Circuitos de RF y las Comunicaciones Analógicas. Capítulo X: Comunicación Banda Base

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Circuitos de RF y las Comunicaciones Analógicas. Capítulo X: Comunicación Banda Base"

Transcripción

1 Capítulo X: Comunicación Banda Base 173

2 174

3 10. COMUNICACION BANDA BASE 10.1 Introducción Transmitir una señal eléctrica sin ninguna traslación de su espectro se conoce como comunicación en banda base. Un sistema de comunicación banda base general es de la forma como se representa en la Fig Cálculo de la atenuación del canal Fig Modelo de un canal banda base Se asume lo siguiente: a. La señal x(t) se supone limitada en banda y con ancho W. Fig Fig Espectro de la señal de entrada b. El transmisor consiste de un amplificador cuya ganancia en potencia es G T c. El canal no distorsiona, solo atenúa en potencia (L) >1, en la práctica este canal puede ser: Líneas de transmisión, guías de onda, fibras ópticas, o el aire. En el caso de líneas de transmisión, guías o fibras ópticas la relación de potencia en un recorrido l puede expresarse como: (10.1) = Atenuación en potencia = Coeficiente de Atenuación 175

4 l = Longitud del trayecto Cabe anotar que el valor de depende de la frecuencia y de los parámetros de la línea. (10.2) Estas ecuaciones son válidas solo para señales sinusoidales. Caso de la transmisión por aire: La Información se acopla a través de antenas: Fig Transmisión por aire La relación de potencias después de recorrer una distancia igual a l es: 2 Pin 4 1 L Pout G. G AT AR (10.3) En db: G AT = Ganancia de la antena transmisora G AR = Ganancia de la antena receptora 2 (10.4) Se puede observar que en el primer caso la atenuación se duplica cada vez que se duplica la distancia recorrida, mientras que en el caso de la transmisión por aire se agregan en forma fija 6 db d. Antes de llegar al receptor, la señal se contamina con ruido blanco de media nula y DEP dada por: n Gn f ;- < f < (10.5) 2 e. El receptor está constituido por un amplificador con ganancia en potencia G R seguido de un filtro pasa-bajo ideal con ancho de banda B. Bajo estas condiciones la señal detectada y () t es: D. GRGT yd( t) x( t) nd( t) L (10.6) 176

5 Donde nd () t es ruido blanco filtrado y amplificado una cantidad G R. Es decir que su DEP es uniforme como se indica en la Fig Fig Densidad espectral de potencia de la salida detectada Cálculo de (S/N) D : Se puede calcular primero, la autocorrelación de la señal de salida y evaluarla en = 0 para obtener el valor de la potencia del ruido. (10.7) Pero (t) y x(t) son independientes, además, cero (incoherentes). nd D(t) = 0 luego las correlaciones cruzadas son nd (10.8) Por tanto:. GRGT RY D ( ) Rx ( ) RnD ( ) L (10.9) Al evaluar en = 0 Así: Pero:. 2 R T 2 2 Ry D 0 y GG D x nd L (10.10) 2 2 S SD GRGT x GT x ST N N L BG L B L B D D R S R ST S SR ; L N B D (10.11) (10.12) El máximo valor (S/N) D se consigue cuando el filtro tiene ancho de banda igual al del mensaje es decir B=W S SR N DMáx W (10.13) 177

6 El valor servirá como base de comparación para los cálculos (S/N) D que se realiza en todos los sistemas de modulación Sistemas repetidores Cuando a un sistema de comunicación banda-base se le requiere mejorar su (S/N) D sin aumentar la potencia de transmisión ni variar el ancho de banda del filtro receptor es necesario utilizar repetidoras intercaladas en el camino de transmisión: Fig Modelo de un sistema con repetidoras. Se considera: a. M repetidores equiespaciadas (la última es el receptor). b. Se diseña: L1 L2 L3 L G G G G M M 1 (10.14) c. Asumiendo: 1= 2 =... = M d. Se supone que cada amplificador G R incluye un filtro pasa-bajos con ancho de banda B. Bajo estas condiciones: S D =S T N D = 1 G 1 B+ 2 G 2 B M G M B=M M G M B=M M L M B (10.15) S ST N ML B D M M ; Con repetidores. (10.16) Antes teníamos (sin repetidoras). S N D ST L B (10.17) Y como: L 1.L 2... L M =L entonces L M =L 1/M Por tanto: La atenuación de M trayectorias será: M L 1/M < L Con esto se logra mejorar la (S/N) D Distorsión 178

7 Si en un sistema de transmisión la señal recibida pierde la forma respecto a la señal de entrada, se dice que esta distorsionada. Para que no exista distorsión, la señal de salida debe representar una proporción de la señal de entrada retrasada: Dónde: = Retardo > 0 K = Constante Fig Sistema sin distorsión. Dicho de otra forma la función de transferencia del sistema de transmisión debe ser: H ( f ) j t KX ( f ) e X( f) d K e j t d (10.18) Es decir que la magnitud debe ser constante con la frecuencia y la fase debe depender linealmente de ella. (1) H( f ) = k (10.19) (2) (10.20) Si no se cumplen estas dos condiciones, la salida estará distorsionada. Esta distorsión se llamará Distorsión de magnitud si no cumple la condición (1). Distorsión de fase: Si no cumple la condición (2). La solución teórica para la distorsión de fase es colocar una RED ECUALIZADORA. Su función de transferencia de la Red ecualizadora es tal que compensa los problemas del sistema con distorsión:. j td H s ( f ) Heq ( f ) Ke (10.21) Por tanto: j td Ke Heq ( f) Hs ( f) (10.22) Una de las clásicas redes ecualizadores es el FILTRO TRANSVERSAL que utiliza líneas de retardo para minimizar la distorsión (ver fig. 10.7): H eq (f) = c- 1 + c 0 e - j + c 1 e j 2 H eq (f) = e j (c -1 e j + c 0 + c 1 e j ) (10.23) 179

8 Función que se puede generalizar a un número impar de canales. Fig Filtro transversal 10.6 Distorsión no lineal Si un sistema de transmisión incluye elementos no lineales no se puede definir una función de transferencia. Se habla de la Característica de transferencia de la red que se define como: y (t)=g[x(t)] Fig Canal no lineal. y(t) se puede representar con una aproximación polinómica de x(t) y(t) = a 1 x(t)+a 2 x 2 (t)+a 3 x 3 (t)+... (10.24) Al aplicar Transformada de Fourier: Y( f ) = a 1 X( f ) + a 2 X( f ) * X( f ) + a 3 X( f ) * X( f )* X( f ) + (10.25) 180

9 Si X( f ) está limitada en ancho de banda W, x(t)* x(t) está limitada en ancho de banda 2W y x(t)* x(t)* x(t) con 3W y así sucesivamente. Esto produce distorsión no lineal: no solo crea componentes de frecuencia que no existían, si no que altera las frecuencias originales dentro de la banda X(f). Una forma de medir la distorsión no lineal es excitando con un tono del tipo: x(t) = CosW 0 t y(t) = a 1 Cos 0 t +a 2 Cos 2 0 t + a 3 Cos 3 0 t +... (10.26) A expandir Cos 2 0 t, Cos 3 0 t,... en función de sinusoides de frecuencia doble, triple, etc. Se obtiene: y(t) = A+B Cos 0 t +C Cos2 0 t + D Cos3 0 t +... (10.27) En este caso se define la Distorsión total del tono como: 2 2 C B DISTORSION TOTAL = *100 % B DISTORSION 2 da C ARMONICA = *100% B (10.28) (10.29) Fig Zona lineal de un canal no lineal. Si la Distorsión no Lineal se debe a que la señal de entrada supera la zona Lineal del sistema: Esta puede minimizarse utilizando un COMPANSOR y un EXPANSOR de la manera como se indica en la Fig : 181

10 Fig Canal empleando compansor y expansor. El compansor amplifica las señales pequeñas comprimiendo las de gran magnitud. De esta forma no es afectada por el canal. Para recuperar la señal en forma original es necesario usar un expansor que compensa amplificando las señales de gran nivel. Por tanto: f expansor [g compansor (x)] = x 10.7 Ejercicios propuestos: Un trasmisor Banda Base envía una señal de 20 KHz de ancho de banda con potencia de 1 watt, a través de un cable coaxial con pérdidas de 1 db/km sobre un trayecto de 150 Kms. Para mejorar la relación S/N detectada se dispone de un cierto número de repetidoras idénticas que aceptan un máximo de potencia de entrada de 100 mw. Asumiendo determine: a) El máximo número de repetidoras equidistantes que se deben emplear. b) La con el número de repetidoras calculado en el paso anterior Se tienen 3 repetidoras de 20 KHz de Ancho de Banda que deben colocarse equidistantes dentro de un canal de transmisión de 30 Kms de longitud con pérdidas de 2 db/km. Las características de cada una de las repetidoras se muestran en la siguiente tabla: Repetidora N Sensibilidad (Mw) Ganancia A B C Si la potencia de transmisión es de 10 mw, a) Diseñe y explique el orden en que se deben colocar las repetidoras. b) Determine la relación (S/N) D, si c) Cuanto mejora en db la relación (S/N) D comparada con la que se tendría sin ninguna repetidora. 182

DEPARTAMENTO DE SEÑALES, SISTEMAS Y RADIOCOMUNICACIONES ELECTRÓNICA DE COMUNICACIONES. EXAMEN EXTRAORDINARIO 6 DE SEPTIEMBRE DE

DEPARTAMENTO DE SEÑALES, SISTEMAS Y RADIOCOMUNICACIONES ELECTRÓNICA DE COMUNICACIONES. EXAMEN EXTRAORDINARIO 6 DE SEPTIEMBRE DE Ejercicio 1. Versión A. La pregunta correcta vale 1p, en blanco 0p, incorrecta 1/3p. Sólo una respuesta es correcta. 1) En un receptor de comunicaciones por satélite a 14GHz con una banda de 50MHz, a)

Más detalles

Tecnologías de redes de datos. Medios de transmisión

Tecnologías de redes de datos. Medios de transmisión Tecnologías de redes de datos Medios de transmisión Contenido Introducción Tipos de medios Conceptos básicos Aplicaciones de los medios 2 Introducción Elementos fundamentales de un sistema de comunicaciones

Más detalles

TEMA 5 COMUNICACIONES ANALÓGICAS

TEMA 5 COMUNICACIONES ANALÓGICAS TEMA 5 COMUNICACIONES ANALÓGICAS Modulaciones angulares Introducen la información exclusivamente en la fase de una portadora, manteniendo constante la amplitud y(t )= A c cos[ω c t +ϕ(t)] La potencia media,

Más detalles

Redes de computadoras: El análisis de Fourier en la capa física

Redes de computadoras: El análisis de Fourier en la capa física Redes de computadoras: El análisis de Fourier en la capa física Agustín J. Koll Estudiante de Ingeniería en Sistemas de Computación Universidad Nacional del Sur, Avda. Alem 1253, B8000CPB Bahía Blanca,

Más detalles

Señal Moduladora: es la señal con la información que queremos transmitir, la señal banda base.

Señal Moduladora: es la señal con la información que queremos transmitir, la señal banda base. MODULACIÓN Y SINTONÍA DE CANALES 1. CONCEPTOS BÁSICOS SOBRE MODULACIÓN Señal En Banda Base En principio, una señal banda base es una señal en sus estado originario, según se obtiene del transductor o del

Más detalles

Comunicación de Datos

Comunicación de Datos 2.3.1 Microondas terrestres. La antena más común en las microondas es la de tipo parabólico. El tamaño típico es de un diámetro de unos 3 metros. Esta antena se fija rígidamente, y en este caso el haz

Más detalles

Unidad Temática 4: Comunicación en Banda Base Analógica

Unidad Temática 4: Comunicación en Banda Base Analógica Unidad Temática 4: Comunicación en Banda Base Analógica 1) Qué significa transmitir una señal en banda base? Los sistemas de comunicaciones en los cuales las señales transmitidas no sufren procesos de

Más detalles

CAPITULO IV. Modulación Exponencial de Onda Continua. I.E. Evelio Astaiza Hoyos

CAPITULO IV. Modulación Exponencial de Onda Continua. I.E. Evelio Astaiza Hoyos CAPITULO IV Modulación Exponencial de Onda Continua I.E. Evelio Astaiza Hoyos Modulación de Fase y Frecuencia (Señales de FM y PM) (1) Considérese una señal con envolvente constante pero con fase variable

Más detalles

PROPAGACIÓN DE LAS ONDAS ELECTROMAGNÉTICAS - PROBLEMAS SELECCIONADOS

PROPAGACIÓN DE LAS ONDAS ELECTROMAGNÉTICAS - PROBLEMAS SELECCIONADOS PROPAGACIÓN DE LAS ONDAS ELECTROMAGNÉTICAS - PROBLEMAS SELECCIONADOS Problema 1 Calcule la densidad de potencia cuando la potencia irradiada es 1000 W y la distancia a la antena isotrópica es 20km. De

Más detalles

EJERCICIOS ANALITICOS. a a f ( ) R τ de x ( t ) y x ( t ) mostrados en la Figura. Figura 2. Densidad Espectral de Energía de g(t) - ( t)

EJERCICIOS ANALITICOS. a a f ( ) R τ de x ( t ) y x ( t ) mostrados en la Figura. Figura 2. Densidad Espectral de Energía de g(t) - ( t) PONTIFICIA UNIVERSIDAD JAVERIANA- FACULTAD DE INGENIERÍA. DEPARTAMENTO DE ELECTRÓNICA. - SECCIÓN DE COMUNICACIONES. FUNDAMENTOS DE COMUNICACIONES. TALLER NO. 1 TRANSFORMADA DE FOURIER APLICADA A TELE COMUNICACIONES

Más detalles

Práctica 4: Respuesta en frecuencia

Práctica 4: Respuesta en frecuencia Práctica 4: Respuesta en frecuencia En esta práctica se analizará la respuesta en frecuencia eléctrica de diversos sistemas de Comunicaciones Ópticas, empleando tanto modulación analógica como digital,

Más detalles

3.6. Soluciones de los ejercicios

3.6. Soluciones de los ejercicios 3 oluciones de los ejercicios Ejercicio 31 olución a) Las modulaciones y frecuencia de portadora son Figura (a): modulación AM convencional, con frecuencia de portadora f c = 100 khz Figura (): modulación

Más detalles

3. En la Figura se aprecia parte del espectro magnitud de un tono puro modulado en FM. A partir de este espectro calcule:

3. En la Figura se aprecia parte del espectro magnitud de un tono puro modulado en FM. A partir de este espectro calcule: 3. En la Figura se aprecia parte del espectro magnitud de un tono puro modulado en FM. A partir de este espectro calcule: Figura 2 Magnitud del Espectro de la señal de FM Figura 3. Modulador de FM. Si

Más detalles

MODULACION DE AMPLITUD MEDIANTE MODULACION POR DURACION DE PULSOS (PWM o PDM) m 2

MODULACION DE AMPLITUD MEDIANTE MODULACION POR DURACION DE PULSOS (PWM o PDM) m 2 1 MODULACION DE AMPLITUD MEDIANTE MODULACION POR DURACION DE PULSOS (PWM o PDM) Introducción La potencia total de la señal modulada en amplitud esta dada por: 2 m PAM = P c 1 + 2 En que m es el índice

Más detalles

INSTITUTO POLITECNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD CULHUACAN

INSTITUTO POLITECNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD CULHUACAN INSTITUTO POLITECNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD CULHUACAN INGENIERIA EN COMPUTACIÓN ACADEMIA DE COMUNICACIONES Y ELECTRONICA PROBLEMAS: MATERIA: MODULACIÓN DIGITAL

Más detalles

Última modificación: 12 de agosto 2010. www.coimbraweb.com

Última modificación: 12 de agosto 2010. www.coimbraweb.com MULTIPLEXACIÓN POR DIVISIÓN DE FRECUENCIA FDM Contenido 1.- Introducción. 2.- Procesos en FDM. 3.- Jerarquía de multiplexación analógica. 4.- Aplicaciones i de FDM. Objetivo.- Al finalizar el tema, el

Más detalles

PRÁCTICA 1: Sistema de transmisión bandabase de señales de voz. Análisis del ruido.

PRÁCTICA 1: Sistema de transmisión bandabase de señales de voz. Análisis del ruido. EC2422. Comunicaciones I Enero-Marzo del 2.009 PRÁCTICA 1: Sistema de transmisión bandabase de señales de voz. Análisis del ruido. 1. Objetivos: 1.1) Simular la transmisión de señales de voz (en banda

Más detalles

Transmisión. Transmision de Datos

Transmisión. Transmision de Datos Transmisión Transmision de Datos 1 El éxito en la transmisión depende fundamentalmente de dos factores La calidad de la señal Las características del medio de transmisión 2 Medio de Transmisión No guiado

Más detalles

Tema 2: modulaciones analógicas y ruido (sol)

Tema 2: modulaciones analógicas y ruido (sol) TEORÍA DE LA COMUNICACIÓN Tema 2: modulaciones analógicas y ruido (sol) 2.1 La señal x(t), cuyo espectro se muestra en la figura p.1(a), se pasa a través del sistema de la figura p.1(b) compuesto por dos

Más detalles

Sistemas de comunicación

Sistemas de comunicación Sistemas de comunicación Práctico 5 Ruido Pasabanda Cada ejercicio comienza con un símbolo el cuál indica su dificultad de acuerdo a la siguiente escala: básica, media, avanzada, y difícil. Además puede

Más detalles

Tema 5: Ruido e interferencias en modulaciones analógicas TEMA 5: RUIDO E INTERFERENCIAS EN MODULACIONES ANALOGICAS

Tema 5: Ruido e interferencias en modulaciones analógicas TEMA 5: RUIDO E INTERFERENCIAS EN MODULACIONES ANALOGICAS TEMA 5: RUIDO E INTERFERENCIAS EN MODULACIONES ANALOGICAS PROBLEMA 1 En un sistema de modulación en FM, la amplitud de una señal interferente detectada varía proporcionalmente con la frecuencia f i. Mediante

Más detalles

TEMA 2: MODULACIONES LINEALES

TEMA 2: MODULACIONES LINEALES TEMA 2: MODULACIONES LINEALES PROBLEMA 1 La señal x(, cuyo espectro se muestra en la figura 2.1(a), se pasa a través del sistema de la figura 2.1(b) compuesto por dos moduladores y dos filtros paso alto.

Más detalles

transmisión de señales

transmisión de señales Introducción al análisis y transmisión de señales La transmisión de información La información se puede transmitir por medio físico al variar alguna de sus propiedad, como el voltaje o la corriente. Este

Más detalles

Circuitos de RF y las Comunicaciones Analógicas. Capítulo VII: Amplificadores de RF de potencia

Circuitos de RF y las Comunicaciones Analógicas. Capítulo VII: Amplificadores de RF de potencia Capítulo VII: Amplificadores de RF de potencia 109 110 7. Amplificadores RF de potencia 7.1 Introducción El amplificador de potencia (PA) es la última etapa de un trasmisor. Tiene la misión de amplificar

Más detalles

MONITOREO REMOTO LABORATORIO MODULACIÓN Y DEMODULACION DE AM INTRODUCCIÓN.

MONITOREO REMOTO LABORATORIO MODULACIÓN Y DEMODULACION DE AM INTRODUCCIÓN. MONITOREO REMOTO LABORATORIO MODULACIÓN Y DEMODULACION DE AM INTRODUCCIÓN. Las señales que contienen nuestra información se llevan desde un transmisor a un repetidor o a un receptor o a través de las distintas

Más detalles

TEMA 5 COMUNICACIONES ANALÓGICAS

TEMA 5 COMUNICACIONES ANALÓGICAS TEMA 5 COMUNICACIONES ANALÓGICAS Modulación en canales ruidosos Consideramos ruido gaussiano concentrado en un único punto Suponemos que no hay atenuación en el canal Modulación en canales ruidosos El

Más detalles

Tema IV: Ideas básicas sobre filtros

Tema IV: Ideas básicas sobre filtros Tema IV: Ideas básicas sobre filtros Consideraciones generales... 101 Definición de filtro... 101 Características ideales... 10 Frecuencia de corte... 103 Tipos de filtros... 103 Condiciones de estudio...

Más detalles

Teoría de la Comunicación

Teoría de la Comunicación 3.5. Ejercicios Ejercicio 3.1 Una misma señal de entrada se aplica a 4 moduladores analógicos diferentes. Se monitoriza la respuesta en frecuencia a la salida de los cuatro moduladores, dando lugar a los

Más detalles

Práctica 1: Perturbaciones: distorsión y ruido

Práctica 1: Perturbaciones: distorsión y ruido Apellidos, nombre Apellidos, nombre TEORÍA DE LA COMUNICACIÓN 009/010 Práctica 1: Perturbaciones: distorsión y ruido Grupo Puesto Fecha El objetivo de esta práctica es familiarizar al alumno con los efectos

Más detalles

Tema 2: Cuadripolos y filtros

Tema 2: Cuadripolos y filtros Tema : Cuadripolos filtros Cuadripolos. Conceptos básicos Definición aproximada El circuito es considerado como una caja nera con dos puertas (cuatro terminales) de conexión al exterior. El comportamiento

Más detalles

Teoría de la Comunicación. a) Si X es una variable aleatoria con una distribución uniforme en el intervalo [ 2, 2], calcule las probabilidades

Teoría de la Comunicación. a) Si X es una variable aleatoria con una distribución uniforme en el intervalo [ 2, 2], calcule las probabilidades .6. Ejercicios Ejercicio.1 Se tiene una variable aleatoria X. a) Si X es una variable aleatoria con una distribución uniforme en el intervalo [, ], calcule las probabilidades i) P (X >1) ii) P (X > 1)

Más detalles

Sistemas de Comunicación. Clase 7: Relación Señal a Ruido Recepción y Detección 2016

Sistemas de Comunicación. Clase 7: Relación Señal a Ruido Recepción y Detección 2016 Clase 7: Relación Señal a Ruido Recepción y Detección 2016 Objetivos de la clase Análisis de un sistema de comunicación analógico en presencia de ruido aditivo. Relación Señal a Ruido en recepción y en

Más detalles

CAPÍTULO. Análisis del Desempeño del Controlador GPI. IV. Análisis del Desempeño del Controlador GPI

CAPÍTULO. Análisis del Desempeño del Controlador GPI. IV. Análisis del Desempeño del Controlador GPI CAPÍTULO IV Análisis del Desempeño del Controlador GPI El interés de este capítulo radica en la compensación del voltaje de cd en presencia de perturbaciones. Este problema se presenta en aplicaciones

Más detalles

RECOMENDACIÓN UIT-R SM.1268*

RECOMENDACIÓN UIT-R SM.1268* Rec. UIT-R SM.1268 1 RECOMENDACIÓN UIT-R SM.1268* MÉTODO DE MEDICIÓN DE LA MÁXIMA DESVIACIÓN DE FRECUENCIA DE LAS EMISIONES DE RADIODIFUSIÓN MF A UTILIZAR EN LAS ESTACIONES DE COMPROBACIÓN TÉCNICA (Cuestión

Más detalles

Redes de computadores

Redes de computadores Redes de computadores Pau Arlandis Martinez Algunos apuntes sobre las normas Teoría 85% o Ejercicios 5% o Exámenes parciales 20% Bloque I 4% 1 hora Bloque II 6% 1 hora Bloque III 5 % 1 hora Bloque IV 5%

Más detalles

Sistemas Lineales 1 - Práctico 6

Sistemas Lineales 1 - Práctico 6 Sistemas Lineales 1 - Práctico 6 Series de Fourier 1 er semestre 2018 Las principales ideas a tener en cuenta en este práctico son: la respuesta en régimen a una entrada sinusoidal pura e(t) = A e. cos(ω

Más detalles

Sumario 1. Frecuencia una señal periódica

Sumario 1. Frecuencia una señal periódica LOGO REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA ANTONIO JOSÉ DE SUCRE VICE-RECTORADO PUERTO ORDAZ Departamento de Ingeniería Electrónica Tema 3 Técnicas de Modulación

Más detalles

1.7 Perturbaciones. Otras perturbaciones. La atenuación Distorsión de amplitud. El retardo Distorsión de fase. El ruido

1.7 Perturbaciones. Otras perturbaciones. La atenuación Distorsión de amplitud. El retardo Distorsión de fase. El ruido 1.7 Perturbaciones La transmisión de una señal supone el paso de la misma a través de una determinado medio, por ejemplo: un cable, el aire, etc. Debido a diferentes fenómenos físicos, la señal que llega

Más detalles

Práctica 7. Simulación de Amplitud modulada con portadora de alta potencia en SIMULINK. Integrantes del grupo

Práctica 7. Simulación de Amplitud modulada con portadora de alta potencia en SIMULINK. Integrantes del grupo Universidad Nacional Autónoma de México Comunicaciones Analógicas Práctica 7 Simulación de Amplitud modulada con portadora de alta potencia en SIMULINK Integrantes del grupo 1. Nombre: 2. Nombre: 3. Nombre:

Más detalles

Elemento de Control. Elemento de Muetreo. Figura 1 Estructura Básica Regulador de Voltaje

Elemento de Control. Elemento de Muetreo. Figura 1 Estructura Básica Regulador de Voltaje INTRODUCCIÓN: La región activa de un transistor es la región de operación intermedia entre corte y saturación y por lo tanto dependiendo de las polarizaciones el transistor se comportará como un amplificador.

Más detalles

Comunicaciones Digitales

Comunicaciones Digitales Trabajo Práctico 4 Comunicaciones Digitales Transmisión en Banda Base E.1.En un sistema PAM binario, la entrada al detector es y m = a m + n m + i m, donde a m = ±1 es la señal deseada, n m es una variable

Más detalles

La relación señal a ruido (S/N)r en la entrada del detector es de por lo menos 10 db, tomando antilogaritmo a ambos lados y despejando se obtiene γ.

La relación señal a ruido (S/N)r en la entrada del detector es de por lo menos 10 db, tomando antilogaritmo a ambos lados y despejando se obtiene γ. Problema 1: En la figura se tiene que: a) El mensaje x(t) es una señal de audio cuyo máximo voltaje es 1v, tiene una potencia de 0.5w y un ancho de banda igual a 10 KHz; b) Este mensaje se modula en FM

Más detalles

Ruido en sistemas digitales banda base

Ruido en sistemas digitales banda base Ruido en sistemas digitales banda base Habíamos dicho que el canal producía dos perturbaciones: La interferencia intersimbólica y el ruido. Para esto recordemos el diagrama básico de un sistema de transmisión

Más detalles

Comunicación de Datos Escuela Superior de Informática. Tema 1 Fundamentos de la Comunicación de Datos

Comunicación de Datos Escuela Superior de Informática. Tema 1 Fundamentos de la Comunicación de Datos Comunicación de Datos Escuela Superior de Informática Tema 1 Fundamentos de la Comunicación de Datos Terminología (1) Transmisor Receptor Medio Medio guiado Par trenzado, cable coaxial, fibra óptica Medio

Más detalles

PROPAGACION Y ANTENAS

PROPAGACION Y ANTENAS PROPAGACION Y ANTENAS PROGRAMA DEL CURSO: Propagación y antenas AREA: MATERIA: Propagación y antenas CODIGO: 3048 PRELACIÓN: Campos Electromagnéticos UBICACIÓN: Electiva T.P.L.U: 4104 DEPARTAMENTO: Electrónica

Más detalles

TEMA 5: ANÁLISIS DE LA CALIDAD EN MODULACIONES ANALÓGICAS

TEMA 5: ANÁLISIS DE LA CALIDAD EN MODULACIONES ANALÓGICAS TEMA 5: ANÁLISIS DE LA CALIDAD EN MODULACIONES ANALÓGICAS Parámetros de calidad: SNR y FOM Análisis del ruido en modulaciones de amplitud Receptores de AM y modelo funcional SNR y FOM para detección coherente

Más detalles

RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2012/2013

RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2012/2013 RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2012/2013 FAMILIA PROFESIONAL: ELECTRICIDAD ELECTRONICA CICLO: EQUIPOS ELECTRÓNICOS DE CONSUMO MÓDULO: EQUIPOS DE SONIDO CURSO SEGUNDO OBJETIVOS: 1.1 -

Más detalles

La televisión digital terrestre tdt Influencia de las antenas en su buena recepción

La televisión digital terrestre tdt Influencia de las antenas en su buena recepción Antenas e influencia del ruido impulsivo en la recepción de la señal 1 of 5 La televisión digital terrestre tdt Influencia de las antenas en su buena recepción Materias generales 1. Ganancia mínima de

Más detalles

Transmisión/recepción analógica y digital a través de fibra óptica, utilizando el entrenador B4530 y B4530Y

Transmisión/recepción analógica y digital a través de fibra óptica, utilizando el entrenador B4530 y B4530Y Práctica 1 Transmisión/recepción analógica y digital a través de fibra óptica, utilizando el entrenador B4530 y B4530Y OBJETIVOS 1. Mostrar al alumno las partes elementales de un sistema de comunicaciones

Más detalles

Diseño de Amplificadores de Microondas. Enrique Román Abril 2005

Diseño de Amplificadores de Microondas. Enrique Román Abril 2005 Diseño de Amplificadores de Microondas Enrique Román Abril 2005 Temas Introducción al diseño de amplificadores Conceptos básicos de redes de dos puertos Ganancia Estabilidad Ruido Estrategia de diseño

Más detalles

Electrónica 5 EM ITS Lorenzo Massa Pagina 1 Unidad 6 - Ing. Juan Jesús Luna

Electrónica 5 EM ITS Lorenzo Massa Pagina 1 Unidad 6 - Ing. Juan Jesús Luna Electrónica 5 EM ITS Lorenzo Massa Pagina 1 Unidad 6: Amplificadores Operacionales 1 Introducción: El amplificador operacional (en adelante, op-amp) es un tipo de circuito integrado que se usa en un sinfín

Más detalles

η = V / Hz b) Calcular la T eq de ruido del cuadripolo Datos: ancho de banda =100 khz, temperatura de trabajo = 300 ºK, k = 1.

η = V / Hz b) Calcular la T eq de ruido del cuadripolo Datos: ancho de banda =100 khz, temperatura de trabajo = 300 ºK, k = 1. 2. UIDO Y DISTOSION (Jun.94) 1. a) Calcular la relación s/n a la salida del cuadripolo, si la entrada es v s = 10-3 sin (10 4 t). El ruido propio del cuadripolo a la entrada viene caracterizado por η =

Más detalles

Firma: 4. T1.- Compare la máxima distancia alcanzada con los sistemas de comunicaciones ópticas siguientes para un régimen binario R

Firma: 4. T1.- Compare la máxima distancia alcanzada con los sistemas de comunicaciones ópticas siguientes para un régimen binario R Apellidos Nombre DNI TEORÍA Grupo 1 2 3 Firma: 4 T1.- Compare la máxima distancia alcanzada con los sistemas de comunicaciones ópticas siguientes para un régimen binario R b = 100 Mbits/sec : SISTEMA 1.-

Más detalles

1.3 Describa brevemente como opera el 74123 y realice un diagrama interno de éste circuito integrado.

1.3 Describa brevemente como opera el 74123 y realice un diagrama interno de éste circuito integrado. ITESM, Campus Monterrey Laboratorio de Electrónica Industrial Depto. de Ingeniería Eléctrica Práctica 1 Instrumentación y Objetivos Particulares Conocer las características, principio de funcionamiento

Más detalles

Parámetros de Sistemas de Comunicaciones Banda Base

Parámetros de Sistemas de Comunicaciones Banda Base Parámetros de Sistemas de Comunicaciones Banda Base Objetivo El alumno identificará los principales parámetros empleados para evaluar el desempeño de un sistema de comunicaciones banda base. Estos parámetros

Más detalles

3.6. Soluciones de los ejercicios

3.6. Soluciones de los ejercicios 3 oluciones de los ejercicios Ejercicio 31 olución a) Las modulaciones y frecuencia de portadora son Figura (a): modulación AM convencional, con frecuencia de portadora f c = 100 khz Figura (b): modulación

Más detalles

Dpto. de Electrónica 2º GM E. Imagen. Tema 2 Conceptos generales y Componentes

Dpto. de Electrónica 2º GM E. Imagen. Tema 2 Conceptos generales y Componentes Dpto. de Electrónica 2º GM E. Imagen Tema 2 Conceptos generales y Componentes Sistema de distribución Es un conjunto de elementos que tienen como objetivo la recepción de la señal de TV y su distribución

Más detalles

Última modificación: 1 de agosto de 2010. www.coimbraweb.com

Última modificación: 1 de agosto de 2010. www.coimbraweb.com PROPAGACIÓN EN GUÍA DE ONDAS Contenido 1.- Introducción. 2. - Guía de ondas. 3.- Inyección de potencia. 4.- Modos de propagación. 5.- Impedancia característica. 6.- Radiación en guías de ondas. Objetivo.-

Más detalles

TEMA 5 AMPLIFICADORES OPERACIONALES

TEMA 5 AMPLIFICADORES OPERACIONALES TEMA 5 AMPLIFICADORES OPERACIONALES 1 F.V.Fernández-S.Espejo-R.Carmona Área de Electrónica, ESI 5.1 El amplificador operacional de tensiones ideal La operación de un amplificador operacional se describe

Más detalles

MODULACION EN HF. Guillermo Rodriguez - J. A. BAVA

MODULACION EN HF. Guillermo Rodriguez - J. A. BAVA MODULACION EN HF La Autoridad Federal de T e c n o l o g í a s d e l a I n f o r m a c i ó n y l a s Comunicaciones (AFTIC) es la encargada de asignar l o s p e r m i s o s p a r a l a operación de los

Más detalles

Colección de problemas de la Asignatura

Colección de problemas de la Asignatura Colección de problemas de la Asignatura Introducción a la Ingeniería Tema Curso 005-006 Índice Tema. Herramientas de análisis. Transformación de señales 3. Descomposición espectral de una señal 3 Problema.

Más detalles

Distorsión. Objetivo. Contenido

Distorsión. Objetivo. Contenido Distorsión Objetivo El alumno entenderá cuales son las condiciones de un medio para transmisión sin distorsión El alumno aprenderá a clasificar y medir la distorsión. Contenido Distorsión Transmisión sin

Más detalles

Indicación Logarítmica

Indicación Logarítmica Indicación Logarítmica Se conoce como indicación logarítmica a la comparación realizada entre magnitudes del mismo tipo, lo que implica que las mismas van a ser relativas y adimensionales, viniendo justificada

Más detalles

Unidad 3. Técnicas de Modulación

Unidad 3. Técnicas de Modulación Unidad 3. 3.1 Modulación de Onda Continua. 3.2 Modulación por Pulsos. 1 Antes de transmitir una señal con información a través de un canal de comunicación se aplica algun tipo de modulación. Esta operación

Más detalles

MODULACIÓN EN AMPLITUD

MODULACIÓN EN AMPLITUD MODULACIÓN EN AMPLITUD 1. Modulación Las señales de banda base (banda original de frecuencias) que generan las diferentes fuentes de información por lo general no se prestan para la transmisión directa

Más detalles

PRÁCTICA 4 TRANSCEPTOR HETERODINO

PRÁCTICA 4 TRANSCEPTOR HETERODINO PRÁCTICA 4 TRANSCEPTOR HETERODINO ELECTRÓNICA DE COMUNICACIONES (ECOM). Laboratorio ECOM P4 1 CONOCIMIENTOS PREVIOS: Estructura de un transmisor/receptor heterodino Conocimiento teórico de los parámetros

Más detalles

Tema IV. Comunicaciones digitales.

Tema IV. Comunicaciones digitales. Tema IV. Comunicaciones digitales. IV.1. INTRODUCCIÓN. IV.2. TRANSMISIÓN DIGITAL EN BANDA BASE CON RUIDO ADITIVO BLANCO GAUSSIANO. IV.3. ANÁLISIS EN EL ESPACIO DE SEÑALES. IV.4. TRANSMISIÓN DIGITAL PASO

Más detalles

Última actualización: 12 de agosto de

Última actualización: 12 de agosto de Contenido DETERIORO DE LA TRANSMISIÓN 1.- Introducción 2.- Atenuación. 3.- Distorsión. 4.- Ruido. 5.- Relación señal a ruido S/N. Objetivo.- Al finalizar, el estudiante será capaz de describir las principales

Más detalles

Teoría de Comunicaciones

Teoría de Comunicaciones 1 Domingo Rodríguez Teoría de comunicaciones trata con el análisis y diseño de señales y sistemas para la transmisión y recepción de la información. Definición Información: Es todo aquello que puede ser

Más detalles

Estudio Temporal de Sistemas Continuos de 1 er y 2º Orden

Estudio Temporal de Sistemas Continuos de 1 er y 2º Orden niversidad Carlos III de Madrid Departamento de Ingeniería de Sistemas y Automática SEÑALES Y SISTEMAS Práctica 1 Estudio Temporal de Sistemas Continuos de 1 er y 2º Orden 1 Introducción Teórica Se denomina

Más detalles

ACOPLADORES DE IMPEDANCIA

ACOPLADORES DE IMPEDANCIA Universidad de Cantabria - 009 Los acopladores de impedancia son elementos indispensables para conseguir la máxima transferencia de potencia entre circuitos, ya sean amplificadores, osciladores, mezcladores,

Más detalles

(600 Ω) (100 v i ) T eq = 1117 o K

(600 Ω) (100 v i ) T eq = 1117 o K 2. UIDO Y DISTOSION (Jun.94) 1. a) Calcular la relación s/n a la salida del cuadripolo, si la entrada es = 10-3 sin (10 4 t). El ruido propio del cuadripolo a la entrada viene caracterizado por η = 10-18

Más detalles

Unidad I: Sistema de comunicación

Unidad I: Sistema de comunicación Unidad I: Sistema de comunicación 1.1 Impacto de las Telecomunicaciones Es evidente que las Telecomunicaciones afectan todas las áreas del ser humano. Entre ellas podemos citar: Sector Económico Sector

Más detalles

MEDIOS DE TRANSMISION Y CONECTIVIDAD

MEDIOS DE TRANSMISION Y CONECTIVIDAD MEDIOS DE TRANSMISION Y CONECTIVIDAD MEDIOS DE TRANSMISIÒN El medio de transmisión consiste en el elemento que conecta físicamente las estaciones de trabajo al servidor y los recursos de la red. Entre

Más detalles

UD - 3 Señal TV en color. Eduard Lara

UD - 3 Señal TV en color. Eduard Lara UD - 3 Señal TV en color Eduard Lara 1 TELEVISIÓN EN COLOR IDEA: Se hace necesario descomponer la imagen captada por una cámara TV en los tres colores primarios (rojo, verde y azul) y enviar dicha información

Más detalles

Ejercicios del Tema 3: Transmisión de señales

Ejercicios del Tema 3: Transmisión de señales jercicios del Tema 3: Transmisión de señales Parte A: Modulaciones analógicas jercicio 1 Un canal de comunicaciones tiene un ancho de banda de 100 khz. e quiere utilizar dicho canal para transmitir una

Más detalles

Microondas 3º ITT-ST. Tema 2: Circuitos pasivos de microondas. Pablo Luis López Espí

Microondas 3º ITT-ST. Tema 2: Circuitos pasivos de microondas. Pablo Luis López Espí Microondas 3º ITT-ST Tema : Circuitos pasivos de microondas Pablo Luis López Espí 1 Dispositivos pasivos recíprocos Dispositivos de una puerta: Conectores de microondas. Terminaciones y cargas adaptadas.

Más detalles

Examen convocatoria Febrero Ingeniería de Telecomunicación

Examen convocatoria Febrero Ingeniería de Telecomunicación Examen convocatoria Febrero 2006 ELECTRÓNICA DE COMUNICACIONES Ingeniería de Telecomunicación Apellidos Nombre N o de matrícula o DNI Grupo Firma Electrónica de Comunicaciones Examen. Convocatoria del

Más detalles

No tienen componente en continua: Lo que implica todas las ventajas mencionadas anteriormente.

No tienen componente en continua: Lo que implica todas las ventajas mencionadas anteriormente. No tienen componente en continua: Lo que implica todas las ventajas mencionadas anteriormente. Detección de errores: Se pueden detectar errores si se observa una ausencia de transición esperada en mitad

Más detalles

Sistemas de comunicación

Sistemas de comunicación Sistemas de comunicación Práctico Modelado de canales Cada ejercicio comienza con un símbolo el cuál indica su dificultad de acuerdo a la siguiente escala: básica, media, avanzada, y difícil. Además puede

Más detalles

SISTEMAS Y CANALES DE TRANSMISIÓN 20/01/2010

SISTEMAS Y CANALES DE TRANSMISIÓN 20/01/2010 SISTEMAS Y CANALES DE TRANSMISIÓN 2/1/21 No escriba en las zonas con recuadro grueso N o Apellidos Nombre 1 2 DNI Grupo Firma: P1.- Considere que el siguiente modelo discreto con memoria para representar

Más detalles

SOLUCIONES TEMA 1. Ejercicio 1

SOLUCIONES TEMA 1. Ejercicio 1 Ejercicio SOLUCIONES EMA a) En el dominio temporal, p[n] = pn ) = δ[n]. Aunque con esto bastaría para demostrarlo, y es la opción más sencilla en este caso, también se puede ver en el dominio frecuencial

Más detalles

INFORME MEDICIÓN TDT CALI

INFORME MEDICIÓN TDT CALI Anexo 16 INFORME MEDICIÓN TDT CALI CONTENIDO MEDICIÓN DE LAS CARACTERÍSTICAS DE LA SEÑAL DE TDT COLOMBIA (DVB-T2, 64 QAM) PARA USUARIO MÓVIL; DRIVE TEST PARA LA CIUDAD DE CALI... 2 1 LA ANTENA DE MEDICIÓN...

Más detalles

CAPÍTULO. La derivada. espacio recorrido tiempo empleado

CAPÍTULO. La derivada. espacio recorrido tiempo empleado 1 CAPÍTULO 5 La derivada 5.3 Velocidad instantánea 1 Si un móvil recorre 150 km en 2 oras, su velocidad promedio es v v media def espacio recorrido tiempo empleado 150 km 2 75 km/ : Pero no conocemos la

Más detalles

TEMA 6 SERVICIOS DE RADIODIFUSIÓN EN PROYECTOS DE ICT PARTE I: FUNDAMENTOS TEÓRICOS

TEMA 6 SERVICIOS DE RADIODIFUSIÓN EN PROYECTOS DE ICT PARTE I: FUNDAMENTOS TEÓRICOS ETSI Telecomunicación Departamento de Teoría de la Señal y Comunicaciones e Ingeniería Telemática Sistemas de Telecomunicación IV TEMA 6 SERVICIOS DE RADIODIFUSIÓN EN PROYECTOS DE ICT PARTE I: FUNDAMENTOS

Más detalles

Comunicaciones en Audio y Vídeo. Curso 2007/2008 PREGUNTAS BÁSICAS. MODULACIONES LINEALES Y ANGULARES

Comunicaciones en Audio y Vídeo. Curso 2007/2008 PREGUNTAS BÁSICAS. MODULACIONES LINEALES Y ANGULARES Comunicaciones en Audio y Vídeo. Curso 007/008 PREGUNTAS BÁSICAS. MODULACIONES LINEALES Y ANGULARES 1. Suponga que la señal moduladora es una sinusoide de la forma x( = cos(πf m, f m

Más detalles

TRATAMIENTO Y TRANSMISIÓN

TRATAMIENTO Y TRANSMISIÓN TRATAMIENTO Y TRANSMISIÓN DE SEÑALES INGENIEROS ELECTRÓNICOS SOLUCIÓN CUESTIONES DEL EXAMEN JUNIO 2003 1. Si g(t) es una señal de energía, su autocorrelación viene dada por: Propiedades: R g (τ) =< g(t),

Más detalles

Ejercicios de FM y AM con canal ruidoso

Ejercicios de FM y AM con canal ruidoso Ejercicios de FM y AM con canal ruidoso 1. Se tiene un transmisor FM el cual ingresa un mensajem(t) = 0,5 cos(π15khzt) Evalué los siguientes ítems: La sensibilidad de frecuencia en el modulador de banda

Más detalles

Sistemas de Comunicación Primer Parcial

Sistemas de Comunicación Primer Parcial Sistemas de Comunicación Primer Parcial Instituto de Ingeniería Eléctrica 6 de mayo de 216 Indicaciones: La prueba tiene una duración total de 3 horas y 3 minutos. Cada hoja entregada debe indicar nombre,

Más detalles

EMISIS MEDIDA DE RUIDO E INTERFERENCIAS EN SISTEMAS DE RADIOCOMUNICACIÓN

EMISIS MEDIDA DE RUIDO E INTERFERENCIAS EN SISTEMAS DE RADIOCOMUNICACIÓN EMISIS MEDIDA DE RUIDO E INTERFERENCIAS EN SISTEMAS DE RADIOCOMUNICACIÓN Juan A. Martínez Rojas y Jesús Alpuente Hermosilla EMISIS MEDIDA DE RUIDO E INTERFERENCIAS EN SISTEMAS DE RADIOCOMUNICACIÓN Introducción

Más detalles

Tema III. Comunicaciones analógicas.

Tema III. Comunicaciones analógicas. Tema III. Comunicaciones analógicas. III.1. INTRODUCCIÓN. III.2. MODULACIONES LINEALES. III.3. RUIDO EN MODULACIONES LINEALES. III.4. MODULACIONES ANGULARES. III.5. RUIDO EN MODULACIONES ANGULARES. III.6.

Más detalles

PRÁCTICA 1 MODULACIONES LINEALES Modulación en doble banda Lateral: DBL Modulación en banda Lateral Única: BLU

PRÁCTICA 1 MODULACIONES LINEALES Modulación en doble banda Lateral: DBL Modulación en banda Lateral Única: BLU PRÁCTICA 1 MODULACIONES LINEALES 1.1.- Modulación de Amplitud: AM 1.2.- Modulación en doble banda Lateral: DBL 1.3.- Modulación en banda Lateral Única: BLU Práctica 1: Modulaciones Lineales (AM, DBL y

Más detalles

MÓDULO DE FRECUENCIA INTERMEDIA DEL RECEPTOR

MÓDULO DE FRECUENCIA INTERMEDIA DEL RECEPTOR MÓDULO DE FRECUENCIA INTERMEDIA DEL RECEPTOR DE HOLOGRAFÍA PARA EL RADIOTELESCOPIO DE 40 METROS DEL CENTRO ASTRONÓMICO DE YEBES INFORME TÉCNICO OAN 2004-7 Mayo 2004 José Antonio López Pérez Carlos Almendros

Más detalles

Pese a las restricciones impuestas al estudio, los contenidos de este tema son lo suficientemente generales como para poder ser tenidos en cuenta

Pese a las restricciones impuestas al estudio, los contenidos de este tema son lo suficientemente generales como para poder ser tenidos en cuenta En este tema se hará una referencia introductoria a los filtros. Un filtro es una agrupación de elementos activos y/o pasivos cuya presencia en un circuito modifica la respuesta en frecuencia del circuito.

Más detalles

Redes de computadoras

Redes de computadoras 22.10.05 Redes de computadoras Medios de transmisión Omar Salvador Gómez Gómez, MSE Maestría en computación aplicada Medios guiados Medios no guiados Daños en la señal Rendimiento Agenda Medios de transmisión

Más detalles

Comunicación de datos

Comunicación de datos El cable coaxial también se usa con frecuencia para conexiones entre periféricos a corta distancias. Con señalización digital, el coaxial se puede usar como medio de transmisión en canales de entrada/salida

Más detalles

Capítulo 2: Sistemas de Comunicación

Capítulo 2: Sistemas de Comunicación Capítulo 2: Sistemas de Comunicación 2.1 Introducción En este capítulo se presentan los distintos elementos que conforman un sistema de comunicación, cubriendo de esta manera distintos conceptos tales

Más detalles

SISTEMAS Y CANALES DE TRANSMISIÓN (TEORÍA) Firma:

SISTEMAS Y CANALES DE TRANSMISIÓN (TEORÍA) Firma: SISTEMAS Y CANALES DE TRANSMISIÓN (TEORÍA) No escriba en las zonas con recuadro grueso N o Apellidos Nombre DNI Grupo 1 3 Firma: 4 T1.- Diga qué afirmaciones son ciertas cuando se analiza la difracción

Más detalles

Cómo ajustar las ganancias de un equipo

Cómo ajustar las ganancias de un equipo Cómo ajustar las ganancias de un equipo Antes de explicar los pasos a seguir para ajustar un equipo de sonido se debe tener claros algunos conceptos. Rango dinámico El rango dinámico de un equipo es la

Más detalles