Introducción. Capítulo I. Elasticidad: constante elásticas en las construcciones

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Introducción. Capítulo I. Elasticidad: constante elásticas en las construcciones"

Transcripción

1 Introducción La influencia de las constantes elásticas en las construcciones es un tema de mucho interés, ya que nos ayuda a conocer cuando una construcción o algún proyecto van a fracasar, o si bien cuando uno va a salir como lo esperaban. Es muy necesario antes de preparase para realizar una edificación o cualquier tipo de proyecto, se debe de conocer la fuerzas que actúan en el terreno, o el clima, ya que todo influye en el material, o en la construcción en si. Lo que determina que todo va a salir en perfectas condiciones muchas veces es el material, porque cada material es diferente, cada uno posee su estructura, esto quiere decir que cada uno actúa diferente a las distintas fuerzas que existen, tales como el calor. Si bien vamos a conocer es que hay varios tipos de materiales y estos se distinguen según sus propiedades o características, ya sean elásticos o no elásticos. Los materiales no elásticos no son adecuados para las construcciones ya que no son capaces de soportar las fuerzas externas, y por eso, varias obras se destruyen con facilidad. La elasticidad en sí es el fenómeno que tienen los cuerpos de volver a su estado original después de haber sufrido deformaciones, y esto es lo que no posee los materiales no elásticos, según indica la ley de Hooke Capítulo I Elasticidad: constante elásticas en las construcciones En esta monografía explicare como influye la elasticidad en las construcciones y manifestare las ventajas de conocer y aplicar correctamente los materiales, sus constantes y deformaciones. Estas imperfecciones que sufren los materiales cuando son sometidas a tensiones o acciones se denomina elasticidad. Para poder utilizar los materiales resistentes correctos, es necesario conocer o determinar su límite elástico, identificando que los sólidos tienen elasticidad de alargamiento, de esfuerzo cortante y de volumen, mientras los líquidos solo tienen elasticidad de volumen. En las construcciones es necesaria la utilización de varios materiales, en este ensayo, conoceremos las tensiones y los efectos que se producen sobre aquellos enseres, tales como los alambres, barras, resortes, tendidos de cables, como muchos otros, con el manejo correcto de aquellos materiales, con mucho margen de seguridad, puede llegarse a la construcción de puentes, soportes, estructuras, aparatos médicos, elevadores, grúas, entre otros. Cada cuerpo es diferente entre si, hay cuerpos ideales elásticos, que puede ser de dos tipos: hookeanos o no hookeanos, este último son aquellos materiales que utilizan el concepto de módulo de elasticidad tangente o secante; y los cuerpos no ideales elásticos que son aquellos a los que su recuperación de la deformación está en función del tiempo. Para determinar las constantes elásticas de cada material es necesario conocer y aplicar la ley de hooke, para esto es preciso identificar el límite elástico del cuerpo, sabiendo que para cada cuerpo el límite elástico es diferente. 1

2 El modulo de elasticidad o también conocido como el módulo de Young, es aquel que nos ayuda a calcular los cambios dimensionales en una construcción para poder distinguir entre el esfuerzo y la deformación. Diagrama tensión deformación Para tener un óptimo conocimiento en cuestión de construcciones, debemos comprender que existe más de una clase de materiales como: Las deformaciones de los cuerpos, debida a la acción de cargas, en realidad son pequeñas y en general pueden ser detectadas solamente con instrumentos especiales. Las deformaciones pequeñas no influyen sensiblemente sobre las leyes del equilibrio y del movimiento del sólido. Sin embargo, sin el estudio de estas deformaciones seria imposible resolver un problema de gran importancia como es el de determinar las condiciones para las cuales puede tener lugar la falla de una pieza, o aquellas en las que la misma puede servir sin tal peligro. En las construcciones, el ingeniero siempre encuentra en su práctica, en la mayoría de los casos configuraciones bastante complejas. Los diversos elementos de estas se reducen a los siguientes tipos simples son: barra, placa, bóveda y bloque. Cuando utilices cualquier material es obligatorio conocer las propiedades y características del mismo. Para poder utilizarlo adecuadamente sin fallas y sin enmendaduras. Las propiedades de los materiales de construcción son aquellos que indican el comportamiento de los enseres frente a las acciones o esfuerzos exteriores de tipo físico. Yo voy a explicar en sí las propiedades y características mecánicas de los materiales, ya que para una construcción esto es básico saber. Las características de los materiales dependen de varias constantes tales como: la tracción, compresión, flexión, cizalladura y torsión. Estos componentes son muy importantes en el aspecto del material y sirven de gran ayuda para verificar si el material va a ser útil en la construcción. Para aplicar las características también es necesario conocer las propiedades de aquellos materiales que van a ser utilizados. Cada propiedad y característica va variando dependiendo del uso del cuerpo, o bien del material que este sea. Cada construcción se distingue ya sea por la mano de obra, o por la calidad de material usado para realizar el proyecto, ya que si nos vamos a la calidad del material este puede cambiar, ya que en algunos casos la materia 2

3 prima no es procesada correctamente y los materiales de construcción pueden ser inservibles. Por eso hay que conocer todo respecto al material, incluyendo su procesamiento. Capitulo II Constantes elásticas: conceptos, leyes y módulos Para un buen entendimiento de las constantes elásticas es necesario estudiar a fondo todos los elementos implicados en la elasticidad. La elasticidad, es una de las muchas propiedades de los materiales, es aquella que describe la forma en como los cuerpos dependen de las acciones o tensiones que ejercen sobre ellos, ya que todos los sólidos tienden a poseer una forma estable, reaccionando contra las fuerzas deformadoras o tensiones, recuperando la forma primitiva después de cesar estos cuerpo elásticos o bien recuperando los cuerpos inelásticos. En muchos materiales, entre ellos los metales y los minerales, la deformación es directamente proporcional al esfuerzo, esto es lo que describe la ley de Hooke, llamada así en honor al físico británico Robert Hooke. No obstante si la fuerza externa supera un determinado valor, el material puede quedar deformado permanentemente y la ley de Hooke ya no el válida. La ley de Hooke estudia en sí las deformaciones elásticas, como alargamientos, compresiones, torsiones y flexiones. La forma mas común de representar la ley de Hooke matemáticamente es mediante la ecuación del resorte, donde se relaciona la fuerza ejercida por el resorte con la distancia original producida por el alargamiento, en cambio en la mecánica de los sólidos deformables elásticos la distribución de tensiones es mucho mas complicada que en la de un resorte, la deformación en el caso mas general necesita ser descrita mediante un tensor de tensiones, que van relacionadas con las ecuaciones de Hooke, que son las ecuaciones constitutivas que caracterizan el comportamiento del sólido elástico lineal. El máximo esfuerzo que un material puede soportar antes de quedar permanentemente deformado se denomina límite elástico. Si se aplica tensiones superiores a este limite, el material experimente deformaciones permanentes y no recupera su forma original a retirar las cargas. En general, un material sometido a tensiones inferiores a su límite de elasticidad es deformado temporalmente de acuerdo con la ley de Hooke, explicada anteriormente. Los materiales sometidos a tensiones superiores a su límite de elasticidad tienen un comportamiento plástico. Si las tensiones ejercidas continúan aumentando el material alcanza su punto de fractura. Para poder determinar el límite elástico del material se tiene que disponer las tensiones en función de las deformaciones en un gráfico, en el, se observa que, en un principio y para la mayoría de los materiales, aparece una zona que sigue una distribución casi lineal, donde la pendiente es el módulo de elasticidad. Esta zona se corresponde a las deformaciones elásticas del material hasta un punto donde la función cambia de régimen y empieza a curvarse, esta zona es la que corresponde al inicio del régimen plástico. Ese punto es el punto de límite elástico. Debido a la dificultad para localizarlo exactamente y con total fidelidad, ya que en los gráficos experimentales la recta es difícil de determinar y existe una banda donde podría situarse el límite elástico, en ingeniería se adopta un criterio convencional y se considera como límite elástico la tensión a la cual el material tiene una deformación plástica del 0.02% 3

4 Tanto el límite elástico como el módulo de Young son distintos para los diversos materiales. El modulo de Young es una constante elástica que al igual al límite elástico, puede calcularse empíricamente en base del ensayo de tracción del material. El modulo de Young llamado así en honor al científico ingles Tomas Young, también es conocido como el modulo de elasticidad, es un parámetro que caracteriza el comportamiento de un material elástico, según la dirección en la que se aplica la fuerza. Para un material isótropo lineal, el modulo de young tiene el mismo valor para una tracción que para una compresión, siendo una constante independiente del esfuerzo siempre y cuando no exceda su limite elástico, siendo siempre mayor que cero; al traccionar una barra, la longitud de esta aumentara, no disminuirá. Para poder determinar tanto el límite elástico como el módulo de elasticidad es conveniente aplicar el ensayo de tracción, que consiste en someter a una probeta normalizada realizada con dicho material a un esfuerzo axial de tracción creciente hasta que se produce la rotura de la probeta. En un ensayo de tracción pueden determinarse diversas características de los materiales elásticos. En el ensayo se mide la deformación (alargamiento) de la probeta entre dos puntos fijos de la misma a medida que se incrementa la carga aplicada y se representa gráficamente en función de la tensión (carga aplicada dividida por la sección de la probeta). Ahora que ya conocemos todo referente a la elasticidad, módulos y leyes, podemos entender mejor el concepto de constante elástico. Una constante elástica es cada uno de los parámetros físicamente medibles que caracterizan el comportamiento elástico de un sólido deformable elástico lineal. A veces se usa el termino constante elástica también para referirse a los coeficientes de rigidez de una barra o placa elástica. Por ejemplo un sólido elástico lineal e isótropo queda caracterizado solo mediante dos constantes elásticas. Aunque existan varias posibles elecciones de este par de constantes elásticas, las mas frecuentes en ingeniería estructura son el módulo de Young y el coeficiente de poisson. El coeficiente de Poisson, nombrado en honor a Simeón Poisson, es una constante elástica que proporciona una medida del estrechamiento de sección de un prisma de material elástico lineal e isótropo cuando se estira longitudinalmente y se adelgaza en las direcciones perpendiculares a la de estiramiento. Capitulo III Materiales elásticos: clases de materiales elásticos, propiedades y características. Para las construcciones, como ya he mencionado, una de las cosas mas importantes es conocer la clasificación de los materiales elásticos. Estos materiales son aquellos que tienen la capacidad de recobrar su forma y dimensión primitiva cuando cesa el esfuerzo que había determinado su deformación, son todos los sólidos y siguen la Ley de Hooke. Todo tipo o clase de material se distingue según sus características y propiedades, por tal motivo es primordial diferéncialos. En forma general, las propiedades se separan para su estudio en dos grandes ramas: propiedades físicas y propiedades mecánicas. Las Propiedades físicas dependen de la estructura y procesamiento del material, describen características 4

5 como color, conductividad eléctrica o térmica, magnetismo y comportamiento óptico, generalmente no se alteran por fuerza que actúan sobre el material. Las Propiedades mecánicas, en cambio, describen la forma en que un material soporta fuerzas aplicadas, incluyendo fuerzas de tensión, compresión, impacto, cíclicas o de fatiga, o fuerzas a altas temperaturas. Todos los materiales se distinguen por siete propiedades mecánicas que son: Tenacidad: Que es la propiedad que tienen ciertos materiales de soportar, sin deformarse ni romperse, los esfuerzos bruscos que se les apliquen. La elasticidad consiste en la capacidad de algunos materiales para recobrar su forma y dimensiones primitivas cuando cesa el esfuerzo que había determinado su deformación. Dureza: Es la resistencia que un material opone a la penetración. Fragilidad: Un material es frágil cuando se rompe fácilmente por la acción de un choque. Plasticidad: Aptitud de algunos materiales sólidos de adquirir deformaciones permanentes, bajo la acción de una presión o fuerza exterior, sin que se produzca rotura. Dúctibilidad: Considerada una variante de la plasticidad, es la propiedad que poseen ciertos metales para poder estirarse en forma de hilos finos. Maleabilidad: Otra variante de la plasticidad, consiste en la posibilidad de transformar algunos metales en láminas delgadas. Los materiales sólidos responden a fuerzas externas como la tensión, la compresión, la torsión, la flexión o la cizalladura, que son las características del material. Los materiales sólidos responden a dichas fuerzas con: Una deformación elástica (en la que el material vuelve a su tamaño y forma originales cuando se elimina la fuerza externa) Una deformación permanente. Una fractura. Cada material tiene las siguientes características: La tensión es una fuerza que tira; por ejemplo, la fuerza que actúa sobre un cable que sostiene un peso. Cuando un material esta sometido a tensión suele estirarse, y recupera su longitud original (deformación elástica), si esta fuerza no supera el límite elástico del material. Bajo tensiones mayores, el material no vuelve completamente a su situación original (deformación plástica), y cuando la fuerza es aún mayor, se produce la ruptura del material. La compresión es una fuerza que prensa, esto tiende a causar una reducción de volumen. Si el material es rígido la deformación será mínima, siempre q la fuerza no supere sus limites; si esto pasa el material se doblaría y sobre el, se produciría un esfuerzo de flexión. Si el material es plástico se produciría una deformación en la que los laterales se deformarían hacia los lados. La flexión es una fuerza en la que actúan simultáneamente fuerzas de tensión y compresión; por ejemplo, cuando se flexiona una varilla, uno de sus lados se estira y el otro se comprime. Si estas fuerzas no superan los limites de flexibilidad y compresión de del material este solo se deforma, si las 5

6 supera se produce la ruptura del material. La torsión es una fuerza que dobla el material, esto se produce cuando el material es girado hacia lados contrarios desde sus extremos. En este tipo de fuerza también actúan simultáneamente tensión y compresión. Si no se superan sus limites de flexión este se deformara en forma de espiral, si se superan el material sufrirá un ruptura. La cizalladura es una fuerza que corta, esto se produce cuando el material presionado (en dos partes muy cercanas) por arriba y por abajo. En este tipo de fuerza también actúan simultáneamente tensión y compresión. Si esta fuerza no supera los límites de flexión y compresión del material este se deformara, si los supera la fuerza producirá un corte en este. Los materiales elásticos se clasifican en dos grupos: materiales isótropos y anisótropos, según los diferencien sus propiedades y características. Los materiales isótropos son aquellos que presentan el mismo comportamiento mecánico para cualquier dirección de estiramiento alrededor de un punto, esta clase de materiales se dividen en lineales y no lineales. En un material elástico lineal, el módulo de elasticidad longitudinal es una constante. En este caso su valor se define mediante el coeficiente de la tensión y de la deformación que aparece en una barra recta estirada que este fabricada en el material para el cual pretendemos estimar el modulo de elasticidad. En cambio en un material elástico no lineal se consideran ciertos materiales, como por ejemplo el cobre, donde la curva de tensión deformación no tiene ningún tramo lineal, aparece una dificultad ya que no puede usarse la expresión anterior. Para ese tipo de materiales no lineales pueden definirse aún dos magnitudes asimilables al módulo de Young de los materiales lineales. La posibilidad más común es aproximar es definir el módulo de elasticidad secante medio, como el incremento de esfuerzo aplicado a un material y el cambio correspondiente a la deformación unitaria que experimenta en la dirección de aplicación del esfuerzo: Los materiales anisótropos se caracterizan por presentar diferentes valores de las constantes elásticas según la dirección en la que se aplican las fuerzas. En general, en un material anisótropo, al aplicar esfuerzos tangentes a una superficie aparecen deformaciones normales a esta. Eso significa que los modos transversales y longitudinales no están desacoplados y por esta razón los conceptos de módulos de elasticidad longitudinal y módulo de elasticidad transversal no se pueden generalizar adecuadamente, en todos los casos. Una forma común de anisotropía es la que presentan los materiales ortotrópicos en los que el comportamiento elástico queda caracterizado por una series de constantes elásticas asociadas a tres direcciones perpendiculares, un ejemplo de dicho material es la madera, generalmente usada en las construcciones, esta presenta diferente módulo de elasticidad longitudinal (módulo de Young) a lo largo de la fibra, tangencialmente a los anillos del crecimiento y perpendicularmente a los anillos de crecimiento. Capitulo IV Formulas y problemas de aplicación: ley de hooke y el módulo de Young. Para comprender mejor la practica de las leyes y los módulos explicados anteriormente, voy a realizar problemas que en la actualidad comúnmente se presentan en las construcciones. El módulo de elasticidad también recibe el nombre de constante del resorte o coeficiente de rigidez donde: 6

7 E k= D Esfuerzo K= Módulo de elasticidad= Deformación Por ejemplo al colocar diferentes pesos en resorte, sus alargamientos fueron: Esfuerzo deformación E 1.96 k= k= k= 19.6 N/m D 0.10 m El resultado indica que al aplicar un esfuerzo de 19.6 N el resorte sufre una deformación de 1 m Cuando el módulo de elasticidad se sustituyen las ecuaciones del esfuerzo y la deformación, se obtiene el llamado modulo de Young (Y). Donde: FL Y= A L El módulo de Young es una propiedad característica de las sustancias sólidas. Conocer su valor nos permitirá calcular la deformación que sufrirá el cuerpo al someterse a un esfuerzo. Para poder determinar el esfuerzo de corte que se presenta sobre un cuerpo donde actúan fuerzas colineales de igual o diferente magnitud que se mueven en sentido contrario. El esfuerzo longitudinal, ya sean de tensión o de compresión, se determina mediante la relación entre la fuerza aplicada a un cuerpo el área sobre la cual actúa. F 7

8 E= A Donde: E: es el esfuerzo longitudinal F: la fuerza en newtons A: área de sección transversal. La deformación longitudinal también llamada tensión unitaria o compresión unitaria, se determina mediante la relación entre la variación de la longitud original, o bien la tensión o compresión unitaria el alargamiento o acortamiento de un cuerpo por cada unidad de longitud. L D= L Donde: D = A la deformación longitudinal L = es la variación de la longitud del cuerpo. L = es la longitud original del cuerpo. En todas las construcciones conocer el límite de elasticidad de cada material es muy importante ya que así sabremos si aquel cuerpo va a soportar sin obtener ninguna clase de fractura todas las fuerzas e=que va a tener en el transcurso del tiempo. El límite de la elasticidad se lo obtiene con la siguiente formula: Fm Le = A Donde: Le: es el límite elástico Fm: fuerza máxima en newtons A: área de la sección transversal Por ejemplo la máxima fuerza que pueda soportar una varilla de acero templado si el área de sección transversal es de 3 cm.2 8

9 Como el módulo de Young del acero es de 5 x 108, pero viendo que la sección transversal está dada en cm. Hacemos la conversión necesaria 1 m = 100 cm. = 1 x 10 4 cm. 2 3 cm2 x 1m2 / 1x 104 = 3 x 10 4 Fm = 5 x 108 / 3 x 10 4 = 15 x 104 N En la física existen varias formas de llegar al valor requerido una de ellas es mediante formulas físicas o matemáticas, pero hay otras formas por ejemplo gráficamente, pero no es muy exacta ya que la graficas pueden variar dependiendo de quien las haga. Capitulo V Ley de Hooke: demostración Para la demostración de la ley de hooke, he decidido realizar el experimento del resorte que consiste en comparar las medidas de las masas iniciales con las medidas de las masas después de que sea sometida a fuerzas externas. Con esta práctica pretendo hallar experimentalmente la constante de elasticidad de un resorte del cual conocemos su masa, haciendo uso de la Ley de Hooke de un resorte sometido a un esfuerzo. Los valores obtenidos, serán comparados con los reales para así poder sacar conclusiones. Dentro de los objetivos que pretendo alcanzar en esta práctica están los siguientes: Verificar la existencia de fuerzas recuperadas. Identificar las características de estas fuerzas. Deducir la ley de Hooke a partir de la experimentación. Calcular la constante elástica K del resorte. Describir los posibles errores de esta medición y sus posibles causas. Materiales: Un soporte universal Un resorte Una regla graduada en milímetros Cinco masas aproximadamente 50, 100, 150, 200, 250 g y un cronómetro. Procedimiento, explicación y conclusión: En esta práctica lo primero que hice fue calcular la masa del resorte con ayuda de una balanza, luego coloque una masa en unos de los resortes, desplace ligeramente el sistema de la posición de equilibrio, lo solté y describí el movimiento que se originó, y así fui realizando con cada mas. M (g) Mg (Dn) ð 10 ð l (cm) ð 0.05 Frec. (Dn) ð 10 t20 (s) ð 0.16 T (s) ð 0.16 T2 (s2) ð ð

10 ð ð ð 0.55 Masa del resorte ± g Longitud del resorte 22.8 ± 0.05cm Gravedad 980 cm./s ± 10 Pude observar que el movimiento de la masa con respecto al resorte es una oscilación vertical, ya que el resorte trata de retomar a su punto de equilibrio. La principal característica de la fuerza que produce este movimiento es el estiramiento del resorte con respecto a la masa. Estas fuerzas reciben el nombre de fuerzas restauradoras las cuales actúan con el fin de llevar el resorte a su estado de equilibrio. Para hallar la ecuación que relaciona la masa y la distancia, podríamos decir que la fuerza de recuperación es igual a la constante de elasticidad por la distancia de elongamiento del resorte, por lo tanto el peso es igual a la masa x la gravedad. La diferencia que encontré al colocar en resorte masas diferentes es que el resorte se estira de acuerdo al elemento que se use para el experimento, ya que al utilizar elementos de diferentes masas, el peso es diferente para cada una de ellas. Conclusiones Las deformaciones sufridas por un resorte y el periodo de oscilación del mismo son proporcionales a la masa. El valor de la masa fue muy parecido y aproximados al convencionalmente verdadero. Al obtener errores tan bajos podemos concluir que el método de elaboración de la practica es confiable y sus resultados son producto de la buena elaboración. La masa efectúa un movimiento armónico simple puesto que el desplazamiento de la masa desde el punto de equilibrio, varia en el tiempo, es decir se mueve periódicamente respecto a su posición de equilibrio. La aceleración es proporcional al desplazamiento de la masa a partir del equilibrio y está en la dirección opuesta. La aceleración es variable. Cuando la masa pasa por la posición de equilibrio, su aceleración se hace cero y su velocidad es máxima puesto que la masa oscila entre dos puntos de retorno. Capitulo VI Modulo de Young: demostración Para la demostración del modulo de Young voy a utilizar el método estático, en los cuales voy a utilizar materiales como hierro. Materiales: Láser Barra de hierro Hoja de afeitar 10

11 Objetivos: Conocer y determinar el modulo de Young de la barra de hierro Observar las deformaciones sufridas en el transcurso del experimento. Si consideramos una superficie cualquiera en el interior de la barra de hierro, las partículas que están a cada uno de los lados ejercerán fuerzas sobre las partículas que están del lado opuesto, y estas fuerzas cumplen con el principio de acción y reacción. De acuerdo a la dirección de esas fuerzas interiores, para cada sección transversal se manifestarán momentos internos, que recibirán su nombre de acuerdo a la dirección de la fuerza. Si la barra se somete a esfuerzos transversales se hablará de momentos flectores; si se efectúan esfuerzos de corte, se manifestarán momentos de torsión. a) Barra sometida a esfuerzos transversales, generando momentos flectores. b) Barra sometida a esfuerzos de corte, generando momentos torsores. En este caso, la barra estudiada fue sometida a esfuerzos transversales en un plano vertical, por lo cual trata de una flexión pura (sin torsiones ni fuerzas de corte). Considerando un segmento de la barra curvada, pude ver que el material de la parte interna de la barra está comprimido mientras que en la parte externa está estirado; existe una capa central que no se deforma llamada superficie neutra. Las fuerzas que actúan por encima de la superficie neutra tienen sentido opuesto al de las fuerzas que actúan por debajo de dicha superficie; estos pares de fuerzas tienen un momento no nulo respecto de la superficie neutra. El método estático para determinar el módulo de Young de distintos materiales. El láser tiene que incidir sobre la ranura formada por la barra y la hoja de afeitar, formando sobre la pantalla, situada a una distancia de la ranura, un patrón de difracción. Luego se procedió a alinear el láser para que incida correctamente sobre la ranura cuya abertura queremos medir hasta obtener un patrón bien definido sobre la pantalla. Luego se comenzaron a colgar pesas cerca del extremo libre de la barra, cuidando siempre de suspenderlas a la misma distancia de dicho extremo. Las pesas utilizadas abarcaron desde 0 a 12 gramos para las barras metálicas, y de 0 a 5 gramos para la barra de Grilón. Para cada pesa suspendida del extremo de la barra, se observó el patrón de difracción en la pantalla anotándose la posición de los mínimos junto con los órdenes correspondientes. Donde g = 981cm/s2, y los valores de x, L, d y a para cada barra se encuentran en la siguiente tabla :. Material d(cm.) x (cm.) L (cm.) a (cm./g) Hierro 3,02±0,02 10,4±0, 1 30,9±0,1 0,00248±0,00004 Aquí se observan los valores de los diámetros de las distintas barras estudiadas, las posiciones de donde cuelgan las pesas, las distancias desde la morsa hasta la ubicación de la ranura y los valores de las pendientes obtenidas a partir de las regresiones lineales hechas en cada caso. Los valores de los diámetros fueron obtenidos promediando varias lecturas realizadas a lo largo de cada una 11

12 de las barras, con un calibre cuyo error era de 0,05mm. Para x y L las mediciones se hicieron con una regla cuyo error fue de 1 Mm. en todos los casos y la ecuación (9) se procedió a obtener los valores del módulo de Young para la barra estudiada en la experiencia. Material Módulo de Young E (Pascales) Error relativo Hierro (1,4± 0,1) x % Capitulo VII Constantes elásticas: aplicaciones en las construcciones (demostración) Conociendo ya todos los aspectos relacionados a las construcciones y a las medidas que se deben de tomar para la debida realización del proyecto. Quiero demostrar todos los influyentes que ocurren en los materiales cuando son empleados en las construcciones y para eso voy a realizar la siguiente demostración. Voy a tomar algunos materiales que comúnmente son utilizados, donde voy a tener dos muestra, en una, los materiales son correctamente usados, dependiendo de su limite elástico y de todas las características y propiedades que este posee, en cambio en la otra muestra, los materiales van a sufrir fracturas ya que sobrepasa su limite al no ser empleados correctamente, este tipo de equivocaciones puede presentarse en la vida real y no simplemente en un ensayo. Objetivos: Objetivos Representar los problemas que comúnmente pasa, al emplear incorrectamente los materiales. Conocer hasta cuanto un material esta dispuesto a soportar fuerzas externas. Exponer y demostrar como es que los materiales sufren deformaciones elásticas. Objetivo general: Analizar y descubrir todos aquellos fenómenos que los materiales sufren al ser sometidos a fuerzas externas para así comprender porque las construcciones algunas veces fracasan, mediante experimentos explicados posteriormente. Objetivos específicos: Conocer e identificar todas las propiedades y características de cada material para diferenciar cual va a servir para la construcción. Descubrir como influye las leyes de elasticidad en cada uno de los enseres para poder clasificarlos. Clases de materiales elásticos Materiales isótropos Materiales anisótropos Materiales lineales Materiales no linelas 12

13 Materiales ortotrópicos Propiedades del material Dureza Tenacidad Fragilidad Elasticidad Plasticidad Maleabilidad Dúctibilidad Esfuerzo en N Deformación en M Módulo de elasticidad 13

LABORATORIO DE MECANICA LEY DE HOOKE

LABORATORIO DE MECANICA LEY DE HOOKE No 6 LABORATORIO DE MECANICA LEY DE HOOKE DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos Objetivo general: Estudiar experimentalmente el comportamiento

Más detalles

Elasticidad. Bogotá D.C., 10 de marzo de 2014. *d.villota@javeriana.edu.co, *mara.salgado90@gmail.com, *aguirrek@javeriana.edu.co.

Elasticidad. Bogotá D.C., 10 de marzo de 2014. *d.villota@javeriana.edu.co, *mara.salgado90@gmail.com, *aguirrek@javeriana.edu.co. Elasticidad Mara Salgado 1*, Diego Villota Erazo 1*, Katherine Aguirre Guataqui 1*. Bogotá D.C., 10 de marzo de 2014 Departamento de Matemáticas, Laboratorio de Física Biomecánica, pontificia Universidad

Más detalles

LaborEUSS. LaborEUSS

LaborEUSS. LaborEUSS enomenología de la deformación plástica Todos los materiales presentan una carga característica (límite elástico) Por debajo de ella se comportan elásticamente (al retirar la carga el material vuelve a

Más detalles

Tema 1: ESFUERZOS Y DEFORMACIONES

Tema 1: ESFUERZOS Y DEFORMACIONES Escuela Universitaria de Ingeniería Técnica grícola de Ciudad Real Tema 1: ESFUERZOS Y DEFORMCIONES Tipos de cargas. Tensiones: Clases. Tensiones reales, admisibles y coeficientes de seguridad. Elasticidad:

Más detalles

Deducir la ley de Hooke a partir de la experimentación. Identificar los pasos del método científico en el desarrollo de este experimento.

Deducir la ley de Hooke a partir de la experimentación. Identificar los pasos del método científico en el desarrollo de este experimento. LABORATORIO DE FISICA I LEY DE HOOKE UNIVERSIDAD TECNOLÓGICA DE PEREIRA PEREIRA RISARALDA OBJETIVOS Verificar la existencia de fuerzas recuperadas. Identificar las características de estas fuerzas. Deducir

Más detalles

Tema II: Elasticidad

Tema II: Elasticidad TEMA II Elasticidad LECCIÓN 2 Ley de Hooke 1 2.1 TENSIÓN Comparación de la resistencia mecánica a tracción de dos materiales distintos: Cuál de los dos materiales es más resistente? 2 Tensión ingenieril

Más detalles

CIENCIA DE MATERIALES

CIENCIA DE MATERIALES CIENCIA DE MATERIALES PROPIEDADES MECANICAS DE LOS MATERIALES Ing. M.Sc. José Manuel Ramírez Q. Propiedades Mecánicas Tenacidad Dureza Medida de la cantidad de energía que un material puede absorber antes

Más detalles

CTM Tema 5 Propiedades Mecánicas PROBLEMAS BÁSICOS

CTM Tema 5 Propiedades Mecánicas PROBLEMAS BÁSICOS TRACCIÓN 1) Una probeta cilíndrica de una aleación de titanio de 12 mm de diámetro y 10 cm de longitud experimenta un alargamiento de 0.4 mm cuando actúa sobre ella una carga a tracción de 52 kn. Suponiendo

Más detalles

PRÁCTICA: MOMENTOS DE INERCIA Y PÉNDULO FÍSICO

PRÁCTICA: MOMENTOS DE INERCIA Y PÉNDULO FÍSICO PRÁCTICA: MOMENTOS DE INERCIA Y PÉNDULO FÍSICO Parte I: MOMENTOS DE INERCIA Objetivo: Determinar experimentalmente el momento de inercia de un disco respecto a su centro de gravedad y respecto a distintos

Más detalles

5.- Determina la densidad del aluminio, sabiendo que cristaliza en el sistema FCC, que su masa atómica es 27 y que su radio atómico es 1,43A10-8 cm

5.- Determina la densidad del aluminio, sabiendo que cristaliza en el sistema FCC, que su masa atómica es 27 y que su radio atómico es 1,43A10-8 cm ESTRUCTURA Y PROPIEDADES DE LOS MATERIALES 1.- Calcula la constante reticular (arista de la celda unitaria, a) de un material cuyos átomos tienen un radio atómico de 0,127 nm que cristaliza en el sistema

Más detalles

LABORATORIO DE MECANICA LEY DE HOOKE

LABORATORIO DE MECANICA LEY DE HOOKE No 6 LABORATORIO DE MECANICA LEY DE HOOKE DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos Objetivo general: Estudiar experimentalmente el comportamiento

Más detalles

10/03/2013 CAPÍTULO 13 - ELASTICIDAD. Capítulo 13. Elasticidad OBJETIVOS ING ARNALDO ANGULO ASCAMA

10/03/2013 CAPÍTULO 13 - ELASTICIDAD. Capítulo 13. Elasticidad OBJETIVOS ING ARNALDO ANGULO ASCAMA CPÍTUO 13 - ESTICIDD Presentación PowerPoint de Paul E. Tippens, Profesor de ísica Southern Polytechnic State University PRESENTCION CTUIZD POR: ING RNDO NGUO SCM 013 Capítulo 13. Elasticidad Photo ol.

Más detalles

CURSO: MECÁNICA DE SÓLIDOS II UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA

CURSO: MECÁNICA DE SÓLIDOS II UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA ESCUELA PROFESIONAL DE INGENIERÍA ELÉCTRICA CURSO: MECÁNICA DE SÓLIDOS II PROFESOR: ING. JORGE A. MONTAÑO PISFIL CURSO DE

Más detalles

Con la ayuda de el dinamómetro implementamos el segundo método de aplicación y medición de fuerzas.

Con la ayuda de el dinamómetro implementamos el segundo método de aplicación y medición de fuerzas. EXPERIMENTO # 1: LEY DE HOOKE MEDICIÓN DE FUERZAS Objetivo: Estudios de las propiedades de un dinamómetro mediante la aplicación de fuerza conocidas. Fundamento Teórico: El concepto de fuerza es definido

Más detalles

UD 1: LOS MATERIALES Y SUS PROPIEDADES PROBLEMAS

UD 1: LOS MATERIALES Y SUS PROPIEDADES PROBLEMAS UD 1: LOS MATERIALES Y SUS PROPIEDADES PROBLEMAS Problemas de ensayo de Tracción 1.- 2.- 3.- Una probeta normalizada de 13.8 mm de diámetro y 100mm de distancia entre puntos, es sometida a un ensayo de

Más detalles

Esta expresión es válida tanto para tracción como para compresión.

Esta expresión es válida tanto para tracción como para compresión. TÍTULO 4.º DIMENSIONAMIENTO Y COMPROBACIÓN CAPÍTULO VIII DATOS DE LOS MATERIALES PARA EL PROYECTO Artículo 32 Datos de proyecto del acero estructural 32.1. Valores de cálculo de las propiedades del material

Más detalles

Diseño de Elementos I

Diseño de Elementos I Diseño de Elementos I Objetivo General Estudiar las cargas y sus efectos sobre elementos de máquinas, a través de modelos matemáticos, las ciencias de los materiales y las ciencias mecánicas aplicadas

Más detalles

Resistencia de Materiales. Roberto Imaz Gutiérrez. Este capítulo se publica bajo Licencia Creative Commons BY NC SA 3.0. Capítulo 7.

Resistencia de Materiales. Roberto Imaz Gutiérrez. Este capítulo se publica bajo Licencia Creative Commons BY NC SA 3.0. Capítulo 7. Roberto Imaz Gutiérrez. Este capítulo se publica bajo Licencia Creative Commons BY NC SA 3.0 Capítulo 7. TORSIÓN 7.1 TORSIÓN PURA DE UN CILINDRO CIRCULAR Consideramos aquí únicamente, el caso de una barra

Más detalles

Algunas definiciones..

Algunas definiciones.. Criterios de Resistencia Clase 19 Solicitaciones compuestas Algunas definiciones.. Falla: ocurre cuando un miembro estructural o una estructura cesa de ejecutar la función para la cual fueron diseñados.

Más detalles

DIFERENCIA ENTRE FLUIDOS Y SÓLIDOS

DIFERENCIA ENTRE FLUIDOS Y SÓLIDOS DIFERENCIA ENTRE FLUIDOS Y SÓLIDOS Se le llama fluido a toda aquella sustancia continua que puede fluir. Los fluidos pueden ser gaseosos y líquidos. Esta es la diferencia fundamental entre un sólido, cuya

Más detalles

UNIDAD 2: DINÁMICA. LAS FUERZAS Y SUS EFECTOS.

UNIDAD 2: DINÁMICA. LAS FUERZAS Y SUS EFECTOS. UNIDAD 2: DINÁMICA. LAS FUERZAS Y SUS EFECTOS. 1. FUERZAS Y SUS EFECTOS. La Dinámica es una parte de la Física que estudia el movimiento de los cuerpos, atendiendo a las causas que lo producen. Son las

Más detalles

Objetivos Docentes del Tema 4:

Objetivos Docentes del Tema 4: Tema 4: Propiedades mecánicas de los Materiales. 1. Tensión y deformación. Rigidez. 2. Mecanismos de deformación. Tipos. 3. Endurecimiento. 4. Fluencia y Relajación. 5. Mecanismos de fractura. 6. Acciones

Más detalles

TEMA 2: PROPIEDADES DE LOS MATERIALES. ENSAYOS DE MEDIDA

TEMA 2: PROPIEDADES DE LOS MATERIALES. ENSAYOS DE MEDIDA TEMA 2: PROPIEDADES DE LOS MATERIALES. ENSAYOS DE MEDIDA Propiedades de los materiales Propiedades mecánicas Plasticidad es la propiedad mecánica de un material de deformarse permanentemente e irreversiblemente

Más detalles

Muelles y resortes. Índice. Tema 8º: Tema DI8 - Muelles y resortes. Ingeniería Gráfica y Topografía. Expresión Gráfica y DAO 1

Muelles y resortes. Índice. Tema 8º: Tema DI8 - Muelles y resortes. Ingeniería Gráfica y Topografía. Expresión Gráfica y DAO 1 Tema 8º: Muelles y resortes Ingeniería Gráfica y Topografía M.D.M.G./11 Índice - Generalidades. - Clasificación. - Resortes helicoidales de compresión. - Resortes helicoidales de tracción. - Resortes cónicos

Más detalles

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO : RESISTIVIDAD ELÉCTRICA Determinar la resistividad eléctrica

Más detalles

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO 1999-2000

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO 1999-2000 PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO 1999-2000 10.1.- Qué longitud debe tener un redondo de hierro (G = 80.000 MPa), de 1 cm de diámetro para que pueda sufrir un ángulo de

Más detalles

Fluidos. Presión. Principio de Pascal.

Fluidos. Presión. Principio de Pascal. Fluidos. Presión. Principio de Pascal. CHOQUES ELASTICOS E INELASTICOS Se debe tener en cuenta que tanto la cantidad de movimiento como la energía cinética deben conservarse en los choques. Durante una

Más detalles

F2 Bach. Movimiento armónico simple

F2 Bach. Movimiento armónico simple F Bach Movimiento armónico simple 1. Movimientos periódicos. Movimientos vibratorios 3. Movimiento armónico simple (MAS) 4. Cinemática del MAS 5. Dinámica del MAS 6. Energía de un oscilador armónico 7.

Más detalles

Unidad11 CARACTERISTICAS TERMICAS DE LOS MATERIALES

Unidad11 CARACTERISTICAS TERMICAS DE LOS MATERIALES Unidad11 CARACTERISTICAS TERMICAS DE LOS MATERIALES 11 1 PRESENTACION Algunas aplicaciones industriales importantes requieren la utilización de materiales con propiedades térmicas específicas, imprescindibles

Más detalles

FUERZA CIENCIAS: FÍSICA PLAN GENERAL FUERZA NORMAL PREUNIVERSITARIO POPULAR FRAGMENTOS COMUNES

FUERZA CIENCIAS: FÍSICA PLAN GENERAL FUERZA NORMAL PREUNIVERSITARIO POPULAR FRAGMENTOS COMUNES FUERZA Fuerza es la interacción de dos o más cuerpos que puede causar el cambio de su movimiento. Fuerzas constantes dan origen a cambios progresivos del movimiento de un cuerpo o partícula en el tiempo.

Más detalles

2.1.- Sólidos, Líquidos y Gases: Propósito

2.1.- Sólidos, Líquidos y Gases: Propósito 2.1.- Sólidos, Líquidos y Gases: Propósito El estudiante analiza e interpreta y aplica la mecánica de los sólidos, líquidos y gases como herramienta fundamental para la resolución de problemas. Los estados

Más detalles

PRÁCTICA 3: MEDIDAS DE LONGITUDES, PESOS Y TIEMPOS.

PRÁCTICA 3: MEDIDAS DE LONGITUDES, PESOS Y TIEMPOS. PRÁCTICA : MEDIDAS DE LONGITUDES, PESOS Y TIEMPOS. MEDIDA DE DIMENSIONES GEOMÉTRICAS CON EL PALMER Y EL CALIRADOR. Con esta práctica se pretende que el alumno se familiarice con el manejo de distintos

Más detalles

11. Desgaste de herramientas. Contenido: 1. Desgaste de herramientas 2. Medida del desgaste 3. Ensayos de duración de herramientas

11. Desgaste de herramientas. Contenido: 1. Desgaste de herramientas 2. Medida del desgaste 3. Ensayos de duración de herramientas 11. Desgaste de herramientas Contenido: 1. Desgaste de herramientas 2. Medida del desgaste 3. Ensayos de duración de herramientas Desgaste de herramientas La herramienta durante su trabajo está sometida

Más detalles

Tema 9 Propiedades Mecánicas: Dureza y Tenacidad a la fractura.

Tema 9 Propiedades Mecánicas: Dureza y Tenacidad a la fractura. Tema 9 Propiedades Mecánicas: Dureza y Tenacidad a la fractura. Dureza. La dureza mide la resistencia que un material ofrece cuando se intenta ser deformado plásticamente. Entre más duro es el material,

Más detalles

Respecto a la fuerza neta que actúa sobre un cuerpo, es correcto afirmar que

Respecto a la fuerza neta que actúa sobre un cuerpo, es correcto afirmar que Guía práctica Dinámica I: fuerza y leyes de Newton Física Estándar Anual Nº Ejercicios PSU Para esta guía considere que la magnitud de la aceleración de gravedad (g) es 10 1. 2. GUICES016CB32-A16V1 m.

Más detalles

Ley de Ohm: Determinación de la resistencia eléctrica de un resistor óhmico

Ley de Ohm: Determinación de la resistencia eléctrica de un resistor óhmico Ley de Ohm: Determinación de la resistencia eléctrica de un resistor óhmico 1. Objetivos Comprobación experimental de la ley de Ohm a través de la determinación del valor de una resistencia comercial.

Más detalles

FÍSICA Y QUÍMICA 4º ESO. OBJETIVOS, CONTENIDOS Y CRITERIOS DE EVALUACIÓN. 1ª Evaluación

FÍSICA Y QUÍMICA 4º ESO. OBJETIVOS, CONTENIDOS Y CRITERIOS DE EVALUACIÓN. 1ª Evaluación FÍSICA Y QUÍMICA 4º ESO. OBJETIVOS, CONTENIDOS Y CRITERIOS DE EVALUACIÓN. 1ª Evaluación Unidad 1: El movimiento de los cuerpos i. Objetivos Observar las distintas magnitudes físicas que se ponen de manifiesto

Más detalles

Programa de la asignatura. ASIGNATURA: Elasticidad y Resistencia de Materiales. Código: 141212004 Titulación: INGENIERO INDUSTRIAL Curso: 2º

Programa de la asignatura. ASIGNATURA: Elasticidad y Resistencia de Materiales. Código: 141212004 Titulación: INGENIERO INDUSTRIAL Curso: 2º ASIGNATURA: Elasticidad y Resistencia de Materiales Código: 141212004 Titulación: INGENIERO INDUSTRIAL Curso: 2º (2012 / 2013) Profesor(es) responsable(s): - MARIANO VICTORIA NICOLÁS Departamento: ESTRUCTURAS

Más detalles

RESISTENTE AL ESFUERZO CORTANTE DE LOS SUELOS. Ing. MSc. Luz Marina Torrado Gómez Ing. MSc. José Alberto Rondón

RESISTENTE AL ESFUERZO CORTANTE DE LOS SUELOS. Ing. MSc. Luz Marina Torrado Gómez Ing. MSc. José Alberto Rondón RESISTENTE AL ESFUERZO CORTANTE DE LOS SUELOS Ing. MSc. Luz Marina Torrado Gómez RESISTENTE AL ESFUERZO CORTANTE DE LOS SUELOS SOLICITACIONES INTERNAS QUE SE GENERAN EN UN SUELO Tensiones normales, : Pueden

Más detalles

Mecánica Vectorial Cap. 3. Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D.

Mecánica Vectorial Cap. 3. Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D. Mecánica Vectorial Cap. 3 Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D. Cómo tener éxito en Matemáticas? Paso 1: El trabajo duro triunfa sobre el talento natural. Paso 2: Mantenga una mente abierta.

Más detalles

Procedimiento de ensayo

Procedimiento de ensayo UNIVERSIDAD DON BOSCO. FACULTAD DE ESTUDIOS TECNÓLÓGICOS TÉCNICO EN ING. MECANICA. CICLO - AÑO 02-2013 GUIA DE LABORATORIO # 3. Nombre de la Práctica: Ensayo de tracción de los materiales. Lugar de Ejecución:

Más detalles

TEMA 8: PROPIEDADES DE LOS MATERIALES. ENSAYOS DE MEDIDA

TEMA 8: PROPIEDADES DE LOS MATERIALES. ENSAYOS DE MEDIDA TEMA 8: PROPIEDADES DE LOS MATERIALES. ENSAYOS DE MEDIDA 1.- Propiedades de los materiales Propiedades mecánicas Plasticidad es la propiedad mecánica de un material de adquirir deformaciones permanentes

Más detalles

En este capítulo se presentan los conceptos sobre ciencia de materiales, algunas propiedades

En este capítulo se presentan los conceptos sobre ciencia de materiales, algunas propiedades Marco Teórico 2.1 Introducción En este capítulo se presentan los conceptos sobre ciencia de materiales, algunas propiedades físicas de los materiales, específicamente nos enfocaremos al acero y al aluminio,

Más detalles

Universidad de Atacama. Física 1. Dr. David Jones. 14 Mayo 2014

Universidad de Atacama. Física 1. Dr. David Jones. 14 Mayo 2014 Universidad de Atacama Física 1 Dr. David Jones 14 Mayo 2014 Fuerzas de arrastre Cuando un objeto se mueve a través de un fluido, tal como el aire o el agua, el fluido ejerce una fuerza de resistencia

Más detalles

Calcular el momento en el apoyo central, y dibujar los diagramas de esfuerzos. 6 m

Calcular el momento en el apoyo central, y dibujar los diagramas de esfuerzos. 6 m Elasticidad y Resistencia de Materiales Escuela Politécnica Superior de Jaén UNIVERSIDAD DE JAÉN Departamento de Ingeniería Mecánica y Minera Mecánica de Medios Continuos y Teoría de Estructuras Relación

Más detalles

MOVIMIENTO ARMÓNICO AMORTIGUADO

MOVIMIENTO ARMÓNICO AMORTIGUADO MOVIMIENTO ARMÓNICO AMORTIGUADO OBJETIVO Medida experimental de la variación exponencial decreciente de la oscilación en un sistema oscilatorio de bajo amortiguamiento. FUNDAMENTO TEÓRICO A) SISTEMA SIN

Más detalles

6 Propiedades elásticas de los materiales

6 Propiedades elásticas de los materiales Propiedades elásticas de los materiales 1 6 Propiedades elásticas de los materiales 6.0 Introducción En el resto del capítulo de mecánica se ha estudiado como las fuerzas actúan sobre objetos indeformables.

Más detalles

Problemas de Física 1 o Bachillerato

Problemas de Física 1 o Bachillerato Problemas de Física 1 o Bachillerato Conservación de la cantidad de movimiento 1. Calcular la velocidad de la bola m 2 después de la colisión, v 2, según se muestra en la siguiente figura. El movimiento

Más detalles

SOLO PARA INFORMACION

SOLO PARA INFORMACION INTRODUCCIÓN En el siguiente laboratorio se estudiara unos de los casos de elasticidad, la deformación lineal. Se mostrara y comparara los resultados experimentales y teóricos, dándonos una visión de los

Más detalles

TEMA 5: Dinámica. T_m[ 5: Dinámi][ 1

TEMA 5: Dinámica. T_m[ 5: Dinámi][ 1 TEMA 5: Dinámica T_m[ 5: Dinámi][ 1 ESQUEMA DE LA UNIDAD 1.- Fuerzas. 2.- Fuerzas y deformaciones. Ley de Hooke. 3.- Fuerzas de interés. 4.- Las leyes de Newton. 5.- Cantidad de movimiento. 6.- Principio

Más detalles

PROPIEDADES MECÁNICAS DE LOS MATERIALES

PROPIEDADES MECÁNICAS DE LOS MATERIALES 1 PROPIEDADES MECÁNICAS DE LOS MATERIALES Definen el comportamiento de los materiales en su utilización industrial, las más importante son: Elasticidad: capacidad de los materiales de recuperar la forma

Más detalles

Antecedentes históricos

Antecedentes históricos Mecánica Antecedentes históricos Aristóteles (384-322 AC) formuló una teoría del movimiento de los cuerpos que fue adoptada durante 2 000 años. Explicaba que había dos clases de movimiento: Movimiento

Más detalles

ELASTICIDAD. Asignatura: Fisca Biomecánica. Profesor: Fernando Vega. Autores: Angie Johana Torres Pedraza. Laura Carolina Martínez Castillo

ELASTICIDAD. Asignatura: Fisca Biomecánica. Profesor: Fernando Vega. Autores: Angie Johana Torres Pedraza. Laura Carolina Martínez Castillo ELASTICIDAD Asignatura: Fisca Biomecánica Profesor: Fernando Vega Autores: Angie Johana Torres Pedraza Laura Carolina Martínez Castillo Andrea Viviana Rodríguez Archila María Paola Reyes Gómez Fecha: Marzo

Más detalles

Campo Eléctrico. Fig. 1. Problema número 1.

Campo Eléctrico. Fig. 1. Problema número 1. Campo Eléctrico 1. Cuatro cargas del mismo valor están dispuestas en los vértices de un cuadrado de lado L, tal como se indica en la figura 1. a) Hallar el módulo, dirección y sentido de la fuerza eléctrica

Más detalles

UNE RAFAEL MARÍA BARALT PROGRAMA DE INGENIERÍA Y TECNOLOGÍA

UNE RAFAEL MARÍA BARALT PROGRAMA DE INGENIERÍA Y TECNOLOGÍA UNE RAFAEL MARÍA BARALT PROGRAMA DE INGENIERÍA Y TECNOLOGÍA Proyecto de Ingeniería en Gas INTRODUCCIÓN A LOS MATERIALES Elaborado por: Ing. Roger Chirinos. MSc Cabimas, Abril 2011 FUNDAMENTACIÓN Asignatura:

Más detalles

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 3.- CORTADURA. 2.1.- Cortadura pura o cizalladura. Una pieza sufre fuerzas cortantes cuando dos secciones planas y paralelas

Más detalles

8. DISEÑO DEL PROYECTO

8. DISEÑO DEL PROYECTO 8. DISEÑO DEL PROYECTO 1. GENERALIDADES En general los laminados por contacto usan moldes de fibra de vidrio, copiados de modelos de arcilla, madera, yeso u de alguna pieza existente. Este proceso consta

Más detalles

PROPIEDADES MECÁNICAS

PROPIEDADES MECÁNICAS La selección de un material significa adecuar sus propiedades mecánicas a las condiciones de servicio requeridas para el componente. Se requiere analizar la aplicación a fin de determinar las características

Más detalles

TRABAJO DE RECUPERACIÓN PARCIAL 1 2012-2013 CURSO: TERCERO DE BACHILLERATO: NOMBRE: FECHA DE ENTREGA: Jueves, 22-11-2012

TRABAJO DE RECUPERACIÓN PARCIAL 1 2012-2013 CURSO: TERCERO DE BACHILLERATO: NOMBRE: FECHA DE ENTREGA: Jueves, 22-11-2012 TRABAJO DE RECUPERACIÓN PARCIAL 1 2012-2013 ÁREA: FÍSICA CURSO: TERCERO DE BACHILLERATO: NOMBRE: FECHA DE ENTREGA: Jueves, 22-11-2012 INSTRUCCIONES: LEA DETENIDAMENTE LOS ENUNCIADOS DE CADA UNO DE LOS

Más detalles

Determinación de la constante elástica, k, de un resorte. Estudio estático y dinámico.

Determinación de la constante elástica, k, de un resorte. Estudio estático y dinámico. Determinación de la constante elástica, k, de un resorte. Estudio estático y dinámico. Nombre: Manuel Apellidos: Fernandez Nuñez Curso: 2º A Fecha: 29/02/2008 Índice Introducción pag. 3 a 6 Objetivos.

Más detalles

Adjunto: Lic. Auliel María Inés

Adjunto: Lic. Auliel María Inés Ingeniería de Sonido Física 2 Titular: Ing. Daniel lomar Vldii Valdivia Adjunto: Lic. Auliel María Inés 1 Termodinámica i Temperatura La temperatura de un sistema es una medida de la energía cinética media

Más detalles

Chapter 1. Fuerzas de la Naturaleza. 1.1 Masa y Peso

Chapter 1. Fuerzas de la Naturaleza. 1.1 Masa y Peso Chapter 1 Fuerzas de la Naturaleza Newton se esforzó mucho en desarrollar un concepto de fuerza, dentro de las notas, una de sus primeras definiciones de fuerza es fuerza es a veces la presión de un cuerpo

Más detalles

GUIA DIDACTICA FISICA 4to INTERACCIONES MECANICAS

GUIA DIDACTICA FISICA 4to INTERACCIONES MECANICAS UNIDAD EDUCATIVA COLEGIO LOS PIRINEOS DON BOSCO INSCRITO EN EL M.P.P.L N S2991D2023 RIF: J-09009977-8 GUIA DIDACTICA FISICA 4to INTERACCIONES MECANICAS Asignatura: Física Año Escolar: 2014-2015 Lapso:

Más detalles

NEWTON Y LA CONSTANTE ELÁSTICA: CÓMO CONSTRUIR UN DINAMÓMETRO?

NEWTON Y LA CONSTANTE ELÁSTICA: CÓMO CONSTRUIR UN DINAMÓMETRO? NEWTON Y LA CONSTANTE ELÁSTICA: CÓMO CONSTRUIR UN DINAMÓMETRO? AUTORÍA MARÍA DEL CARMEN HERRERA GÓMEZ TEMÁTICA CONSTANTE ELÁSTICA ETAPA BACHILLERATO Resumen Estas experiencias van dirigidas a alumnos y

Más detalles

MECÁNICA DE FLUIDOS. CALSE 1: Introducción y propiedades de los fluidos. Julián David Rojo Hdz. I.C. Msc. Recursos Hidráulicos

MECÁNICA DE FLUIDOS. CALSE 1: Introducción y propiedades de los fluidos. Julián David Rojo Hdz. I.C. Msc. Recursos Hidráulicos MECÁNICA DE FLUIDOS CALSE 1: Introducción y propiedades de los fluidos Julián David Rojo Hdz. I.C. Msc. Recursos Hidráulicos CONTENIDO 1.1: Definición de fluidos 1.2:Mecánica de fluidos 1.3:Propiedades

Más detalles

Ondas en Barras. Ondas longitudinales en barras

Ondas en Barras. Ondas longitudinales en barras Ondas en Barras Ondas longitudinales en barras Se ejerce una fuerza longitudinal de magnitud sobre una barra que está empotrada en una pared (como se indica en la figura). En la parte de arriba de la figura,

Más detalles

FISICA II PARA INGENIEROS

FISICA II PARA INGENIEROS FISICA II PARA INGENIEROS INTRODUCCION INGENIERIA La Ingeniería es el conjunto de conocimientos y técnicas científicas aplicadas a la creación, perfeccionamiento e implementación de estructuras (tanto

Más detalles

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 5.- FLEXION. 4.1.- Viga. Una viga es una barra recta sometida a fuerzas que actúan perpendicularmente a su eje longitudinal.

Más detalles

DETERMINACIÓN DE LA ACELERACIÓN DE GRAVEDAD UTILIZANDO UN SISTEMA PÉNDULO SIMPLE-CBR

DETERMINACIÓN DE LA ACELERACIÓN DE GRAVEDAD UTILIZANDO UN SISTEMA PÉNDULO SIMPLE-CBR DETERMINACIÓN DE LA ACELERACIÓN DE GRAVEDAD UTILIZANDO UN SISTEMA PÉNDULO SIMPLE-CBR INTRODUCCION Víctor Garrido Castro vgarrido@uvm.cl vgarridoster@gmail.com 03()46680 El objetivo del experimento es encontrar

Más detalles

INDICE Prefacio 1. Esfuerzo Parte A. Conceptos generales. Esfuerzo Parte B. Análisis de esfuerzo de barras cargadas axialmente

INDICE Prefacio 1. Esfuerzo Parte A. Conceptos generales. Esfuerzo Parte B. Análisis de esfuerzo de barras cargadas axialmente INDICE Prefacio XV 1. Esfuerzo 1-1. Introducción 1 Parte A. Conceptos generales. Esfuerzo 1-2. Método de las secciones 3 1-3. Definición de esfuerzo 4 1-4. Tensor esfuerzo 7 1-5. Ecuaciones diferenciales

Más detalles

Representantes de las academias de Ingeniería Civil de los Institutos Tecnológicos.

Representantes de las academias de Ingeniería Civil de los Institutos Tecnológicos. l.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Resistencia de Materiales Carrera : Ingeniería Civil Clave de la asignatura: Horas teorías - Horas prácticas - créditos: 2-4-8 2.- HISTORIA DEL PROGRAMA

Más detalles

Material de formació Fase 1 Activitat 2

Material de formació Fase 1 Activitat 2 Els treballs experimentals a les classes de ciències Material de formació Fase 1 Activitat 2 Informe de l alumne Llei de Hooke Text original de l informe de l alumne. S hi pot accedir a http://html.rincondelvago.com/ley-dehooke_2.html

Más detalles

8. Ensayos con materiales

8. Ensayos con materiales 8. Ensayos con materiales Los materiales de interés tecnológico se someten a una variedad de ensayos para conocer sus propiedades. Se simulan las condiciones de trabajo real y su estudia su aplicación.

Más detalles

1.1. Movimiento armónico simple

1.1. Movimiento armónico simple Problemas resueltos 1.1. Movimiento armónico simple 1. Un muelle cuya constante de elasticidad es k está unido a una masa puntual de valor m. Separando la masa de la posición de equilibrio el sistema comienza

Más detalles

3. Funciones y gráficas

3. Funciones y gráficas Componente: Procesos físicos. Funciones gráficas.1 Sistemas coordenados En la maoría de estudios es necesario efectuar medidas relacionadas con los factores que intervienen en un fenómeno. Los datos que

Más detalles

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU 1. En el laboratorio del instituto medimos cinco veces el tiempo que un péndulo simple de 1m de longitud tarda en describir 45 oscilaciones de pequeña amplitud. Los resultados de la medición se muestran

Más detalles

Soporte vertical, cinta métrica, juego de masas, varilla corta, polea, nuez, computador.

Soporte vertical, cinta métrica, juego de masas, varilla corta, polea, nuez, computador. ITM, Institución universitaria Guía de Laboratorio de Física Mecánica Práctica 11: Resortes y energía. Implementos Soporte vertical, cinta métrica, juego de masas, varilla corta, polea, nuez, computador.

Más detalles

PROPIEDADES ELÁSTICAS DE LA MATERIA. Profr.: M.C. Jesús David Martínez Abarca Unidad de Aprendizaje: Física II Semestre: Agosto 2017 Enero 2018

PROPIEDADES ELÁSTICAS DE LA MATERIA. Profr.: M.C. Jesús David Martínez Abarca Unidad de Aprendizaje: Física II Semestre: Agosto 2017 Enero 2018 PROPIEDADES ELÁSTICAS DE LA MATERIA Profr.: M.C. Jesús David Martínez Abarca Unidad de Aprendizaje: Física II Semestre: Agosto 2017 Enero 2018 Robert Hooke (1635-1703) Físico y astrónomo inglés, quien

Más detalles

Ley de Coulomb. Introducción

Ley de Coulomb. Introducción Ley de Coulomb Introducción En este tema comenzaremos el estudio de la electricidad con una pequeña discusión sobre el concepto de carga eléctrica, seguida de una breve introducción al concepto de conductores

Más detalles

Fig. 18. Flexión asimétrica o inclinada de una viga con sección transversal doblemente simétrica

Fig. 18. Flexión asimétrica o inclinada de una viga con sección transversal doblemente simétrica 8. Flexión Asimétrica (Biaxial) de Vigas 8.1 Introducción En esta sección, el análisis de la flexión en elementos-vigas, estudiado en las secciones precedentes, es ampliado a casos más generales. Primero,

Más detalles

EJERCICIOS METALES. 7. Dar tres ejemplos de materiales que cambien de estado (no todos tienen que ser metales).

EJERCICIOS METALES. 7. Dar tres ejemplos de materiales que cambien de estado (no todos tienen que ser metales). EJERCICIOS METALES 1. Qué es un material frágil? Qué es lo contrario de frágil? 2. Crees que un material duro puede ser frágil? Razona tu respuesta. Dar dos ejemplos de materiales que sean duros y frágiles

Más detalles

Capítulo III. Propiedades Mecánicas

Capítulo III. Propiedades Mecánicas Capítulo III Propiedades Mecánicas Como se ha mencionado, la Ingeniería y específicamente el área de materiales ha tenido un gran desarrollo en los últimos años. La creación de nuevos materiales y la capacidad

Más detalles

CONTENIDO. TIPOS DE FUERZAS Tensión. un cable estirado por fuerzas en sus extremos

CONTENIDO. TIPOS DE FUERZAS Tensión. un cable estirado por fuerzas en sus extremos I. ELASTICIDAD II. MOVIMIENTO OSCILATORIO III. HIDROSTÁTICA IV. TEMPERATURA CALOR V. TERMODINÁMICA ELASTICIDAD INTRODUCCION CONTENIDO Los cuerpos rígidos no se doblan, estiran ni aplastan. Pero el cuerpo

Más detalles

ESTRUCTURAS. TPR 2º ESO

ESTRUCTURAS. TPR 2º ESO ESTRUCTURAS. TPR 2º ESO 1.- INTRODUCCIÓN La ESTRUCTURA es el esqueleto o armazón que permite a los cuerpos mantener su forma. Si un cuerpo no tiene estructura su forma no se mantiene. Una estructura está

Más detalles

Carrera: MCT - 0525. Participantes Representantes de las academias de Ingeniería Mecánica de Institutos Tecnológicos. Academia de Ingeniería

Carrera: MCT - 0525. Participantes Representantes de las academias de Ingeniería Mecánica de Institutos Tecnológicos. Academia de Ingeniería 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Mecánica de Materiales I Ingeniería Mecánica MCT - 0525 2 3 7 2.- HISTORIA DEL

Más detalles

FUNDAMENTOS FÍSICOS DE LA INGENIERÍA CUARTA SESIÓN DE PRÁCTICAS

FUNDAMENTOS FÍSICOS DE LA INGENIERÍA CUARTA SESIÓN DE PRÁCTICAS DEPARTAMENTO DE FÍSICA APLICADA ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AGRÓNOMOS Y DE MONTES UNIVERSIDAD DE CÓRDOBA FUNDAMENTOS FÍSICOS DE LA INGENIERÍA CUARTA SESIÓN DE PRÁCTICAS 6.- Principio de Arquímedes.

Más detalles

porque la CALIDAD es nuestro compromiso

porque la CALIDAD es nuestro compromiso PRÁCTICA 9 LEY DE HOOKE 1. NORMAS DE SEGURIDAD El encargado de laboratorio y el docente de la asignatura antes de comenzar a desarrollar cada práctica indicaran las normas de seguridad y recomendaciones

Más detalles

PNF en Mecánica Vibraciones Mecánicas Prof. Charles Delgado

PNF en Mecánica Vibraciones Mecánicas Prof. Charles Delgado Vibraciones en máquinas LOS MOVIMIENTOS VIBRATORIOS en máquinas se presentan cuando sobre las partes elásticas actúan fuerzas variables. Generalmente, estos movimientos son indeseables, aun cuando en algunos

Más detalles

ELASTICIDAD PREGUNTAS. 1. Explique que representa él modulo de rigidez de un sólido. 2. Qué significa él límite elástico de una barra de acero?

ELASTICIDAD PREGUNTAS. 1. Explique que representa él modulo de rigidez de un sólido. 2. Qué significa él límite elástico de una barra de acero? ELASTICIDAD PREGUNTAS 1. Explique que representa él modulo de rigidez de un sólido. 2. Qué significa él límite elástico de una barra de acero? 3. Dos alambres hechos de metales A y B, sus longitudes y

Más detalles

UNIVERSIDAD NACIONAL DE VILLA MERCEDES CARRERA DE KINESIOLOGIA Y FISIATRIA TRABAJO Y ENERGIA.

UNIVERSIDAD NACIONAL DE VILLA MERCEDES CARRERA DE KINESIOLOGIA Y FISIATRIA TRABAJO Y ENERGIA. TRABAJO Y ENERGIA. El problema fundamental de la Mecánica es describir como se moverán los cuerpos si se conocen las fuerzas aplicadas sobre él. La forma de hacerlo es aplicando la segunda Ley de Newton,

Más detalles

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2014-2 2 Capítulo 3. Propiedades mecánicas 3.1 Ensayos de esfuerzo - deformación unitaria Materiales Ley de esfuerzo cortante - deformación

Más detalles

Ley de Ohm. Determinar si un material tiene un comportamiento eléctrico lineal (ohmico). Determinar la resistencia óhmica de materiales

Ley de Ohm. Determinar si un material tiene un comportamiento eléctrico lineal (ohmico). Determinar la resistencia óhmica de materiales Ley de Ohm 1 Ley de Ohm 1. OBJETIOS Determinar si un material tiene un comportamiento eléctrico lineal (ohmico). Determinar la resistencia óhmica de materiales 2. FUNDAMENTO TEÓICO La ley de Ohm establece

Más detalles

Las Fuerzas y su efecto sobre los cuerpos

Las Fuerzas y su efecto sobre los cuerpos Las uerzas y su efecto sobre los cuerpos 1-Las uerzas y sus efectos uerza es toda causa capaz de modificar el estado de reposo o de movimiento de un cuerpo o de producirle una deformación. La Unidad de

Más detalles

Asignatura: TEORÍA DE ESTRUCTURAS (Código 531) EQUIPOS Y MATERIALES

Asignatura: TEORÍA DE ESTRUCTURAS (Código 531) EQUIPOS Y MATERIALES Asignatura: TEORÍA DE ESTRUCTURAS (Código 531) Especialidad: EQUIPOS Y MATERIALES Curso/Cuatrimestre: SEGUNDO CURSO / PRIMER CUATRIMESTRE Tipo de Materia: TRONCAL Créditos: 7,5 Conocimientos previos: Departamento:

Más detalles

Más ejercicios y soluciones en fisicaymat.wordpress.com

Más ejercicios y soluciones en fisicaymat.wordpress.com OSCILACIONES Y ONDAS 1- Todos sabemos que fuera del campo gravitatorio de la Tierra los objetos pierden su peso y flotan libremente. Por ello, la masa de los astronautas en el espacio se mide con un aparato

Más detalles

Al representar estos datos obtenemos una curva:

Al representar estos datos obtenemos una curva: Pág. 1 18 Cuando de una goma de 10 cm se cuelgan pesos de 1, 2, 3, 4 y 5, esta se estira hasta 15, 21, 28, 36 y 45 cm, respectivamente. Representa la gráfica F-Dl y explica si la goma serviría para hacer

Más detalles

GUIA DE ESTUDIO TEMA: DINAMICA

GUIA DE ESTUDIO TEMA: DINAMICA GUIA DE ESTUDIO TEMA: DINAMICA A. PREGUNTAS DE TIPO FALSO O VERDADERO A continuación se presentan una serie de proposiciones que pueden ser verdaderas o falsas. En el paréntesis de la izquierda escriba

Más detalles