PRÁCTICA 10. GENERACIÓN DE RELOJ
|
|
|
- José Ignacio Plaza Flores
- hace 9 años
- Vistas:
Transcripción
1 PRÁCTICA 10. GENERACIÓN DE RELOJ 1. Objetivo El objetivo de esta práctica es estudiar un circuito analógico básico en cualquier sistema electrónico: el generador de reloj. Para el desarrollo de la práctica se utilizará el circuito oscilador NE555 para generar la señal de reloj. 2. Material necesario La práctica se realizará en los laboratorios del Área de Tecnología Electrónica del edificio de Talleres y Laboratorios L2 de la Escuela, donde se hará uso de: Placa de pruebas Oscilador NE555 Resistencias de 2K2Ω y un potenciómetro de 10KΩ Condensador de 1 µf Fuente de alimentación 3. Conocimientos previos El alumno debe conocer leer y comprender todos los conceptos explicados en esta memoria. Además, debe haber buscado en internet, tener impreso y leído el datasheet del integrado NE555 disponible en el siguiente link: 4. Introducción teórica En un sistema digital se emplea la señal de reloj, que se define como aquella que marca el cambio en los estados de un sistema digital síncrono. Suele ser una onda cuadrada con 50% de ciclo de trabajo (duty cycle) y una frecuencia fija y constante. Los circuitos digitales que emplean la señal de reloj pueden ser activos a su flanco positivo o bien al negativo. Los sistemas analógicos y mixtos emplean como generadores de reloj dispositivos que sintetizan onda senoidales, para evitar los armónicos de alta frecuencia de la onda cuadrada que pueden interferir en el comportamiento de estos sistemas. 4.1 Clasificación de los generadores de reloj La señal de sincronía (o más correctamente referencia temporal) proviene de un dispositivo denominado "generador de reloj", distinguiéndose: a) Oscilador armónico o lineal: Genera una señal senoidal, se basa en un amplificador realimentado mediante un filtro tal como se muestra en la figura 1. 1
2 Cuando el sistema se conecta a la alimentación sólo existe ruido, que es muestreado, filtrado y aplicado a la entrada del amplificador, transcurrido cierto tiempo dispondremos a la salida de una senoide de frecuencia única. Debido a que idealmente estos dispositivos poseen una frecuencia de resonancia, en la cual idealmente funcionan, se los suele conocer como resonadores Figura 1. esquema de un Oscilador Armónico ideal Dentro de esta categoría se puede distinguir diferentes tecnologías: - Osciladores RC. - Osciladores LC, donde el filtro es un circuito sintonizado (llamado circuito tanque). - Osciladores a cristal (también llamados cuarzos). - SAW (Surface Acoustic Wave), permiten alcanzar frecuencias del GHz Para la implementación de los mismos existen diferentes topologías: - Osciladores RC (de desplazamiento de fase, puente de Wien, ). - Osciladores LC (oscilador Hartley, oscilador Colpitts ) - Osciladores a cristal (oscilador Colpitts ) b) Oscilador de relajación: Genera una señal no senoidal (cuadrada, triangular,...). Están constituidos por un elemento almacenador de energía (p.e. condensador) y un circuito no lineal (p.e. un Schmitt Trigger) que periódicamente modifica la energía almacenada, provocando cambios abruptos en la señal de salida generada. Figura 2. Multivibrador con opamp Dentro de esta categoría podemos distinguir diferentes topologías: - Multivibradores: como el 555 que se explicará en esta práctica. - Osciladores de anillo: en los que se basan circuitos como los VCO (Voltage Controlled Oscillator). 2
3 4.2 Especificaciones típicas de las señales de reloj Algunas de las especificaciones a la hora de decidir cuál es el mejor generador de reloj para nuestra aplicación son las siguientes: - Frecuencia nominal de funcionamiento. - Orden de sobretono: número de múltiplos impares que se generan de la frecuencia fundamental. - Potencia: es el consumo de energía del oscilador. - Factor de calidad (Q): es una medida (aplicada sólo a osciladores armónicos) de la eficiencia de la señal generada. La máxima estabilidad de un cristal depende del valor de "Q". Cuanto más pequeño es el ancho de banda del oscilador mayor es su Q. - Jitter: es la desviación del tiempo de muestreo real respecto al nominal. En otras palabras se puede definir como la variabilidad temporal de la frecuencia de una señal periódica. - Tolerancia de la frecuencia: se refiere a la máxima desviación permitida y se expresa en partes por millón (PPM) para una temperatura especificada, usualmente 25 C. - Estabilidad de la frecuencia: se refiere a la máxima desviación en PPM. La desviación está tomada con referencia a la frecuencia medida a 25 C. En las especificaciones suele darse respecto a la temperatura y al tiempo/envejecimiento, distinguiéndose entre corto plazo (1 día) y largo plazo (>1 año). 4.3 Osciladores RC El ejemplo de la figura 3 es un oscilador RC con topologías de puente de Wien. Figura 3. Oscilador RC con topología de puente de Wien Este circuito RC tiene como principal característica la de contar con un filtro paso de banda en el circuito de alimentación, formado por un filtro paso de alta y un filtro paso de baja. Este esquema se puede observar con mayor claridad en la figura 4. Este filtro paso de banda (de segundo orden) permitirá hacer un ajuste fino de la frecuencia de salida, cuyo valor es igual a: 1 f r = 2πRC 3
4 La principal aplicación de estos circuitos es la de generar ondas de salida para bajas frecuencia. En concreto, los circuitos RC son empleados para sistemas de audio (hasta KHz) debido a que necesitarían capacidades muy pequeñas para intentar subir la frecuencia de salida. Figura 4. Filtro paso de banda 4.4 Osciladores LC El ejemplo de la figura 5 es un oscilador LC con topología Colpitts. La frecuencia de resonancia de estos circuitos viene dadas por: 1 f r = 2π L C Los osciladores LC sí pueden emplearse para frecuencias más altas, en el rango de los MHz, siendo una aplicación típica la de la banda de FM ( MHz). Estos resonadores pueden encontrarse como circuitos integrados para frecuencias fijas o variables. Algunos de los fabricantes típicos de este tipo de circuitos son Epson o Panasonic. Figura 5. Oscilador LC con topología Colpitts 4.5 Osciladores a cristal Existen otros tipos de osciladores que se utilizan para rangos de frecuencias mayores y cuya pureza espectral es mayor. Estos osciladores están basados en el empleo de un cristal. El cristal de cuarzo es utilizado como componente de control de la frecuencia de circuitos osciladores convirtiendo las vibraciones mecánicas en voltajes eléctricos a una frecuencia específica. Esto ocurre debido al efecto "piezoeléctrico". La piezoelectricidad es electricidad creada por una presión mecánica. En un material piezoeléctrico, al aplicar una presión mecánica sobre un eje, tendrá como consecuencia la creación de una carga eléctrica a lo largo de un eje ubicado en un ángulo recto respecto al de la aplicación de la presión mecánica. 4
5 Por las propiedades mecánicas, eléctricas, y químicas, el cuarzo es el material más apropiado para fabricar dispositivos con una frecuencia bien controlada, ya que sus características son prácticamente constantes respecto al tiempo y la temperatura. De este modo, cuando se aplica una diferencia de tensión entre dos caras opuestas de este material se generará una frecuencia que vendrá determinada, junto con su factor de calidad, por las características del cristal, tales como su dimensión o la orientación de las superficies respecto a sus ejes. Figura 6. Cristales de reloj Algunos valores típicos de las especificaciones de los cristales comerciales son: - Frecuencia de funcionamiento: cuando se incrementa la frecuencia solicitada, el espesor del cuerpo del cristal disminuye y por supuesto existe un límite en el proceso de fabricación. Alrededor de 30MHz, el espesor de la placa del cristal comienza a ser muy delgada. - Tolerancia de la frecuencia: los valores típicos están entre 15 y 100 PPM. - Estabilidad respecto a la temperatura y el paso del tiempo: sus valores típicos oscilan entre 10 y 20 PPM. - Envejecimiento: su valor típico suele estar entre los 3 y 7 años. Suele venir determinado por efectos tales como un exceso de potencia disipada, pérdida de elasticidad o efectos térmicos. - Potencia disipada por el cristal: siendo un valor típico igual 100 µw. Algunas de las muchas aplicaciones de los cristales de cuarzo son las de uso diario tales como relojes, microprocesadores o teléfonos móviles. También son usados para equipos de test y medidas tales como generadores de señal u osciloscopios. Los cristales pueden ser construidos para su oscilación en un amplio rango de frecuencias, desde unos pocos KHz hasta varios cientos de MHz. Muchas aplicaciones requieren una misma frecuencia determinada. Algunos ejemplos de bandas de interés donde se usan osciladores basados en cristal son las de 12 MHz para USB, MHz para GPS, 30,72 MHz para 3G, 106,5 MHz para transceivers de radio y MHz para 10 Gigabit Ethernet. Algunos fabricantes típicos de cristales son Crystek o Murata. 4.6 Circuitos generadores de reloj para alta frecuencia Existen circuitos más complejos son empleados para la generación de señales de reloj más puras y que suelen estar basados en los anteriores. Algunos de ellos son los PLL (Phase Lock Loop) y los DDS (Direct Digital Synthesis), todos ellos circuitos capaces de generar frecuencias programables. Uno de los elementos en los que se basan los PLL, son los VCO nombrados anteriormente. Los parámetros más habituales de los VCO son los siguientes: - Rango de frecuencias a la salida: pudiéndose alcanzar más de 1 GHz. - Rango de tensiones de control: con valores típicos entre 1 y 16 V. - Sensitividad de sintonizado: con valores típicos entre 5 y 30 MHz/V. 5
6 Los PLL proporcionan salidas desde la fracción de Hz hasta varios GHz. Una aplicación típica de los PLL es la de su empleo como oscilador local para realizar la subida en frecuencia en los sistemas de recepción o la bajada en frecuencia en los sistemas de recepción, por ejemplo, para aplicaciones wireless. Por otra parte, algunas aplicaciones básicas de los DDS incluyen las de generación de reloj que requieren una alta velocidad de sintonizado o un ajuste muy fino de frecuencia. Los fabricantes con mejores prestaciones para este tipo de circuitos son National o Analog Devices. 4.7 Circuito integrado 555 Otro conjunto de circuitos que sirven como referencia de reloj para sistemas digitales son los circuitos temporizadores integrados tales como el 555, que se estudia en esta práctica, o el 558. El 555 es el más popular de los circuitos integrados temporizadores. Existen dos versiones el NE555, fabricado con tecnología bipolar, y el ICM7555, fabricado con tecnología CMOS, pudiéndose sustituir el uno por el otro en la mayoría de las ocasiones, puesto que la disposición de las patillas es la misma, diferenciándose ambos fundamentalmente en la alimentación que necesitan. En esta práctica nos centraremos en el NE555. Se trata de un dispositivo muy estable que puede trabajar como temporizador o como generador de ondas cuadradas y rectangulares (multivibrador). Funcionando como temporizador el tiempo está controlado por un grupo RC externo formado por una resistencia y un condensador (modo monoestable), mientras que funcionando como generador de impulsos rectangulares la frecuencia es controlada por un conjunto externo formado por dos resistencias y un condensador (modo astable) tal y como se muestra en la figura 7. Algunas de las características más importantes de este dispositivo son las siguientes: Su máxima frecuencia de operación en modo astable está entre 500 KHz y 2 MHz. Compatible con circuitos integrados de la familia TTL. Estabilidad de funcionamiento frente a la temperatura igual a 0,005 %/ºC Se presentan en cápsulas DIL de 8 ó 14 terminales. Figura 7. Esquemático del circuito integrado del chip NE555 6
7 4.8 Mediciones de las referencias de reloj: diagramas de ojo y ruido de fase Se trata de un método de medida que sirve para evaluar el nivel de interferencia y de sincronización en los sistemas digitales. El diagrama de ojo se obtiene a partir de la superposición de los diferentes trazos de una señal determinada que se leen en un osciloscopio, es decir, las distintas combinaciones posibles de unos y ceros en un rango de tiempo determinado. Figura 8. Generación del diagrama de ojo Figura 9. Máscaras del diagrama de ojo A partir del diagrama de ojo se puede medir el valor medio de parámetros tales como los niveles de 1 y 0 lógico, los cruces de tiempo y amplitud y el período de la señal. Además, con el diagrama de ojo puede medirse el jitter, el cual se define como la desviación de fase respecto de la posición ideal en el tiempo de una señal digital. Para medir la calidad de una señal digital mediante diagramas de ojo también son útiles las máscaras, las cuales definen la región por la que dicho diagrama de ojos no debe introducirse. Por otra parte, para las referencias analógicas jitter suele medirse a partir de otro parámetro, conocido como ruido de fase, el cual se mide en el espectro y se verá reflejado en el dominio del tiempo como una desviación del instante de muestreo ideal. Este ruido (jitter o ruido de fase) tiene muchas componentes como son el ruido blanco, el ruido de acoplamiento con otros circuitos, EMI (interferencias electromagnéticas) Por tanto, un parámetro fundamental a la hora de elegir una referencia de reloj para cualquier aplicación (sobre todo a más altas frecuencias) es su pureza espectral, la cual viene dada fundamentalmente por su jitter o su ruido de fase. 7
8 5. Realización de la práctica 5.1 Simulación del generador de reloj en MicroCap El circuito integrado NE555 es un oscilador multifunción que puede utilizarse para generar multitud de formas de onda (revisar los posibles modos de funcionamiento en el datasheet que debe haber sido buscado y leído antes de la práctica). En esta práctica lo vamos a usar para generar una señal digital de reloj (onda cuadrada que varía entre 0 y 5V). La siguiente figura muestra la conexión del NE555 en modo astable que es el que usaremos. Con esta conexión, se genera como salida una onda cuadrada periódica que permanece un tiempo t L a nivel bajo (GND) y un tiempo t H a nivel alto (Vcc). Estos valores de tiempo vienen dados por: t H =0.693(R A +R B )C B 1 t L =0.693 R B B C1 Se puede observar que, si R A 0 y R B 0, es imposible conseguir con el NE555 una onda perfectamente cuadrada (que esté el mismo tiempo a nivel bajo que a nivel alto). Figura 8. Circuito NE555 en funcionamiento modo astable En primer lugar, el primer objetivo de la práctica es simular el comportamiento de este montaje astable mediante MicroCap. Se debe simular el montaje con los siguientes valores en los componentes: Alimentación de 5 voltios, R A =potenciómetro de 10kΩ, R B =2k2Ω, R L =2k2Ω, C=1µF. Para simular el potenciómetro, colocar una resistencia y hacer un barrido variando su valor desde un valor de 2kΩ hasta el fondo de escala del potenciómetro con saltos de 2kΩ. Se debe medir para cada uno de los casos el periodo de la señal de reloj resultante y el tiempo que está a nivel alto y bajo respectivamente. (3 PUNTOS) 5.2 Construcción de un generador de reloj El segundo objetivo de la práctica es observar el comportamiento de este montaje de forma experimental. Se debe realizar el montaje en una placa de pruebas con los mismos valores de los componentes: Alimentación de 5 voltios, R A =potenciómetro de 8
9 10kΩ, R B =2k2Ω, R L =2k2Ω, C=1µF. Al igual que antes, se debe medir el periodo de la señal de reloj resultante y el tiempo que está a nivel alto y bajo respectivamente. (3 PUNTOS) 5.3 Comprobación de resultados Una vez obtenidos los resultados de los puntos 1 y 2, se debe comprobar que los resultados experimentales coinciden con los resultados de simulación. Los resultados no coincidirán exactamente. A qué crees que puede ser debido?. Para ver mejor los resultados se pide dibujar las siguientes gráficas (2 PUNTOS): I. Periodo de la señal de reloj frente al valor de R A (simulación y experimental) II. Tiempo a nivel alto de la señal de reloj frente al valor de R A (simulación y experimental) III. Tiempo a nivel bajo de la señal de reloj frente al valor de R A (simulación y experimental) 5.4 Diseño de un circuito generador de reloj astable con un NE555 Por último, en la práctica se aborda un problema sencillo de diseño. El objetivo es obtener una señal de reloj cuadrada con aproximadamente el mismo tiempo a nivel bajo que a nivel alto y con una frecuencia fijada por el profesor al principio de la práctica. Se pide obtener los valores del condensador y las resistencias para obtener esta forma de onda. Suponer que R B =10kΩ y que el valor de las demás resistencias debe ser mayor o igual que 100Ω (1 PUNTO). Se aconseja tener preparados estos cálculos antes de asistir a la práctica. Comprobar que los valores teóricos obtenidos son correctos usando MicroCap midiendo las características de la señal de salida del circuito (1 PUNTO). 6. Referencias F. Ruiz Vasallo. Temporizadores electrónicos, Ceac Electrónica,
Práctica 5. Demodulador FSK mediante PLL
Práctica 5. Demodulador FS mediante PLL 5.. Objetivos Estudiar el funcionamiento de un PLL y su aplicación para la demodulación de una señal modulada FS. 5.. El PLL LM565 El LM565 es un circuito de fase
GE ERACIO DE SEÑALES
Pág. 1 GE ERACIO DE SEÑALES Los sistemas modernos de comunicaciones electrónicas tienen muchas aplicaciones que requieren formas de ondas estables y repetitivas, tanto senoidales como no senoidales. En
1.3 Describa brevemente como opera el 74123 y realice un diagrama interno de éste circuito integrado.
ITESM, Campus Monterrey Laboratorio de Electrónica Industrial Depto. de Ingeniería Eléctrica Práctica 1 Instrumentación y Objetivos Particulares Conocer las características, principio de funcionamiento
Práctica No. 4 del Curso "Meteorología y Transductores". "Comparadores y generador PWM"
Objetivos. Práctica No. 4 del Curso "Meteorología y Transductores". "Comparadores y generador PWM" Comprobar en forma experimental el funcionamiento de los comparadores con Histéresis, así como el circuito
INTRODUCCIÓN A LOS CRISTALES DE CUARZO
INTRODUCCIÓN A LOS CRISTALES DE CUARZO El cristal de cuarzo es utilizado como componente de control de la frecuencia de circuitos osciladores convirtiendo las vibraciones mecánicas en voltajes eléctricos
PRÁCTICA 6. CIRCUITOS ARITMÉTICOS
PRÁCTICA 6. CIRCUITOS ARITMÉTICOS 1. Objetivo El objetivo de esta práctica es estudiar un circuito aritmético y aprender cómo construir un componente básico en electrónica digital: el generador de reloj.
CAPITULO XIV TEMPORIZADORES
TEMPORIZADORES CAPITULO XIV TEMPORIZADORES INTRODUCCION. El circuito temporizador integrado más popular es el 555, introducido primero por los Signetics Corporation. El 555 es confiable, fácil de usar
Electrónica 5 EM ITS Lorenzo Massa Pagina 1 Unidad 6 - Ing. Juan Jesús Luna
Electrónica 5 EM ITS Lorenzo Massa Pagina 1 Unidad 6: Amplificadores Operacionales 1 Introducción: El amplificador operacional (en adelante, op-amp) es un tipo de circuito integrado que se usa en un sinfín
Práctica 5. El objetivo de esta práctica es diseñar e implementar un oscilador de RF a cristal de 4 fases una frecuencia de trabajo.
Universidad Distrital Francisco José de Caldas Laboratorio de Comunicaciones Analógicas Pr. Héctor Fernando Cancino de Greiff Práctica 5 El objetivo de esta práctica es diseñar e implementar un oscilador
Práctica No. 3 del Curso "Meteorología y Transductores". "Comparadores y generador PWM"
Objetivos. Práctica No. 3 del Curso "Meteorología y Transductores". "Comparadores y generador PWM" Comprobar en forma experimental el funcionamiento de los comparadores con Histéresis, así como el circuito
Osciladores senoidales
Osciladores senoidales La inestabilidad de los amplificadores realimentados se puede utilizar para generar señales senoidales. Estos circuitos se denominan osciladores senoidales. Existen otros métodos
PRÁCTICA 5. CIRCUITOS CONTADORES SÍNCRONOS
PRÁCTICA 5. CIRCUITOS CONTADORES SÍNCRONOS 1. Objetivo El objetivo de esta práctica es estudiar el funcionamiento de los contadores síncronos construidos a partir de biestables, y aprender cómo se pueden
TEMA 5 COMUNICACIONES ANALÓGICAS
TEMA 5 COMUNICACIONES ANALÓGICAS Modulaciones angulares Introducen la información exclusivamente en la fase de una portadora, manteniendo constante la amplitud y(t )= A c cos[ω c t +ϕ(t)] La potencia media,
ÉQUIPOS DE PRÁCTICAS DE LABORATORIO
Universidad de Oviedo UNIVERSIDAD DE OVIEDO ÁREA DE TECNOLOGÍA ELECTRÓNICA ÉQUIPOS DE PRÁCTICAS DE LABORATORIO Osciloscopio digital YOKOGAWA DL1520 Generador de funciones PROMAX GF-232 Multímetro digital
DEPARTAMENTO DE SEÑALES, SISTEMAS Y RADIOCOMUNICACIONES ELECTRÓNICA DE COMUNICACIONES. EXAMEN EXTRAORDINARIO 6 DE SEPTIEMBRE DE
Ejercicio 1. Versión A. La pregunta correcta vale 1p, en blanco 0p, incorrecta 1/3p. Sólo una respuesta es correcta. 1) En un receptor de comunicaciones por satélite a 14GHz con una banda de 50MHz, a)
R ' V I. R se expresa en Ohmios (Ω), siempre que I esté expresada en Amperios y V en Voltios.
I FUNDAMENTO TEÓRICO. LEY DE OHM Cuando aplicamos una tensión a un conductor, circula por él una intensidad, de tal forma que si multiplicamos (o dividimos) la tensión aplicada, la intensidad también se
CAPITULO VI: Generadores de Sonido
CAPITULO VI GENERADORES DE SONIDOS GENERADOR DE CODIGO MORSE En el circuito de la fig. 6.1 se observa un 555 en configuración de multivibrador astable, funcionando como un práctico oscilador para código
Practica 3 TDM Switch Analógico
Universidad de San Carlos de Guatemala Facultad de Ingeniería Escuela de Mecánica Eléctrica Laboratorio de Electrónica Comunicaciones 1 Segundo Semestre 2016 Auxiliar: Rodrigo de León Multiplexación Practica
PRACTICA Nº 2 CARACTERISTICAS DE LOS DIODOS, CIRCUITO RECTIFICADOR DE MEDIA ONDA. 1.-Explique como opera el osciloscopio en la modalidad X-Y.
UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS CIRCUITOS ELECTRONICOS I EC1177 PRACTICA Nº 2 CARACTERISTICAS DE LOS DIODOS, CIRCUITO RECTIFICADOR DE MEDIA ONDA OBJETIVO Familiarizar al estudiante
ELECTRÓNICO DE MANTENIMIENTO Y REPARACIÓN Código: 7208
ELECTRÓNICO DE MANTENIMIENTO Y REPARACIÓN Código: 7208 Modalidad: Teleformación Duración: 56 horas Objetivos: Este curso permite adquirir los conocimientos necesarios para el buen desempeño de un oficio.
ÍNDICE TEMÁTICO. Teóricas Prácticas 1 Circuitos Temporizadores 8 6. Sistemas con Mallas de Fase Encadenada (Phase Locked Loops) o PLL s
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: INGENIERÍA EN TELECOMUNICACIONES, SISTEMAS Y ELECTRÓNICA DENOMINACIÓN DE LA ASIGNATURA: Sistemas Analógicos
Práctica 1: Circuitos de corriente continua. Manejo de la fuente de alimentación y el multímetro
Tecnología Electrónica Práctica 1 GRUPO (día y hora): PUESTO: Práctica 1: Circuitos de corriente continua. Manejo de la fuente de alimentación y el multímetro Medidas de resistencias Identificar, mediante
Elemento de Control. Elemento de Muetreo. Figura 1 Estructura Básica Regulador de Voltaje
INTRODUCCIÓN: La región activa de un transistor es la región de operación intermedia entre corte y saturación y por lo tanto dependiendo de las polarizaciones el transistor se comportará como un amplificador.
ESTRUCTURA Y TECNOLOGÍA DE COMPUTADORES PRÁCTICAS DE LÓGICA CABLEADA
ESTRUCTURA Y TECNOLOGÍA DE COMPUTADORES PRÁCTICAS DE LÓGICA CABLEADA INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN - 2008 PRÁCTICAS DE ESTRUCTURA Y TECNOLOGÍA DE COMPUTADORES Página 2 INTRODUCCIÓN En el
Facultad de Ingeniería Eléctrica Laboratorio de Electrónica Ing. Luís García Reyes. Materia: Laboratorio de Electrónica Digital I
Facultad de Ingeniería Eléctrica Laboratorio de Electrónica Ing. Luís García Reyes Materia: Laboratorio de Electrónica Digital I Práctica Número 5 Características eléctricas de la familia TTL Objetivo:
FUENTE DE ALIMENTACION DE ONDA COMPLETA
FUENTE DE ALIMENTACION DE ONDA COMPLETA I. OBJETIVOS Definición de una fuente de baja tensión. Análisis de tensión alterna y continúa en dicha fuente. Partes básicas de una fuente de baja tensión. Contrastación
Instrumentación Electrónica
Práctica de Laboratorio Práctica 4 Medidas de Temperatura Práctica de laboratorio Transductores de temperatura. En esta práctica tomaremos contacto con varios transductores de temperatura, para analizar
Ley de Ohm: Determinación de la resistencia eléctrica de un resistor óhmico
Ley de Ohm: Determinación de la resistencia eléctrica de un resistor óhmico 1. Objetivos Comprobación experimental de la ley de Ohm a través de la determinación del valor de una resistencia comercial.
2. Calcule la frecuencia de oscilación del oscilador en doble T de la figura 2.
1/6 ELECTRÓNICA ANALÓGICA II Guía de problemas Nº 9 Osciladores Problemas básicos 1. El oscilador en Puente de Wien de la figura 1 a) tiene dos potenciómetros que le permiten variar la frecuencia de oscilación.
PRACTICA Nº 4 CARACTERISTICAS DE LOS DIODOS, CIRCUITO RECTIFICADOR DE MEDIA ONDA
UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS LAB. CIRCUITOS ELECTRONICOS EC3192 PRACTICA Nº 4 CARACTERISTICAS DE LOS DIODOS, CIRCUITO RECTIFICADOR DE MEDIA ONDA OBJETIVO * Familiarizar al estudiante
PROYECTO DE APLICACIÓN: LUZ AUTOMATICA NOCTURNA
UNIVERSIDAD NACIONAL DE SAN JUAN FACULTAD DE FILOSOFIA, HUMANIDADES Y ARTES DEPARTAMENTO DE FÍSICA Y QUÍMICA CÁTEDRA: ELECTRÓNICA GENERAL Alumna: Caño Cabrera, Claudia Alejandra [email protected]
UNIVERSIDAD DE ANTIOQUIA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERIA ELECTRÓNICA LABORATORIO DE CIRCUITOS II PRÁCTICA N 5 "GENERADORES DE SEÑAL"
UNIVERSIDAD DE ANTIOQUIA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERIA ELECTRÓNICA LABORATORIO DE CIRCUITOS II PRÁCTICA N 5 "GENERADORES DE SEÑAL" OBJETIVOS: Conocer el funcionamiento de circuitos
Práctica 1 Medidas con osciloscopio y análisis de circuitos.
Práctica 1 Medidas con osciloscopio y análisis de circuitos. Descripción de la práctica: -En esta práctica, se aplicarán los conocimientos teóricos obtenidos en clase, sobre el uso del osciloscopio, y
Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 2
Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 2 CARACTERÍSTICAS DE LOS DIODOS, CIRCUITO RECTIFICADOR DE MEDIA ONDA
INDICE Capitulo 1. Magnitudes Electrónicas y Resolución de Circuitos de cc Capitulo 2. Capacidad e Inductancia. Comportamiento en cc
INDICE Prólogo XI Capitulo 1. Magnitudes Electrónicas y Resolución de Circuitos de 1 cc 1.1. Introducción 1 1.2. Magnitudes más relevantes del circuito electrónico 2 1.2.1. Tensión eléctrica 2 1.2.2. Intensidad
Un oscilador es un sistema capaz de crear perturbaciones o cambios periódicos o cuasiperiódicos en un medio, ya sea un medio material (sonido) o un
Un oscilador es un sistema capaz de crear perturbaciones o cambios periódicos o cuasiperiódicos en un medio, ya sea un medio material (sonido) o un campo electromagnético (ondas de radio, microondas, infrarrojo,
AUTOMATISMOS INDUSTRIALES
AUTOMATISMOS INDUSTRIALES Tema 5 Automatismos para motores de 2 3 velocidades Introducción En un motor de jaula de ardilla, la velocidad de sincronismo (n s ) y la velocidad asíncrona (n), se obtiene como:
1. PRESENTANDO A LOS PROTAGONISTAS...
Contenido Parte 1. PRESENTANDO A LOS PROTAGONISTAS... 1 1. Un primer contacto con la instrumentación... 3 1.1 Introducción... 3 1.2 Conceptos de tierra y masa. Riesgos eléctricos... 4 1.2.1 La conexión
Práctica 4.- Característica del diodo Zener
A.- Objetivos Práctica 4.- Característica del diodo ener Laboratorio de Electrónica de Dispositivos 1.-Medir los efectos de la polarización directa e inversa en la corriente por el diodo zener. 2.-Determinar
CURSO DE ELECTRÓNICA ANUAL
Microchip Regional Training Center Austria 1760 - OF8. Capital Federal. (011) 3531-4668 CURSOS ANUALES 2012 CURSO DE ELECTRÓNICA ANUAL APRENDA LOS FUNDAMENTOS DE LA ELECTRÓNICA EN 36 CLASES PRÁCTICAS.
LABORATORIO N 04: Compuertas Básicas, Universales y Especiales
LORTORIO N 04: Compuertas ásicas, Universales y Especiales 1. OJETIVOS. - Verificar experimentalmente la operación de las compuertas digitales básicas: ND, OR y NOT. - Verificar experimentalmente la operación
TRABAJO PRÁCTICO NÚMERO 3: Diodos II. Construir y estudiar un circuito rectificador de media onda y un circuito rectificador de onda completa.
TRABAJO PRÁCTICO NÚMERO 3: Diodos II Diodo como rectificador Objetivos Construir y estudiar un circuito rectificador de media onda y un circuito rectificador de onda completa. Introducción teórica De la
FUNDAMENTOS DEL MATERIAL INFORMÁTICO Curso 2010-2011
FUNDAMENTOS DEL MATERIAL INFORMÁTICO Curso 2010-2011 PRÁCTICA 2: Diseño del circuito controlador del tráfico de un cruce de carreteras OBJETIVO: Diseño y montaje de un circuito que controle las luces,
CAPITULO 2 CONVERTIDORES DE POTENCIA. El constante progreso y evolución de la ciencia y la tecnología ha provocado en los últimos
CAPITULO 2 CONVERTIDORES DE POTENCIA 2.1 INTRODUCCIÓN El constante progreso y evolución de la ciencia y la tecnología ha provocado en los últimos años un fuerte cambio en el tipo de cargas conectadas a
Tema: Uso del analizador espectral.
Sistemas de Comunicación I. Guía 1 1 I Facultad: Ingeniería Escuela: Electrónica Asignatura: Sistemas de comunicación Tema: Uso del analizador espectral. Objetivos Conocer el funcionamiento de un Analizador
LEY DE OHM EXPERIMENTO 1. CIRCUITOS, TARJETAS DE EXPERIMENTACIÓN
LEY DE OHM EXPERIMENTO 1. CIRCUITOS, TARJETAS DE EXPERIMENTACIÓN Objetivos. Estudiar y familiarizarse con el tablero de conexiones (Protoboard ) y la circuitería experimental. Aprender a construir circuitos
TRABAJO PRÁCTICO Nº 6 EL TRANSISTOR BIPOLAR CURVAS CARACTERÍSTICAS
1) Introducción Teórica a) Generalidades TRABAJO PRÁCTICO Nº 6 EL TRANSISTOR BIPOLAR CURVAS CARACTERÍSTICAS El transistor bipolar es un dispositivo de tres terminales (emisor, base y colector), que, atendiendo
Circuitos de RF y las Comunicaciones Analógicas. Capítulo VI: Osciladores en RF
Capítulo VI: Osciladores en RF 95 96 6. Osciladores de Onda Senoidal Este capítulo trata del estudio y diseño de osciladores de onda senoidal de radiofrecuencia. 6.1 Introducción Un oscilador es un circuito
ELECTRONICA. Las resistencias, tanto en electricidad como en electrónica, se pueden representar de dos formas, ambas igualmente válidas:
Diferencia entre electricidad y electrónica. ELECTRONICA La electricidad trabaja con conductores y la electrónica con semiconductores que tienen unas propiedades diferentes. La electrónica ha permitido
LABORATORIO DE MAQUINAS ELECTRICAS. Guía de Practica N 01: CONCEPTOS Y PRUEBAS BASICAS DE TRANSFORMADORES
Universidad Nacional del Santa Facultad de Ingeniería E.A.P. Ingeniería En Energía Departamento Académico de Energía y Física LABORATORIO DE MAQUINAS ELECTRICAS Guía de Practica N 01: CONCEPTOS Y PRUEBAS
Parámetros eléctricos Parámetros eléctricos de los Sistemas Digitales
Parámetros eléctricos Parámetros eléctricos de los Sistemas Digitales Dr. Jose Luis Rosselló Grupo Tecnología Electrónica Universidad de las Islas Baleares! Introducción! Parámetros estáticos! Parámetros
Diseño de un generador de funciones Capítulo II Antecedentes
Capítulo II Diseño de un generador de funciones Antecedentes 2.1. Generadores de señales Un generador de señal está encargado de producir una señal eléctrica dependiente del tiempo, con diferentes características
CIRCUITOS DE POLARIZACIÓN DEL TRANSISTOR EN EMISOR COMÚN
1) POLARIZACIÓN FIJA El circuito estará formado por un transistor NPN, dos resistencias fijas: una en la base R B (podría ser variable) y otra en el colector R C, y una batería o fuente de alimentación
PRÁCTICA 7. CIRCUITOS ARITMÉTICOS
PRÁCTICA 7. CIRCUITOS ARITMÉTICOS 1. Objetivo El objetivo de esta práctica es estudiar circuitos aritméticos. Como ejemplo de los circuitos aritméticos se va a usar el integrado 74LS283 (sumador completo
Prácticas de electrónica básica para el área de Tecnología en Educación Secundaria. Curso para profesores.
Prácticas de electrónica básica para el área de Tecnología en Educación Secundaria. Curso para profesores. CEP de Albacete. Ponente: Jorge Muñoz Rodenas febrero de 2007 1 ELECTRONICA BASICA PARA PROFESORES
Práctica 4. LABORATORIO
Práctica 4. LABORATORIO Electrónica de Potencia Convertidor DC/DC Cúk 1. Diagrama de Bloques En esta práctica, el alumnado debe implementar un convertidor DC/DC tipo Cúk. En la Fig1 se muestra el diagrama
2. GALGAS EXTENSOMÉTRICAS
Manual de Prácticas Pag.: 3-1 2. GALGAS EXTENSOMÉTRICAS 2.1. INTRODUCCIÓN. Esta sesión de prácticas tiene como objetivo profundizar en el conocimiento y manejo de las galgas extensométricas, sensores especialmente
TERMÓMETRO SENSOR DE TEMPERATURA CON CONEXIÓN AL PC
ELECTRÓNICA INTEGRADA I.T. Informática Sistemas TERMÓMETRO SENSOR DE TEMPERATURA CON CONEXIÓN AL PC ELECTRÓNICA INTEGRADA Joaquín Llano Montero Javier Moreno García José Luis Leal Romero Ingeniería Técnica
Práctica de mezcladores Laboratorio de medidas e instrumentación. Laboratorio de medidas e instrumentación. Práctica 5. Medida de un Mezclador.
Práctica de mezcladores Laboratorio de medidas e instrumentación i Laboratorio de medidas e instrumentación. Práctica 5. Medida de un Mezclador. Nombres Práctica de mezcladores Laboratorio de medidas e
UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO
UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO 4: CAPACITANCIA Determinar, a partir de su geometría, la capacitancia
Práctica 04. Diodo zener
2011 MI. Mario Alfredo Ibarra Carrillo Facultad de ingeniería 11/03/2011 2 3 Objetivos: 1. Que el alumno estudie las propiedades y comportamientos del diodo zener. 2. Que el alumno implemente un circuito
CARACTERISTICAS DE LOS DIODOS DE PROPÓSITO GENERAL CIRCUITOS RECTIFICADORES DE MEDIA ONDA Y ONDA COMPLETA
UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS LABORATORIO DE ELECTRÓNICA EC2014 PRACTICA Nº 1 CARACTERISTICAS DE LOS DIODOS DE PROPÓSITO GENERAL CIRCUITOS RECTIFICADORES DE MEDIA ONDA Y ONDA
Práctica 5 Control de la Maqueta de una Minicentral Hidroeléctrica
Práctica 5 Control de la Maqueta de una Minicentral Hidroeléctrica Maqueta de Minicentral hidroeléctrica Practicas de Regulación Automática VE A 1 VQ V1 Ka A 2 A K q V c K J1 f 1 n J 2 f 2 V Kv VG RL Dinamo
OSCILADORES RC Y CRISTALES DE CUARZO
OSCILADORES RC Y CRISTALES DE CUARZO EL OSCILADOR Se conoce como oscilador a todo circuito que partiendo de una fuente de tensión continua es capaz de generar una salida de corriente alterna senoidal.
MONITOREO REMOTO MODULACIÓN FSK
MONITOREO REMOTO MODULACIÓN FSK INTRODUCCIÓN En el siguiente informe de laboratorio pretendemos dar un análisis completo sobre sistemas de modulación y demodulación digital FSK. Los sistemas de comunicación
32. Se conecta un condensador de 10 µf y otro de 20 µf en paralelo y se aplica al conjunto
2. Conductores y dieléctricos. Capacidad, condensadores. Energía electrostática. 24. Cargamos un condensador de 100 pf hasta que adquiere una ddp de 50 V. En ese momento desconectamos la batería. Conectamos
DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Instrumentación Industrial Mecánica Laboratorio de Instrumentación Mecatrónica 2
1. Tema: Medición de temperatura en un recinto cerrado. 2. Objetivos: 3. Teoría. a. Entender el diseño, operación y funcionamiento de los dispositivos de medición de temperatura. Termistores NTC. Son resistencias
Equipos generadores de señal. - Introducción - Generadores de función analógicos - Generadores de función digitales: DDS y AWG
- Introducción - Generadores de función analógicos - : DDS y AWG Introducción Los generadores de función también se denominan sintetizadores de función o multifunción y pueden generar distintas formas
Examen convocatoria Febrero Ingeniería de Telecomunicación
Examen convocatoria Febrero 2006 ELECTRÓNICA DE COMUNICACIONES Ingeniería de Telecomunicación Apellidos Nombre N o de matrícula o DNI Grupo Firma Electrónica de Comunicaciones Examen. Convocatoria del
Electrónica Básica. Gustavo A. Ruiz Robredo Juan A. Michell Mar<n. Tema A.4. Generadores de señal DPTO. DE ELECTRÓNICA Y COMPUTADORES
Electrónica Básica Tema A.4. Generadores de señal Gustavo A. Ruiz Robredo Juan A. Michell Mar
Última modificación: 1 de agosto de 2010. www.coimbraweb.com
PROPAGACIÓN EN GUÍA DE ONDAS Contenido 1.- Introducción. 2. - Guía de ondas. 3.- Inyección de potencia. 4.- Modos de propagación. 5.- Impedancia característica. 6.- Radiación en guías de ondas. Objetivo.-
Celdas de carga. 2. Qué es una celda de carga?
Celdas de carga. En la actualidad, las celdas de carga están siendo utilizadas en muchos lugares, desde una báscula para pesar frutas en el súper, hasta básculas para medir el peso de una persona o de
Práctica No. 1 Medición de voltajes, corrientes y resistencias con el multímetro digital y comprobación de la Ley de Ohm.
Práctica No. 1 Medición de voltajes, corrientes y resistencias con el multímetro digital y comprobación de la Ley de Ohm. Objetivos: 1.- Conocer y utilizar el protoboard para implementar circuitos sencillos.
PRÁCTICAS DE ELECTRÓNICA DIGITAL
PRÁCTICAS DE ELECTRÓNICA DIGITAL Práctica 0: CONEXIÓN DE LOS CIRCUITOS INTEGRADOS (C.I.) 1º: Para que funcionen correctamente, han de estar conectados a una tensión de 5V. Para realizar esto, el polo (+)
Diseño Mecánico (Engranajes) Juan Manuel Rodríguez Prieto Ing. M.Sc. Ph.D.
Diseño Mecánico (Engranajes) Juan Manuel Rodríguez Prieto Ing. M.Sc. Ph.D. Engranajes 1. Tipos de engranaje 2. Nomenclatura 3. Acción conjugada 4. Propiedades de la involuta 5. Fundamentos 6. Relación
Verificar el cumplimiento de las leyes de Kirchhoff. Calcular la potencia disipada en el circuito.
1 Leyes de Kirchhoff Objetivo Verificar el cumplimiento de las leyes de Kirchhoff. Calcular la potencia disipada en el circuito. Material 2 Amperímetro Osciloscopio Fluke Generador de onda Computador Fuente
PRUEBA EXPERIMENTAL: RESISTENCIA Y RESISTIVIDAD (10 puntos)
PRUEBA EXPERIMENTAL: RESISTENCIA Y RESISTIVIDAD (10 puntos) OBJETIVO Medida de la resistencia eléctrica y estimación de la resistividad de un conductor. El conductor empleado está formado principalmente
Transmisión/recepción analógica y digital a través de fibra óptica, utilizando el entrenador B4530 y B4530Y
Práctica 1 Transmisión/recepción analógica y digital a través de fibra óptica, utilizando el entrenador B4530 y B4530Y OBJETIVOS 1. Mostrar al alumno las partes elementales de un sistema de comunicaciones
Capítulo 6: Conversor / Oscilador / Inversor: función y tipos
Capítulo 6: Conversor / Oscilador / Inversor: función y tipos Función: la mayoría de los receptores que se usan habitualmente, no están preparados para trabajar a 12 o 24V en corriente continua, que es
PRÁCTICA 3. OSCILOSCOPIOS HM 604 Y HM 1004 (III): TEST DE COMPONENTES Y MODULACIÓN EN FRECUENCIA.
PRÁCTICA 3. OSCILOSCOPIOS HM 604 Y HM 1004 (III): TEST DE COMPONENTES Y MODULACIÓN EN FRECUENCIA. 3.1.- Objetivos: Realización de test de componentes activos y pasivos para obtener, a partir de la curva
ELO20_FOC ELECTRONICA ANALOGICA Y RADIO-FRECUENCIA RECEPTOR FM
ELECTRONICA ANALOGICA Y RADIO-FRECUENCIA RECEPTOR FM DISEÑO DEL CIRCUITO El sistema de radio construido, es un FM de chip sencillo. El TDA7000 es un sistema de radio FM de circuito integrado monolítico,
Cuando más grande sea el capacitor o cuanto más grande sea la resistencia de carga, más demorará el capacitor en descargarse.
CONDENSADOR ELÉCTRICO Un capacitor es un dispositivo formado por dos conductores, en forma de placas o láminas, separados por un material que actúa como aislante o por el vacío. Este dispositivo al ser
DISEÑO LOGICO CON DISPOSITIVOS LOGICOS PROGRAMABLES (PLD S) ING. LUIS F. LAPHAM CARDENAS PROFESOR INVESTIGADOR DIVISION DE ELECTRONICA C.E.T.I.
DISEÑO LOGICO CON DISPOSITIVOS LOGICOS PROGRAMABLES (PLD S) ING. LUIS F. LAPHAM CARDENAS PROFESOR INVESTIGADOR DIVISION DE ELECTRONICA C.E.T.I. RESUMEN En este artículo intentamos mostrar el cambio dramático
FUNDAMENTOS DE COMPUTADORES
Departamento de Tecnología Electrónica ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA 1º Ingeniería Informática FUNDAMENTOS DE COMPUTADORES Enunciados de las Prácticas de Laboratorio PROGRAMA 2009/2010
La circuitería interna del 555 según National Semiconductors, es la siguiente:
LABORATORIO DE CIRCUITOS DIGITALES II OPERACIÓN DEL 555 COMO ASTABLE INTRODUCCION El 555 es un integrado muy útil, pudiendo ser configurado en varias modalidades. Una de estas modalidades es la del multivibrador
Medición de Tensión en Alta Frecuencia
Medición de Tensión en Alta Frecuencia Martha H. López Sánchez e Israel García Ruiz CENTRO NACIONAL DE METROLOGÍA km 4,5 Carr. a Los Cués, 76241 El Marqués, Qro. División de Mediciones Electromagnéticas
Medición de magnitudes de corriente alterna
Medición de magnitudes de corriente alterna Sara Campos Hernández División de Mediciones Electromagnéticas CENAM Contenido Introducción Patrones utilizados para medir señales alternas Instrumentación utilizada
Diseño e Implementación de un transmisor FM
Diseño e Implementación de un transmisor FM Javier Guachizaca #1 Guido Poma #2 Diego Salas #3 Loja, Ecuador 1 [email protected] 2 [email protected] 3 [email protected] Resumen El presente
Capítulo IV. Sintetizadores de frecuencia
Capítulo IV 4.1) Introducción Sintetizadores de frecuencia Se trata de un método muy utilizado, en virtud de su sencillez y eficiencia; las aplicaciones más comunes son dos: a) Estabilización de osciladores
Entrenador de Antenas EAN
Entrenador de Antenas EAN Equipamiento Didáctico Técnico Productos Gama de Productos Equipos 3.-Comunicaciones INTRODUCCIÓN Las antenas son el elemento principal de las comunicaciones aéreas. Son la transición
LOS FILTROS PASIVOS DE PRIMER ORDEN.
LOS FILTROS PASIVOS DE PRIMER ORDEN. Un filtro es un circuito electrónico que posee una entrada y una salida. En la entrada se introducen señales alternas de diferentes frecuencias y en la salida se extraen
DISTORSION ARMONICA FICHA TECNICA. REA00410. senoidales, esta señal no senoidal está compuesta por armónicas.
FICHA TECNICA. REA41 DISTORSION ARMONICA En México, el sistema eléctrico de potencia está diseñado para generar y operar con una señal senoidal de tensión y de corriente a una frecuencia de 6 Hz (frecuencia
Funcionamiento de una placa Board
FUNCIONAMIENTO DE PLACAS BOARD Y PRÁCTICAS DE COMPROBACIÓN DE LA LEY DE OHM. (Amparo Ferrandis) La electrónica analógica tiene gran importancia dentro del currículum de Tecnología, por lo que siempre resulta
CIRCUITOS INTEGRADOS DE PUERTAS LÓGICAS
CIRCUITOS INTEGRADOS DE PUERTAS LÓGICAS CIRCUITOS COMBINACIONALES INTEGRADOS CIRCUITOS INTEGRADOS SECUENCIALES: FLIP-FLOPS, REGISTROS Y CONTADORES CONSEJOS PARA LA ELABORACIÓN DE DIAGRAMAS LÓGICOS DE CIRCUITOS
Mantenimiento de equipos electrónicos. El generador de funciones y el generador de baja frecuencia.
Mantenimiento de equipos electrónicos El generador de funciones y el generador de baja frecuencia 1/11 Aplicaciones de los generadores de funciones y generadores de baja frecuencia y diferencias entre
Fundamento de las Telecomunicaciones
Fundamento de las Telecomunicaciones Grupo # 2 Tema : Osciladores en Gran Escala de Integración Integrantes: -Jessica Reyes -Francisco Robles -Celeste Cerón -Marisela -Félix Salamanca -Guillermo Soto Lunes
Osciladores Senoidales. Electrónica Analógica II. Bioingeniería
Osciladores Senoidales Electrónica Analógica II. Bioingeniería Definición Los osciladores senoidales son dispositivos electrónicos capaces de generar una tensión senoidal sin necesidad de aplicar una señal
MULTÍMETROS DIGITALES
MULTÍMETROS DIGITALES Multímetro digital de 6000 cuentas HDT-10931 Multímetro digital auto rango de 6000 cuentas Características Display LCD retroiluminado de 6000 cuentas. Gráfico de barras Analógico
Aerogeneradores eólicos de eje vertical EXAWIND
Aerogeneradores eólicos de eje vertical EXAWIND Aerogeneradores dinámicos de eje vertical y alto rendimiento. La energía eólica mejor aliada con el medio ambiente y el entorno urbano. Construcción modular
