DIODO IDEAL El primer dispositivo electrónico que se presentará se denomina diodo. Es el más sencillo de los dispositivos semiconductores pero desempeña un papel vital en los sistemas

Más detalles

Transistor BJT: Fundamentos

Transistor BJT: Fundamentos Transistor BJT: Fundamentos Lección 05.1 Ing. Jorge Castro-Godínez Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica II Semestre 2013 Jorge Castro-Godínez Transistor BJT 1 / 48 Contenido

Más detalles

Ing. Christian Lezama Cuellar

Ing. Christian Lezama Cuellar Ing. Christian Lezama Cuellar 1. Conducción en los materiales Diodo semiconductor: Componente electrónico formado por la unión de dos materiales semiconductores con distintos tipos de impurezas. Modelo

Más detalles

EL MOSFET DE EMPOBRECIMIENTO

EL MOSFET DE EMPOBRECIMIENTO MOSFET El MOSFET (Metal Oxide Semiconductor FET), tiene tres terminales fuente, puerta y drenador. Sin embargo, a diferencia del JFET, la puerta está aislada eléctricamente del canal. Por esta causa, la

Más detalles

Semiconductores. Cristales de silicio

Semiconductores. Cristales de silicio Semiconductores Son elementos, como el germanio y el silicio, que a bajas temperaturas son aislantes. Pero a medida que se eleva la temperatura o bien por la adicción de determinadas impurezas resulta

Más detalles

Capítulo 1. Historia y fundamentos físicos de un transistor.

Capítulo 1. Historia y fundamentos físicos de un transistor. Capítulo 1. Historia y fundamentos físicos de un transistor. 1.1 Fundamentos del transistor TBJ 1.1.1 Corrientes en un transistor de unión o TBJ El transistor bipolar de juntura, o TBJ, es un dispositivo

Más detalles

Rectificador Controlado de Silicio (SCR) Cuáles son las principales aplicaciones de los SCR?

Rectificador Controlado de Silicio (SCR) Cuáles son las principales aplicaciones de los SCR? GUÍA TÉCNICA INFORMATIVA Nro.3 2017 Rectificador Controlado de Silicio (SCR) Cuáles son las principales aplicaciones de los SCR? Qué es un SCR? El rectificador controlado de silicio SCR Silicon Controlled

Más detalles

Circuitos Eléctricos TPR 3º ESO

Circuitos Eléctricos TPR 3º ESO TEMA 1 CORRIENTE ELÉCTRICA INTRODUCCIÓN CIRCUITO ELÉCTRICO MAGNITUDES ELÉCTRICAS LEY DE OHM CORRIENTE ELÉCTRICA POTENCIA Y ENERGÍA 1._ INTRODUCCIÓN La materia está formada por átomos y cada uno de estos

Más detalles

Apuntes de apoyo N 2 del módulo de electrónica para los terceros años

Apuntes de apoyo N 2 del módulo de electrónica para los terceros años Apuntes de apoyo N 2 del módulo de electrónica para los terceros años Un material semiconductor: el Silicio (Si). El Silicio es el material de la Naturaleza más parecido al Carbono.. Tiene cuatro electrones

Más detalles