Copyright The McGraw-Hill Companies, Inc. Queda prohibida su reproducción o visualización sin permiso del editor.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Copyright The McGraw-Hill Companies, Inc. Queda prohibida su reproducción o visualización sin permiso del editor."

Transcripción

1 Electrónica Tema 1 Semiconductores

2 Contenido Consideraciones previas: Fuentes de corriente Teorema de Thevenin Teorema de Norton Conductores y Semiconductores Unión p-n Fundamentos del diodo 2

3 Fuente de tensión ideal Mantiene una tensión de salida constante, independientemente del valor de R L. 10 V R L V RL = 10 Voltios El modelo ideal puede denominarse primera aproximación. 3

4 Fuentes de tensión Una fuente ideal no tiene resistencia interna La segunda aproximación de una fuente de tensión tiene resistencia interna Una fuente de tensión constante tiene una resistencia interna cuyo valor es 1/100 del valor de la resistencia de carga 4

5 Fuente de tensión real Tiene una resistencia interna en serie con la fuente R S 10 V R L V RL < 10 Voltios Este modelo se conoce como la segunda aproximación. Si R L es igual o mayor que 100 veces R S, la fuente de tensión es constante y se puede emplear la primera aproximación. 5

6 Fuente de corriente ideal Mantiene una corriente de salida constante, independientemente del valor de R L. 1 A R L I RL = 1 Amperio El modelo ideal puede denominarse primera aproximación. 6

7 Fuente de corriente real Presenta una resistencia interna grande en paralelo con la fuente R S R L 1 A I RL < 1 Amperio Este modelo se conoce como la segunda aproximación. Si R S es igual o mayor que 100 veces R L, se dice que la fuente de corriente es constante y se puede utilizar la primera aproximación. 7

8 Teorema de Thevenin Se emplea para reemplazar cualquier circuito lineal por una fuente de tensión equivalente designada por V TH y una resistencia equivalente designada por R TH 8

9 Ejemplo de Thevenin Circuito original 9

10 El teorema de Thevenin puede utilizarse para reemplazar cualquier circuito lineal por una fuente de tensión equivalente V TH y una resistencia equivalente R TH. 6 kω 4 kω 72 V 3 kω R L R TH V TH Calcular o medir Eliminar Calcular V la carga. TH en la los o fuente. medir terminals. la resistencia de Thevenin (R TH ) 10

11 Tensión de Thevenin 11

12 Circuito equivalente de Thevenin Circuito Original 72 V 6 kω 4 kω 3 kω R L Circuito equivalente de Thevenin 6 kω (R TH ) 24 V (V TH ) R L 12

13 Teorema de Norton Se emplea para reemplazar cualquier circuito lineal por una fuente de corriente equivalente designada por I N y una resistencia equivalente designada por R N 13

14 Resistencia de Norton 6 kω 4 kω 72 V 3 kω R L IR NN R Cortocircuitar N es igual que la R TH carga. para hallar I N. 14

15 Corriente de Norton I N = 4 ma R N = 6 KΩ 15

16 Circuito equivalente de Norton Circuito original 72 V 6 kω 4 kω 3 kω R L Circuito equivalente 4 ma (I de Norton N ) 6 kω (R N ) R L 16

17 Circuito equivalente de Thevenin 6 kω (R TH ) 24 V (V TH ) R L Conversión de circuitos R N = R TH V TH I N = RTH Circuito de Norton 4 ma (I dual N ) 6 kω (R N ) R L 17

18 Un dispositivo en abierto La corriente a su través es igual a cero. La tensión que cae en él es desconocida. V = cero x infinito {indeterminado} 18

19 Un dispositivo cortocircuitado La tensión que cae en él es igual a cero. La corriente que circula por él es desconocida. I = 0/0 {indeterminado} 19

20 Conductor Material que permite que la corriente fluya. Ejemplos: cobre, plata, oro. Los mejores conductores tienen un electrón de valencia. 20

21 Estructura atómica del cobre 21

22 Parte interna Núcleo y orbitales internos. El orbital exterior o de valencia controla las propiedades eléctricas. La parte interna del átomo de cobre tiene una carga neta de

23 Parte interna del cobre 23

24 Electrón libre La atracción entre la parte interna del átomo y el electrón de valencia es débil. Una fuerza externa puede fácilmente arrancar un electrón libre de un átomo. 24

25 Semiconductor Un elemento con propiedades eléctricas entre las de un conductor y las de un aislante. 25

26 Ejemplos de semiconductores Los semiconductores tienen normalmente 4 electrones de valencia. Germanio. Silicio. 26

27 Diagramas de la parte interna del cobre y el silicio: Un electrón de valencia Cuatro electrones de valencia Cobre Silicio El núcleo más los orbitales de electrones internos. 27

28 Los átomos de silicio en un cristal comparten los electrones. Saturación de valencia: n = 8 Puesto que los electrones de valencia están enlazados, un cristal de silicio a temperatura ambiente es casi un aislante perfecto. 28

29 En el interior de un cristal de silicio La energía térmica crea algunos electrones libres y huecos. Otros electrones libres y huecos se recombinan. La recombinación puede durar desde unos pocos nanosegundos hasta varios microsegundos. El tiempo entre la creación y la recombinación de un electrón libre y un hueco es el tiempo de vida. 29

30 Los cristales de silicio se dopan para proporcionar portadores permanentes. Electrón libre Hueco (tipo n) (tipo p) Dopante pentavalente Dopante trivalente 30

31 Semiconductor intrínseco Es un semiconductor puro. Un cristal de silicio es intrínseco si todo átomo del cristal es un átomo de silicio. Existen dos tipos de flujo de corriente: electrones y huecos. 31

32 Dopaje Adición de impurezas a un cristal intrínseco para alterar sus propiedades conductividad eléctrica. Un semiconductor dopado es un semiconductor extrínseco. 32

33 Este cristal ha sido dopado con una impureza pentavalente. Los electrones libres en el silicio de tipo n soportan el flujo de corriente. 33

34 Este cristal ha sido dopado con una impureza trivalente. Los huecos en el silicio de tipo p soportan el flujo de la corriente. Observe que la corriente de huecos es opuesta a la corriente de electrones. 34

35 Resumen sobre semiconductores El material más popular es el silicio. Los cristales puros son semiconductores intrínsecos. Los cristales dopados son semiconductores extrínsecos. Los cristales se dopan para ser de tipo n o de tipo p. Un semiconductor de tipo n tendrá pocos portadores minoritarios (huecos). Un semiconductor de tipo p tendrá pocos portadores minoritarios (electrones). 35

36 Un semiconductor puede doparse para tener un exceso de electrones libres o de huecos. Los dos tipos de semiconductores dopados son el tipo n y el tipo p. 36

37 Dopar un cristal con ambos tipos de impurezas da lugar a un diodo de unión pn. P Unión N Ión Ión negativo positivo Algunos electrones cruzarán la unión y rellenarán huecos. Cada vez que esto ocurre se crea una pareja de iones. A medida que esta carga de iones crece, evita una ulterior 37 migración de la carga a través de la unión.

38 La barrera de potencial pn La difusión de electrones crea pares de iones denominados dipolos. Cada dipolo tiene asociado un campo eléctrico. La unión alcanza el equilibrio cuando la barrera de potencial impide que se produzca más difusión. A 25 grados C, la barrera de potencial para una unión pn de silicio es aproximadamente 0,7 voltios. 38

39 Cada electrón que atraviesa la unión y rellena un hueco elimina de forma efectiva ambos portadores de corriente. P N Zona de deplexión Esto da lugar a una región en la unión que se vacía de portadores y actúa como un aislante. 39

40 Polarización directa Los portadores se mueven hacia la unión y colapsan la zona de deplexión. Si la tensión aplicada es mayor que la barrera de potencial, el diodo conduce. 40

41 Polarización inversa Los portadores se mueven alejándose de la unión. La zona de deplexión se reestablece y el diodo no conduce, se corta. 41

42 Polarización de diodo Los diodos de silicio conducen con una polarización directa de aproximadamente 0,7 voltios. Con polarización inversa, la zona de deplexión se hace más ancha y el diodo se corta. Existe una pequeña corriente de portadores minoritarios con la polarización inversa. El flujo inverso debido a las portadores térmicos se denomina corriente de saturación. 42

43 Disrupción del diodo Los diodos no pueden soportar los valores extremos de la polarización inversa. Cuando la polarización inversa es alta, se produce una avalancha de portadores debida al rápido movimiento de los portadores minoritarios. El rango típico de los valores de disrupción va desde 50 voltios hasta 1000 voltios. 43

44 Niveles de energía Es necesaria energía extra para que un electrón salte a un orbital de mayor energía (más alto). Cuanto más alejados están los electrones del núcleo, mayor es su energía potencial. Cuando un electrón cae en un orbital más bajo, pierde energía en forma de calor, luz y otras radiaciones. Un LED es un ejemplo en el que parte de la energía potencial se convierte en luz. 44

45 Barrera de energía Es la barrera de potencial de un diodo. Los electrones necesitan energía suficiente para atravesar la unión. Una fuente de tensión externa que polarice en directa al diodo proporciona dicha energía. 45

46 El lado p de una unión pn tiene átomos trivalentes con una carga interna de +3. Esta parte interna atrae menos electrones que una parte interna con una carga de +5. Unión abrupta Ene ergía Banda de conducción Banda de valencia Lado-P Lado-N En una unión abrupta, las bandas del lado p tienen un nivel de energía ligeramente mayor. Los diodos reales presentan un cambio gradual de un material al otro. La únión abrupta es un concepto teórico. 46

47 Bandas de energía después de haberse formado la zona de deplexión. Energiá Barrera de energía Banda de conducción Banda de valencia Lado P Lado N A un electrón que tratara de difundirse a través de la unión, el camino que debe recorrer le parecerá una barrera de energía. Debe recibir la energía extra de una fuente externa. 47

48 Temperatura de la unión La temperatura de la unión es la temperatura interna del diodo, justo en la unión pn. Cuando un diodo está en conducción, su temperatura de la unión es mayor que la temperatura ambiente. Para temperaturas de la unión elevadas existe una barrera de potencial menor. La barrera de potencial disminuye 2 mv por cada grado Celsius de aumento. 48

49 Corrientes del diodo en inversa Se genera una corriente transitoria cuando la tensión inversa varía. I S, la corriente de saturación o de los portadores minoritarios, se duplica por cada incremento de temperatura de 10 grados Celsius. No es proporcional a la tensión inversa. La superficie de un cristal no tiene enlaces covalentes completos. Los huecos que resultan producen una corriente superficial de fugas que es directamente proporcional a la tensión inversa. 49

Semiconductores. La característica común a todos ellos es que son tetravalentes

Semiconductores. La característica común a todos ellos es que son tetravalentes Semiconductores Un semiconductor es un dispositivo que se comporta como conductor o como aislante dependiendo del campo eléctrico en el que se encuentre. Elemento Grupo Electrones en la última capa Cd

Más detalles

ESTRUCTURA DEL ÁTOMO

ESTRUCTURA DEL ÁTOMO ESTRUCTURA DEL ÁTOMO BANDAS DE VALENCIA Y DE CONDUCCIÓN MECANISMOS DE CONDUCCIÓN EN UN SEMICONDUCTOR SEMICONDUCTORES *Semiconductor *Cristal de silicio *Enlaces covalentes. Banda de valencia *Semiconductor

Más detalles

3.1. Conceptos básicos sobre semiconductores

3.1. Conceptos básicos sobre semiconductores 1 3.1. Conceptos básicos sobre semiconductores Estructura interna de los dispositivos electrónicos La mayoría de los sistemas electrónicos se basan en dispositivos semiconductores Resistencia: R=ρL/S Materiales

Más detalles

SEMICONDUCTORES. Silicio intrínseco

SEMICONDUCTORES. Silicio intrínseco Tema 3: El Diodo 0 SEMICONDUCTORES Silicio intrínseco 1 SEMICONDUCTORES Conducción por Huecos A medida que los electrones se desplazan a la izquierda para llenar un hueco, el hueco se desplaza a la derecha.

Más detalles

Apuntes: Energía Solar Fotovoltaica (ESF) Módulo 2: PRINCIPIO FÍSICO DE LOS DISPOSITIVOS FOTOVOLTAICOS

Apuntes: Energía Solar Fotovoltaica (ESF) Módulo 2: PRINCIPIO FÍSICO DE LOS DISPOSITIVOS FOTOVOLTAICOS Apuntes: Energía Solar Fotovoltaica (ESF) Módulo 2: PRICIPIO FÍSICO DE LOS DISPOSITIVOS FOTOVOLTAICOS Prof. Rafael Martín Lamaison 5 de Marzo de 2004 COTEIDO Introducción: conceptos básicos Átomos Electrones

Más detalles

Sesión 7 Fundamentos de dispositivos semiconductores

Sesión 7 Fundamentos de dispositivos semiconductores Sesión 7 Fundamentos de dispositivos semiconductores Componentes y Circuitos Electrónicos Isabel Pérez / José A García Souto www.uc3m.es/portal/page/portal/dpto_tecnologia_electronica/personal/isabelperez

Más detalles

ELECTRÓNICA BÁSICA. Curso de Electrónica Básica en Internet. Tema 1: Fuentes de tensión y de corriente. Tema 2: Semiconductores

ELECTRÓNICA BÁSICA. Curso de Electrónica Básica en Internet. Tema 1: Fuentes de tensión y de corriente. Tema 2: Semiconductores default ELECTRÓNICA BÁSICA Curso de Electrónica Básica en Internet Tema 1: Fuentes de tensión y de corriente Tema 2: Semiconductores Tema 3: El diodo de unión Tema 4: Circuitos con diodos Tema 5: Diodos

Más detalles

CAPITULO II. DISPOSITIVOS SEMICONDUCTORES.

CAPITULO II. DISPOSITIVOS SEMICONDUCTORES. CAPITULO II. DISPOSITIVOS SEMICONDUCTORES. Tema 4. SEMICONDUCTORES. Las características físicas que permiten distinguir entre un aislante, un semiconductor y un metal, están determinadas por la estructura

Más detalles

APLICACIONES DE LOS SEMICONDUCTORES EN DISPOSITIVOS ELECTRICOS

APLICACIONES DE LOS SEMICONDUCTORES EN DISPOSITIVOS ELECTRICOS APLICACIONES DE LOS SEMICONDUCTORES EN DISPOSITIVOS ELECTRICOS GRUPO 3 Rubén n Gutiérrez González María a Urdiales García María a Vizuete Medrano Índice Introducción Tipos de dispositivos Unión n tipo

Más detalles

TEMA 2 : DISPOSITIVOS Y COMPONENTES ELECTRÓNICOS

TEMA 2 : DISPOSITIVOS Y COMPONENTES ELECTRÓNICOS UNIVERSIDAD DE LEON Departamento de Ingeniería Eléctrica y Electrónica TEMA 2 : DISPOSITIVOS Y COMPONENTES ELECTRÓNICOS Electrónica Básica, Industrial e Informática Luis Ángel Esquibel Tomillo EL DIODO

Más detalles

TEMA 3 TEORIA DE SEMICONDUCTORES

TEMA 3 TEORIA DE SEMICONDUCTORES TEMA 3 TEORIA DE SEMICONDUCTORES (Guía de clases) Asignatura: Dispositivos Electrónicos I Dpto. Tecnología Electrónica CONTENIDO PARTÍCULAS CARGADAS Átomo Electrón Ión Hueco TEORÍA DE LAS BANDAS DE ENERGÍA

Más detalles

Principios Básicos Materiales Semiconductores

Principios Básicos Materiales Semiconductores Principios Básicos Materiales Semiconductores Definición De Semiconductor Los semiconductores son materiales cuya conductividad varía con la temperatura, pudiendo comportarse como conductores o como aislantes.

Más detalles

Dispositivos Electrónicos

Dispositivos Electrónicos Dispositivos Electrónicos AÑO: 2010 TEMA 3: PROBLEMAS Rafael de Jesús Navas González Fernando Vidal Verdú E.T.S. de Ingeniería Informática Ingeniero Técnico en Informática de Sistemas: Curso 1º Grupo

Más detalles

Apuntes de apoyo N 2 del módulo de electrónica para los terceros años

Apuntes de apoyo N 2 del módulo de electrónica para los terceros años Apuntes de apoyo N 2 del módulo de electrónica para los terceros años Un material semiconductor: el Silicio (Si). El Silicio es el material de la Naturaleza más parecido al Carbono.. Tiene cuatro electrones

Más detalles

Código de colores. Resistencias

Código de colores. Resistencias Resistencias La función de las resistencias es oponerse al paso de la comente eléctrica.su magnitud se mide en ohmios ( ) y pueden ser variables o fijas. El valor de las resistencias variables puede ajustarse

Más detalles

Diodos: caracterización y aplicación en circuitos rectificadores

Diodos: caracterización y aplicación en circuitos rectificadores Diodos: caracterización y aplicación en circuitos rectificadores E. de Barbará, G. C. García *, M. Real y B. Wundheiler ** Laboratorio de Electrónica - Facultad de Ciencias Exactas y Naturales Departamento

Más detalles

LA UNIÓN P-N. La unión p-n en circuito abierto. Diapositiva 1 FUNDAMENTOS DE DISPOSITIVOS ELECTRONICOS SEMICONDUCTORES

LA UNIÓN P-N. La unión p-n en circuito abierto. Diapositiva 1 FUNDAMENTOS DE DISPOSITIVOS ELECTRONICOS SEMICONDUCTORES Diapositiva 1 LA UNÓN PN La unión pn en circuito abierto FUNDAMENTOS DE DSPOSTOS ELECTRONCOS SEMCONDUCTORES A K Zona de deplexión Unión p n Contacto óhmico ones de impurezas dadoras ones de impurezas aceptoras

Más detalles

SEMICONDUCTORES (parte 2)

SEMICONDUCTORES (parte 2) Estructura del licio y del Germanio SEMICONDUCTORES (parte 2) El átomo de licio () contiene 14 electrones dispuestos de la siguiente forma: 2 electrones en la primer capa (capa completa), 8 electrones

Más detalles

1.1 Definición de semiconductor

1.1 Definición de semiconductor Índice 1.- Introducción 1.1- Definición 1.2-Modelo de bandas de energía 1.3- Materiales intrínseco y extrínseco 2.-Tipos de materiales semiconductores 2.1- Estequiométricos (aislantes) 2.2- Imperfecciones

Más detalles

Metal Cu Al Peso específico 8,9 g/cm 3 2,7 g/cm 3 Peso atómico 64 g/mol 27 g/mol Número de electrones libres 1 e - /átomo 3 e - /átomo

Metal Cu Al Peso específico 8,9 g/cm 3 2,7 g/cm 3 Peso atómico 64 g/mol 27 g/mol Número de electrones libres 1 e - /átomo 3 e - /átomo 1. La densidad específica del tungsteno es de 18,8 g/cm 3 y su peso atómico es 184. La concentración de electrones libres es 1,23 x 10 23 /cm 3.Calcular el número de electrones libres por átomo. 2. Dadas

Más detalles

Práctica Nº 4 DIODOS Y APLICACIONES

Práctica Nº 4 DIODOS Y APLICACIONES Práctica Nº 4 DIODOS Y APLICACIONES 1.- INTRODUCCION El objetivo Los elementos que conforman un circuito se pueden caracterizar por ser o no lineales, según como sea la relación entre voltaje y corriente

Más detalles

UNIVERSIDAD POLITECNICA SALESIANA UNIDAD2: SEMICONDUCTORES ING. JUAN M. IBUJÉS VILLACÍS, MBA

UNIVERSIDAD POLITECNICA SALESIANA UNIDAD2: SEMICONDUCTORES ING. JUAN M. IBUJÉS VILLACÍS, MBA UNIVERSIDAD POLITECNICA SALESIANA UNIDAD2: SEMICONDUCTORES ING. JUAN M. IBUJÉS VILLACÍS, MBA Qué es un semiconductor? Es un material con una resistividad menor que un aislante y mayor que un conductor.

Más detalles

CAPÍTULO COMPONENTES EL DIODO SEMICONDUCTORES: 1.1 INTRODUCCIÓN

CAPÍTULO COMPONENTES EL DIODO SEMICONDUCTORES: 1.1 INTRODUCCIÓN CAPÍTULO 1 COMPONENTES SEMICONDUCTORES: EL DIODO 1.1 INTRODUCCIÓN E n el capítulo 5 del tomo III se presentó una visión general de los componentes semiconductores básicos más frecuentes en electrónica,

Más detalles

MATERIALES ELECTRICOS JUNTURA PN

MATERIALES ELECTRICOS JUNTURA PN MATERIALES ELECTRICOS JUNTURA PN Consideremos por separado un Semiconductor Tipo N y un semiconductor tipo P. Analicemos el Diagrama de Bandas de cada uno por separado. El semiconductor Tipo N tendrá una

Más detalles

Accionamientos eléctricos Tema VI

Accionamientos eléctricos Tema VI Dispositivos semiconductores de potencia. ELECTRÓNICA DE POTENCIA - Con el nombre de electrónica de potencia o electrónica industrial, se define aquella rama de la electrónica que se basa en la utilización

Más detalles

Contactos metal-semiconductor

Contactos metal-semiconductor Contactos metal-semiconductor Lección 02.1 Ing. Jorge Castro-Godínez EL2207 Elementos Activos Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica I Semestre 2014 Jorge Castro-Godínez

Más detalles

Teoría de los semiconductores

Teoría de los semiconductores Teoría de los semiconductores Introducción Los materiales semiconductores han ocasionado la mayor revolución en el mundo de la electrónica, pues su comportamiento eléctrico permite el funcionamiento de

Más detalles

Semiconductores. Cristales de silicio

Semiconductores. Cristales de silicio Semiconductores Son elementos, como el germanio y el silicio, que a bajas temperaturas son aislantes. Pero a medida que se eleva la temperatura o bien por la adicción de determinadas impurezas resulta

Más detalles

Tema 20 Propiedades eléctricas de los materiales.

Tema 20 Propiedades eléctricas de los materiales. Tema 20 Propiedades eléctricas de los materiales. Las propiedades eléctricas miden la respuesta del material cuando se le aplica un campo eléctrico. Conductividad eléctrica R i = V ; R= resistencia del

Más detalles

La gran mayoría de los dispositivos de estado sólido que actualmente hay en el mercado, se fabrican con un tipo de materiales conocido como

La gran mayoría de los dispositivos de estado sólido que actualmente hay en el mercado, se fabrican con un tipo de materiales conocido como 1.- Introducción 2.- Clasificación de los materiales. 3.- Semiconductores intrínsecos. Estructura cristalina. 4.- Semiconductores extrínsecos. Impurezas donadoras y aceptadoras. 4.1.- Semiconductores tipo

Más detalles

Electrónica. Tema 2 Diodos. Copyright The McGraw-Hill Companies, Inc. Queda prohibida su reproducción o visualización sin permiso del editor.

Electrónica. Tema 2 Diodos. Copyright The McGraw-Hill Companies, Inc. Queda prohibida su reproducción o visualización sin permiso del editor. Electrónica Tema 2 Diodos Contenido Ideas básicas Aproximaciones Resistencia interna y Resistencia en continua Rectas de carga Diodo zener Dispositivos optoelectrónicos Diodo Schottky 2 Diodo Es un dispositivo

Más detalles

Otros tipos de Diodos. ITESM Campus Monterrey, Departamento de Ing. Eléctrica

Otros tipos de Diodos. ITESM Campus Monterrey, Departamento de Ing. Eléctrica Otros tipos de Diodos Diodo Schottky Se forma uniendo un metal como platino o aluminio a un silicio tipo p o n. Utilizado en circuitos integrados en donde se requiera conmutación a altas velocidades Voltaje

Más detalles

Interpretación de las hojas de datos de diodos

Interpretación de las hojas de datos de diodos 1 Interpretación de las hojas de datos de diodos En las hojas de datos dadas por el fabricante de cualquier dispositivo electrónico encontramos la información necesaria como para poder operar al dispositivo

Más detalles

Tema 3: Semiconductores

Tema 3: Semiconductores Tema 3: Semiconductores 3.1 Semiconductores intrínsecos y dopados. Los semiconductores son sustancias cuya conductividad oscila entre 10-3 y 10 3 Siemen/metro y cuyo valor varia bastante con la temperatura.

Más detalles

A.1. El diodo. - pieza básica de la electrónica: unión de un semiconductor de tipo p y otro de tipo n es un elemento no lineal

A.1. El diodo. - pieza básica de la electrónica: unión de un semiconductor de tipo p y otro de tipo n es un elemento no lineal A.1.1. Introducción A.1. El diodo - pieza básica de la electrónica: unión de un semiconductor de tipo p y otro de tipo n es un elemento no lineal A.1.2. Caracterización del diodo - al unirse la zona n

Más detalles

Contactos semiconductor - semiconductor

Contactos semiconductor - semiconductor Contactos semiconductor semiconductor Lección 02.2 Ing. Jorge CastroGodínez EL2207 Elementos Activos Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica I Semestre 2014 Jorge CastroGodínez

Más detalles

Semiconductores. Lección Ing. Jorge Castro-Godínez

Semiconductores. Lección Ing. Jorge Castro-Godínez Semiconductores Lección 01.1 Ing. Jorge Castro-Godínez EL2207 Elementos Activos Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica I Semestre 2014 Jorge Castro-Godínez Semiconductores

Más detalles

ELEN 3311 Electrónica I Prof. C. González Rivera Capítulo 1

ELEN 3311 Electrónica I Prof. C. González Rivera Capítulo 1 ELEN 3311 Electrónica I - 1 - I. Sección 1.1, 1.: Materiales Semiconductores y la Junta p-n A. Estructura atómica Un estudio de los materiales, incluyendo su estructura atómica, es indispensable al estudiar

Más detalles

Contenido. Capítulo 2 Semiconductores 26

Contenido. Capítulo 2 Semiconductores 26 ROMANOS_MALVINO.qxd 20/12/2006 14:40 PÆgina vi Prefacio xi Capítulo 1 Introducción 2 1.1 Las tres clases de fórmulas 1.5 Teorema de Thevenin 1.2 Aproximaciones 1.6 Teorema de Norton 1.3 Fuentes de tensión

Más detalles

5.- Si la temperatura ambiente aumenta, la especificación de potencia máxima del transistor a) disminuye b) no cambia c) aumenta

5.- Si la temperatura ambiente aumenta, la especificación de potencia máxima del transistor a) disminuye b) no cambia c) aumenta Tema 4. El Transistor de Unión Bipolar (BJT). 1.- En un circuito en emisor común la distorsión por saturación recorta a) la tensión colector-emisor por la parte inferior b) la corriente de colector por

Más detalles

A su vez, una molécula está compuesta por átomos. Cada uno de ellos posee unas propiedades diferentes en el interior de la molécula que constituyen.

A su vez, una molécula está compuesta por átomos. Cada uno de ellos posee unas propiedades diferentes en el interior de la molécula que constituyen. Constitución de la materia. Supongamos que cualquier sustancia de la naturaleza la dividimos en partes cada vez más pequeñas, conservando cada una de ellas las propiedades de la sustancia inicial. Si seguimos

Más detalles

Observemos que sucede cuando juntamos el metal y el semiconductor desde el punto de vista del diagrama de bandas:

Observemos que sucede cuando juntamos el metal y el semiconductor desde el punto de vista del diagrama de bandas: JUNTURA METAL SEMICONDUCTOR: Diagrama de Banda de ambos materiales: E FM : Nivel de Fermi del metal. E FS : Nivel de Fermi del semiconductor. Observemos que sucede cuando juntamos el metal y el semiconductor

Más detalles

El transistor sin polarizar

El transistor sin polarizar EL TRANSISTOR DE UNIÓN BIPOLAR BJT El transistor sin polarizar El transistor esta compuesto por tres zonas de dopado, como se ve en la figura: La zona superior es el "Colector", la zona central es la "Base"

Más detalles

Electrónica REPASO DE CONTENIDOS

Electrónica REPASO DE CONTENIDOS Tema 1 Electrónica Conocerás las principales componentes de los circuitos eléctricos. Resistencias, condensadores, diodos y transistores. Sabrás cómo montar circuitos eléctricos simples. REPASO DE CONTENIDOS

Más detalles

Diapositiva 1 Para presentar los semiconductores, es útil empezar revisando los conductores. Hay dos perspectivas desde las que se puede explorar la conducción: 1) podemos centrarnos en los dispositivos

Más detalles

ILUMINACION DE ESTADO SÓLIDO LED

ILUMINACION DE ESTADO SÓLIDO LED FERNANDO GARRIDO ALVAREZ FERNANDO GARRIDO ALVAREZ INGENIERO INDUSTRIAL INGENIERO INDUSTRIAL CONSULTOR LUMINOTECNICO CONSULTOR LUMINOTECNICO ILUMINACION DE ESTADO SÓLIDO LED UNA APROXIMACION A SU CONOCIMIENTO

Más detalles

Corriente continua (Repaso)

Corriente continua (Repaso) Fundamentos de Tecnología Eléctrica (º ITIM) Tema 0 Corriente continua (epaso) Damián Laloux, 004 Índice Magnitudes esenciales Tensión, corriente, energía y potencia Leyes fundamentales Ley de Ohm, ley

Más detalles

2.1 Introducción. 2.2 El transistor bipolar en continua

2.1 Introducción. 2.2 El transistor bipolar en continua l transistor bipolar como amplificador 2.1 Introducción Los transistores de unión bipolar o transistores bipolares (ipolar Junction Transistor, JT) son unos dispositivos activos de tres terminales que

Más detalles

INDICE Prologo Semiconductores II. Procesos de transporte de carga en semiconductores III. Diodos semiconductores: unión P-N

INDICE Prologo Semiconductores II. Procesos de transporte de carga en semiconductores III. Diodos semiconductores: unión P-N INDICE Prologo V I. Semiconductores 1.1. clasificación de los materiales desde el punto de vista eléctrico 1 1.2. Estructura electrónica de los materiales sólidos 3 1.3. conductores, semiconductores y

Más detalles

SEMICONDUCTORES. Semiconductores extrínsecos: estructura cristalina de Ge o Si Si con impurezas en bajo porcentaje de átomos distintos.

SEMICONDUCTORES. Semiconductores extrínsecos: estructura cristalina de Ge o Si Si con impurezas en bajo porcentaje de átomos distintos. Diapositiva 1 Semiconductores extrínsecos: estructura cristalina de Ge o Si Si con impurezas en bajo porcentaje de átomos distintos. Característica: n p n ii Clasificación: Tipo-n Tipo-p Diapositiva 2

Más detalles

Electrónica de potencia e instalaciones eléctricas: Semiconductores: diodo, transistor y tiristor

Electrónica de potencia e instalaciones eléctricas: Semiconductores: diodo, transistor y tiristor Electrónica de potencia e instalaciones eléctricas: Semiconductores: diodo, transistor y tiristor El descubrimiento del diodo y el estudio sobre el comportamiento de los semiconductores desembocó que a

Más detalles

Diodos, Tipos y Aplicaciones

Diodos, Tipos y Aplicaciones Diodos, Tipos y Aplicaciones Andrés Morales, Camilo Hernández, David Diaz C El diodo ideal es un componente discreto que permite la circulación de corriente entre sus terminales en un determinado sentido,

Más detalles

RECTIFICADORES MONOFASICOS NO CONTROLADOS

RECTIFICADORES MONOFASICOS NO CONTROLADOS UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERIA QUIMICA Y TEXTIL CONTROLES ELECTRICOS Y AUTOMATIZACION EE - 621 RECTIFICADORES MONOFASICOS NO CONTROLADOS TEMAS Diodos semiconductores, Rectificadores

Más detalles

Grado de Óptica y Optometría Asignatura: FÍSICA Curso: Práctica nº 5. MEDIDAS DE RESISTENCIAS, VOLTAJES Y CORRIENTES: MULTÍMETRO

Grado de Óptica y Optometría Asignatura: FÍSICA Curso: Práctica nº 5. MEDIDAS DE RESISTENCIAS, VOLTAJES Y CORRIENTES: MULTÍMETRO FCULTD DE CIENCIS UNIERSIDD DE LICNTE Grado de Óptica y Optometría signatura: FÍSIC Curso: 200- Práctica nº 5. MEDIDS DE RESISTENCIS, OLTJES Y CORRIENTES: MULTÍMETRO Material Fuente de alimentación de

Más detalles

Capitulo 2 P O L I T E C N I C O 1. Componentes Electrónicos. 2.1 Definiciones. Semiconductores:

Capitulo 2 P O L I T E C N I C O 1. Componentes Electrónicos. 2.1 Definiciones. Semiconductores: Capitulo 2 Componentes Electrónicos 2.1 Definiciones Semiconductores: Un semiconductor es un elemento con valencia 4, lo que quiere decir que un átomo aislado de semiconductor tiene 4 electrones en su

Más detalles

T( K) >500 N ioi /N* n i (cm -3 ) 0 1E5 7E7 7E7 7E7 7E7 1E10 6E12 3E14 1E19

T( K) >500 N ioi /N* n i (cm -3 ) 0 1E5 7E7 7E7 7E7 7E7 1E10 6E12 3E14 1E19 Ejercicios relativos al semiconductor 1. Se dispone de una muestra de material semiconductor del que se conocen los siguientes datos a temperatura ambiente: kt = 0,025 ev n i = 1,5 10 10 cm -3 N A = 10

Más detalles

GUIA DIDACTICA DE ELECTRONICA N º8 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA DECIMO SEGUNDO 6

GUIA DIDACTICA DE ELECTRONICA N º8 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA DECIMO SEGUNDO 6 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA DECIMO SEGUNDO 6 DOCENTE(S) DEL AREA:NILSON YEZID VERA CHALA COMPETENCIA: USO Y APROPIACION DE LA TECNOLOGIA NIVEL DE COMPETENCIA: INTERPRETATIVA

Más detalles

Transistor BJT: Fundamentos

Transistor BJT: Fundamentos Transistor BJT: Fundamentos Lección 05.1 Ing. Jorge Castro-Godínez Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica II Semestre 2013 Jorge Castro-Godínez Transistor BJT 1 / 48 Contenido

Más detalles

LABORATORIO DE ELECTRÓNICA DE POTENCIA PRÁCTICA N 8

LABORATORIO DE ELECTRÓNICA DE POTENCIA PRÁCTICA N 8 ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica 1. TEMA

Más detalles

Introducción a la Teoría de semiconductores y nivel de Fermi. Trabajo compilado por Willie R. Córdova Eguívar

Introducción a la Teoría de semiconductores y nivel de Fermi. Trabajo compilado por Willie R. Córdova Eguívar Introducción a la Teoría de semiconductores y nivel de Fermi Trabajo compilado por Willie R. Córdova Eguívar Conducción en los semiconductores Los semiconductores son materiales que ocupan una posición

Más detalles

IEO-394 Semiconductores. Juan E. Martínez P. Docente. UdeA

IEO-394 Semiconductores. Juan E. Martínez P. Docente. UdeA IEO-394 Semiconductores Juan E. Martínez P. Docente. UdeA Bandas de Energía Y Corrientes de Portadores en Semiconductores. PARTICION DE LOS NIVELES DE ENERGIA A medida que se traen juntos N átomos Cada

Más detalles

Creación de una aplicación Android para la enseñanza de electrónica Pág. 1 SUMARIO 1 A. TEORÍA DE ELECTRÓNICA INTRODUCIDA EN LA APLICACIÓN 3

Creación de una aplicación Android para la enseñanza de electrónica Pág. 1 SUMARIO 1 A. TEORÍA DE ELECTRÓNICA INTRODUCIDA EN LA APLICACIÓN 3 Creación de una aplicación Android para la enseñanza de electrónica Pág. 1 Sumario SUMARIO 1 A. TEORÍA DE ELECTRÓNICA INTRODUCIDA EN LA APLICACIÓN 3 BIBLIOGRAFÍA 85 B. PREGUNTAS DE ELECTRÓNICA INTRODUCIDAS

Más detalles

El diodo. Funcionamiento y aplicaciones. Oriol González Llobet PID

El diodo. Funcionamiento y aplicaciones. Oriol González Llobet PID El diodo Funcionamiento y aplicaciones Oriol González Llobet PID 00170127 Los textos e imágenes publicados en esta obra están sujetas excepto que se indique lo contrario a una licencia de Reconocimiento-Compartir

Más detalles

DIODOS SEMICONDUCTORES DE POTENCIA

DIODOS SEMICONDUCTORES DE POTENCIA DIODOS SEMICONDUCTORES DE POTENCIA Los diodos de potencia son de tres tipos: de uso general, de alta velocidad (o de recuperación rápida) y Schottky. Los diodos de uso general están disponibles hasta 6000

Más detalles

Incidencia de Anestesia General en Operación Cesárea: Registro de Tres Años. Castillo Alvarado, Frencisco Miguel. CAPÍTULO III

Incidencia de Anestesia General en Operación Cesárea: Registro de Tres Años. Castillo Alvarado, Frencisco Miguel. CAPÍTULO III CAPÍTULO III ESTADÍSTICA DE LOS PORTADORES DE CARGA DEL SEMICONDUCTOR 1. Introducción. Cada material suele presentar varias bandas, tanto de conducción (BC) como de valencia (BV), pero las más importantes

Más detalles

TEMA 9 REPASO SEMICONDUCTORES

TEMA 9 REPASO SEMICONDUCTORES INTRODUCCIÓN TEMA 9 REPASO SEMICONDUCTORES La etapa de potencia es la encarga de suministrar la energía que necesita el altavoz para ser convertida en sonido. En general, los altavoces presentan una impedancia

Más detalles

FIZ Física Contemporánea

FIZ Física Contemporánea FIZ1111 - Física Contemporánea Interrogación N o 3 17 de Junio de 2008, 18 a 20 hs Nombre completo: hrulefill Sección: centering Buenas Malas Blancas Nota Table 1. Instrucciones - Marque con X el casillero

Más detalles

Thompson (1898) Rutherford (1911) Bohr (1913) Schrödinger (1926) NUMEROS CUANTICOS

Thompson (1898) Rutherford (1911) Bohr (1913) Schrödinger (1926) NUMEROS CUANTICOS Thompson (1898) Modelo Atómico Rutherford (1911) Bohr (1913) Propiedad corpuscular de las onda (PLANCK) Propiedad ondulatoria de las partículas (De Broglie) Schrödinger (1926) Números cuánticos 1 NUMEROS

Más detalles

UNIDAD 5. Técnicas útiles del análisis de circuitos

UNIDAD 5. Técnicas útiles del análisis de circuitos UNIDAD 5 Técnicas útiles del análisis de circuitos 5.2 Linealidad y superposición En cualquier red resistiva lineal, la tensión o la corriente a través de cualquier resistor o fuente se calcula sumando

Más detalles

Conjunto de elementos conductores que forman un camino cerrado, por el que circula una corriente eléctrica. CIRCUITO ELÉCTRICO

Conjunto de elementos conductores que forman un camino cerrado, por el que circula una corriente eléctrica. CIRCUITO ELÉCTRICO CRCUTO ELÉCTRCO Conjunto de elementos conductores que forman un camino cerrado, por el que circula una corriente eléctrica. CRCUTO ABERTO CRCUTO CERRADO No existe continuidad entre dos conductores consecutivos.

Más detalles

TECNOLOGÍA ELECTRÓNICA

TECNOLOGÍA ELECTRÓNICA Universidad de Burgos Departamento de Ingeniería Electromecánica TECNOLOGÍA ELECTRÓNICA Ingeniería Técnica en Informática de Gestión Curso 1º - Obligatoria - 2º Cuatrimestre Área de Tecnología Electrónica

Más detalles

5.3 La energía en los circuitos eléctricos.

5.3 La energía en los circuitos eléctricos. CAPÍTULO 5 Corriente eléctrica y circuitos de corriente continua Índice del capítulo 5 51 5.1 Corriente eléctrica. 5.2 esistencia y la ley de Ohm. 5.3 La energía en los circuitos eléctricos. 5.4 Asociaciones

Más detalles

Programa de Tecnologías Educativas Avanzadas. Bach. Pablo Sanabria Campos

Programa de Tecnologías Educativas Avanzadas. Bach. Pablo Sanabria Campos Programa de Tecnologías Educativas Avanzadas Bach. Pablo Sanabria Campos Agenda Conceptos básicos. Relación entre corriente, tensión y resistencia. Conductores, aislantes y semiconductores. Elementos importantes

Más detalles

Tc / 5 = Tf - 32 / 9. T = Tc + 273

Tc / 5 = Tf - 32 / 9. T = Tc + 273 ENERGIA TERMICA Energía Interna ( U ) : Es la energía total de las partículas que lo constituyen, es decir, la suma de todas las formas de energía que poseen sus partículas; átomos, moléculas e iones.

Más detalles

Enlaces Primarios o fuertes Secundarios o débiles

Enlaces Primarios o fuertes Secundarios o débiles Capítulo III MET 2217 Tipos de enlaces atómicos y moleculares Enlaces Primarios o fuertes Secundarios o débiles Enlaces primarios Iónico Actúan fuerzas intermoleculares relativamente grandes, electrostáticas.

Más detalles

El Transistor BJT 1/11

El Transistor BJT 1/11 l Transistor JT 1/11 1. ntroducción Un transistor es un dispositivo semiconductor de tres terminales donde la señal en uno de los terminales controla la señal en los otros dos. Se construyen principalmente

Más detalles

TEMA 2 CIRCUITOS CON DIODOS

TEMA 2 CIRCUITOS CON DIODOS TEMA 2 CIRCUITOS CON DIODOS Profesores: Germán Villalba Madrid Miguel A. Zamora Izquierdo 1 CONTENIDO Introducción Conceptos básicos de semiconductores. Unión pn. Diodo real. Ecuación del diodo. Recta

Más detalles

-CEEIBS Clase 1 Principios de electricidad

-CEEIBS Clase 1 Principios de electricidad Curso de Electricidad, Electrónica e Instrumentación Biomédica con Seguridad -CEEIBS- 2016 Clase 1 Principios de electricidad Franco Simini, Martıın Arregui. Núcleo de ingenierııa biomédica, Facultades

Más detalles

Corriente Eléctrica. La corriente eléctrica representa la rapidez a la cual fluye la carga a través de una

Corriente Eléctrica. La corriente eléctrica representa la rapidez a la cual fluye la carga a través de una Capitulo 27 Corriente y Resistencia Corriente Eléctrica La corriente eléctrica representa la rapidez a la cual fluye la carga a través de una región del espacio En el SI, la corriente se mide en ampere

Más detalles

Seminario de Electrónica II PLANIFICACIONES Actualización: 2ºC/2016. Planificaciones Seminario de Electrónica II

Seminario de Electrónica II PLANIFICACIONES Actualización: 2ºC/2016. Planificaciones Seminario de Electrónica II Planificaciones 6666 - Seminario de Electrónica II Docente responsable: VENTURINO GABRIEL FRANCISCO CARLOS 1 de 6 OBJETIVOS Estudiar la física de los semiconductores a partir de un enfoque electrostático.

Más detalles

ALUMNO-A: CURSO: 2º ESO

ALUMNO-A: CURSO: 2º ESO UNIDAD: ELECTRICIDAD. CONOCIENDO LA ELECTRICIDAD ALUMNO-A: CURSO: 2º ESO 1.- INTRODUCCIÓN Hoy en día la energía eléctrica es imprescindible, gracias a ella funcionan infinidad de aparatos, máquinas, fábricas,

Más detalles

CASTAÑEDA VÁZQUEZ ALEJANDRO UNIVERSIDAD NACIONAL AUTONOMA DE MÉXICO INSTITUTO DE CIENCIAS NUCLEARES

CASTAÑEDA VÁZQUEZ ALEJANDRO UNIVERSIDAD NACIONAL AUTONOMA DE MÉXICO INSTITUTO DE CIENCIAS NUCLEARES CASTAÑEDA VÁZQUEZ ALEJANDRO UNIVERSIDAD NACIONAL AUTONOMA DE MÉXICO INSTITUTO DE CIENCIAS NUCLEARES ESTRUCTURA DEL CAPACITOR MOS El acrónimo MOS proviene de Metal-Oxide- Semiconductor. Antes de 1970 se

Más detalles

IES Alquibla Departamento de Tecnología 3º ESO ELECTRÓNICA

IES Alquibla Departamento de Tecnología 3º ESO ELECTRÓNICA Introducción ELECTRÓNICA La electrónica es la ciencia que estudia y diseña dispositivos relacionados con el comportamiento de los electrones en la materia. Se encarga del control de flujo de la corriente

Más detalles

Corriente, Resistencia y Fuerza Electromotriz

Corriente, Resistencia y Fuerza Electromotriz Corriente Corriente, Resistencia y Fuerza Electromotriz La unidad de corriente en MKS es:1 Ampere(A)=1 C s La dirección de la corriente es la dirección de movimiento de las cargas positivas Corriente Eléctrica

Más detalles

Fundamentación de la adecuación curricular de Física III a las necesidades de IACI. Relación con Electrónica Analógica I

Fundamentación de la adecuación curricular de Física III a las necesidades de IACI. Relación con Electrónica Analógica I 1 Fundamentación de la adecuación curricular de Física III a las necesidades de IACI. Relación con Electrónica Analógica I En el campo de la Ingeniería en Automatización y Control, es común el desarrollo

Más detalles

Anexo V: Amplificadores operacionales

Anexo V: Amplificadores operacionales Anexo V: Amplificadores operacionales 1. Introducción Cada vez más, el procesado de la información y la toma de decisiones se realiza con circuitos digitales. Sin embargo, las señales eléctricas analógicas

Más detalles

Capítulo 2 EL DISPOSITIVO SENSOR DE POSICIÓN

Capítulo 2 EL DISPOSITIVO SENSOR DE POSICIÓN Capítulo 2 EL DISPOSITIVO SENSOR DE POSICIÓN 2.1 INTRODUCCIÓN. Varios tipos de sistemas de sensores ópticos para el sensado de seguimiento y desplazamiento son utilizados en la industria y aplicaciones

Más detalles

El sistema de suministro de potencia de un vehículo solar

El sistema de suministro de potencia de un vehículo solar Page 1 of 6 El sistema de suministro de potencia de un vehículo solar El sistema de suministro de potencia de un vehículo solar consistente en un conjunto de células fotovoltaicas (panel solar), un grupo

Más detalles

Estudio y caracterización de células solares fotovoltaicas

Estudio y caracterización de células solares fotovoltaicas Estudio y caracterización de células solares fotovoltaicas Esta práctica consta de tres partes: en la primera analizaremos varias células fotovoltaicas (monocristalina y policristalina), obteniendo su

Más detalles

Introducción. Flujo Eléctrico.

Introducción. Flujo Eléctrico. Introducción La descripción cualitativa del campo eléctrico mediante las líneas de fuerza, está relacionada con una ecuación matemática llamada Ley de Gauss, que relaciona el campo eléctrico sobre una

Más detalles

CAPÍTULO 1: DESCRIPCIÓN DE LED Y OLED

CAPÍTULO 1: DESCRIPCIÓN DE LED Y OLED CAPÍTULO 1: DESCRIPCIÓN DE LED Y OLED Este capítulo se enfocará en explicar el principio de funcionamiento y en presentar una descripción general de los diodos de emisión de luz (LED, por sus siglas en

Más detalles

UNIDAD 8.ELECTRICIDAD

UNIDAD 8.ELECTRICIDAD UNIDAD 8.ELECTRICIDAD CORRIENTE ELÉCTRICA CIRCUITOS ELÉCTRICOS MAGNITUDES ELÉCTRICAS FUNDAMENTALES LEY DE OHM DEPARTAMENTO TECNOLOGÍA IES AVENIDA DE LOS TOREROS UD. 8: ELECTRICIDAD - 1 ELECTRICIDAD Por

Más detalles

TEMA 1: Propiedades de los semiconductores 1.1

TEMA 1: Propiedades de los semiconductores 1.1 Índice TEMA 1: Propiedades de los semiconductores 1.1 1.1. INTRODUCCIÓN 1.1 1.2. CLASIFICACIÓN DE LOS MATERIALES 1.3 1.3. SEMICONDUCTORES INTRÍNSECOS. ESTRUCTURA CRISTALINA 1.6 1.4. SEMICONDUCTORES EXTRÍNSECOS.

Más detalles

ELEMENTOS BÁSICOS DE UN CIRCUITO ELECTRÓNICO

ELEMENTOS BÁSICOS DE UN CIRCUITO ELECTRÓNICO ELEMENTOS BÁSICOS DE UN CIRCUITO ELECTRÓNICO En un circuito electrónico hay una gran variedad de componentes. Los siguientes son los más habituales. Resistencias Una resistencia es un elemento que se intercala

Más detalles

Láser Semiconductor. La Excitación Bombeo es la corriente del diodo. Haz Laser. Reflector 99% Reflector 100% Zona N Medio activo

Láser Semiconductor. La Excitación Bombeo es la corriente del diodo. Haz Laser. Reflector 99% Reflector 100% Zona N Medio activo Láser Semiconductor Relacionando con la teoría de láser: Al medio activo lo provee la juntura P-N altamente contaminada. Esta juntura está formada por materiales N y P degenerados por su alta contaminación.

Más detalles

La tabla periódica es la estrella orientadora para la exploración en el capo de la química, la física, la mineralogía y la técnica.

La tabla periódica es la estrella orientadora para la exploración en el capo de la química, la física, la mineralogía y la técnica. SISTEMA PERIÓDICO DE LOS ELEMENTOS La tabla periódica es la estrella orientadora para la exploración en el capo de la química, la física, la mineralogía y la técnica. Niels Bohr Principio de exclusión

Más detalles

Módulo 1. Sesión 1: Circuitos Eléctricos

Módulo 1. Sesión 1: Circuitos Eléctricos Módulo 1 Sesión 1: Circuitos Eléctricos Electricidad Qué es electricidad? Para qué sirve la electricidad? Términos relacionados: Voltaje Corriente Resistencia Capacitor, etc. Tipos de materiales Conductores

Más detalles

1.- CORRIENTE CONTINUA CONSTANTE Y CORRIENTE CONTINUA PULSANTE

1.- CORRIENTE CONTINUA CONSTANTE Y CORRIENTE CONTINUA PULSANTE UNIDAD 5: CIRCUITOS PARA APLICACIONES ESPECIALES 1.- CORRIENTE CONTINUA CONSTANTE Y CORRIENTE CONTINUA PULSANTE La corriente que nos entrega una pila o una batería es continua y constante: el polo positivo

Más detalles

ELECTRODINAMICA. Nombre: Curso:

ELECTRODINAMICA. Nombre: Curso: 1 ELECTRODINAMICA Nombre: Curso: Introducción: En esta sesión se estudiara los efectos de las cargas eléctricas en movimiento en diferentes tipos de conductores, dando origen al concepto de resistencia

Más detalles