POTENCIOMETRIA. E j. E ind. E ref
|
|
|
- Beatriz Crespo Henríquez
- hace 9 años
- Vistas:
Transcripción
1 POTENCIOMETRIA El objetivo de una medición potenciometrica es obtener información acerca de la composición de una solución mediante el potencial que aparece entre dos electrodos. La medición del potencial de la celda se determina bajo condiciones reversibles en forma termodinámica y esto implica que se debe dejar pasar el tiempo suficiente para que la celda se equilibre y que sólo se podrá extraer una corriente insignificante en el transcurso de la determinación. Una celda típica para análisis potenciométrico se puede representar como electrodo de referencia puente salino solución de analito electrodo indicador E ref E j E ind Por lo que el potencial de una celda se expresa con la relación: E cel = (E ind - E ref ) + Ej El potencial del electrodo indicador, Eind, es sensible a las condiciones químicas de la solución, mientras que el electrodo de referencia tiene un potencial fijo, Eref, independiente de la solución en la celda. El potencial también incluye el potencial en la unión líquida, Ej, que representa en la interfase entre el electrólito dentro del compartimiento del electrodo de referencia y la solución externa. Como se sabe las magnitudes Eind y Eref no se pueden determinar individualmente. Por ello es necesario asignar un valor arbitrario al potencial de un sólo electrodo, para poder asignar valores a todos los demás. El electrodo universalmente aceptado como referencia principal es el electrodo normal de hidrógeno SHE ya mencionado. Arbitrariamente se le asigna un potencial de cero para todas las temperaturas. En la práctica, invariablemente se utilizan como referencia otros patrones secundarios, en lugar del SHE ya que éste resulta bastante incomodo. Los más comunes son los electrodos de calomelanos saturado (SCE) y los de Ag/AgCl. Si se tuviera problemas con la presencia de los iones Cl - se podrían utilizar otros electrodos, como el Hg/HgSO 4. Potenciales en las uniones líquidas. Siempre que dos fases se ponen en contacto aparece un potencial de unión. La magnitud de este potencial depende en primer lugar de la composición de las soluciones que intervienen. Los potenciales en las uniones son particularmente pequeños en caso de que una de las dos soluciones contenga un electrolíto concentrado con movilidades iónicas casi iguales, como el KCl y NH 4 NO 3. Las soluciones internas empleadas en la mayoría de los electrodos de referencia son de este tipo. Se sabe que a excepción de un ácido o un abase concentrados, los potenciales son pequeños y no difieren mucho entre sí. Cuando se utilice un electrodo de referencia que contenga KCl o NH 4 NO 3, probablemente será mejor ignorar en su totalidad el potencial en la unión, ya que se tienen grandes dudas acerca de la validez de las diferentes correcciones. Electrodos de referencia. Electrodo de referencia ideal tiene un potencial que es conocido, constante e insensible por completo a la composición de la solución por estudiar. Además, este electrodo debe ser fuerte y fácil de conectar, y debe mantenerse a un potencial constante aun cuando haya una corriente neta en la celda. Por convención al electrodo de referencia se le considera siempre el de la izquierda en las mediciones potenciométricas. Electrodos de calomel. Los electrodos de referencia de calomel se componen de mercurio en contacto con una solución saturada de cloruro de mercurio (I) (calomel) que contiene también una concentración conocida de cloruro de potasio. Las semiceldas de calomel se pueden representar como sigue: Hg Hg 2 Cl 2 (sat),kcl(xm) donde x representa la concentración molar de cloruro de potasio en la solución, El potencial de electrodo para esta semicelda esta determinado por la reacción Hg 2 Cl 2 (s) + 2e - 2Hg(l) + 2Cl - Aunque se pueden encontrar electrodos con 0.1M y 3.5M de KCl, el electrodo de este tipo más usado es el saturado, lo cual indica que la solución de KCl esta saturada en presencia de cristales de esta sal. Los potenciales de electrodo de cada una de estas semiceldas a 25 c son: E Calomel 0.1M =0.3356V, E Calomel 3.5M=0.250V y E calomelsaturado =0.2444V. El electrodo de calomel saturado (ECS) se utiliza mucho debido a la facilidad con que puede prepararse. Sin embargo, comparado con los otros electrodos de calomel, su coeficiente de temperatura es significativamente mayor. Electrodos de plata-cloruro de plata. El electrodo de referencia más ampliamente comercializado consiste en un electrodo de plata sumergido en una solución de cloruro de potasio que se ha saturado con cloruro de plata Ag AgCl(sat), KCl(xM) El potencial de electrodo está determinado por la semirrección AgCl(s) + e- Ag(s) + Cl - En general el electrodo es un tubo de vidrio con una abertura angosta en el fondo conectado a un tapón de Vycor para que haga contacto con la solución de analito. El tubo contiene un alambre de plata revestido con un capa de cloruro de plata que está sumergido en una solución de cloruro de potasio saturada con cloruro de plata. Por lo regular, la solución de KCl esta saturada (E ref =0.199V a 25 C) o 3.5M (E ref =0.205V a 25 C).
2 Los electrodos de plata-cloruro de plata tienen la ventaja de que pueden utilizarse a temperatura superior a 60 C, mientras los electrodos de calomel no. Precauciones en la utilización de los electrodos de referencia. Al usar los electrodos de referencia el nivel del líquido interno debe mantenerse siempre por arriba del de la solución de la muestra para impedir la contaminación de la solución del electrodo y el taponamiento de la unión debido a la reacción de la solución del analito con iones plata, mercurio o cloro de la solución interna. La obstrucción de la unión es quizá la causa más frecuente del comportamiento errático (ruido) de la celda en las mediciones potenciométricas. Se han elaborado muchos esquemas para evitarla y conservar un buen contacto entre los electrodos de referencia y las soluciones de analito. Los tapones de Vycor proporcionan excelentes contacto y se les mantiene húmedos ofrecen una unión reproducible de bajo ruido Si se mantiene el nivel del líquido por encima del de la solución de analito, es inevitable alguna contaminación de la muestra. En la mayor parte de los casos, la contaminación es tan leve que no tiene trascendencia. Sin embargo, en algunos caso puede ser una seria interferencia. Una manera frecuente de evitarla es interponer un segundo puente salino entre el analito y el electrodo de referencia; dicho puente debe contener un electrolito que no interfiera y generalmente se toma parte de la solución a estudiar. Clasificación de los electrodos. Electrodos indicadores metálicos. Los electrodos se pueden clasificar de acuerdo con la química básica que es responsable del potencial. Electrodos de primera clase. Un metal en equilibrio con una solución de sus iones forma un electrodo Clase I. Se tiene como ejemplo, una lámina de cobre que está en contacto con una solución de iones cúpricos. Cu e- Cu(s) El potencial esta dado por la ecuación de Nernst, si no hay especies que interfieran. E ind = E Cu/cu2+ - (0.0592/2)log(1/a Cu2+ ) = E Cu/Cu2+ - (0.0592/2)pCu donde pcu es el logaritmo negativo de la actividad del ion cobre(ii) a Cu2+. Por consiguiente, el electrodo de cobre proporciona una medida directa del pcu de la solución. Los electrodos de la primera clase no son muy utilizados en el análisis potenciométrico por varias razones. En primer lugar, no son muy selectivos, y responden no sólo a sus propios cationes sino también a otros que se reducen con facilidad. Además, muchos electrodos metálicos, como los de cinc y cadmio, sólo pueden utilizarse en soluciones neutras o básica porque se disuelven en presencia de ácidos. En tercer lugar, algunos metales se oxidan con tanta facilidad que su uso queda restringido a soluciones en las que previamente se ha eliminado el aire. Por último, ciertos metales duros, como hierro, cromo, cobalto y níquel, no proporcionan potenciales reproductibles. Por estas razones, los únicos sistemas de electrodos de la primera clase que se utilizan son Ag-Ag + y Hg-Hg 2 2+ en soluciones neutras, y Cu-Cu 2+, Zn- Zn 2+, Cd.Cd 2+, Bi-Bi 3+, Tl-Tl + y Pb-Pb 2+ en soluciones sin aire. Finalmente debe recordarse que el factor de Nernst de /n es igual a 2.303RT/nF, por lo tanto se debe tener en cuenta que todas las mediciones de los electrodos están sujetas a errores ocasionados por las fluctuaciones de temperatura. Electrodos de segunda clase. Un segundo tipo de electrodo consiste en un metal en equilibrio con una sal poco soluble del mismo elemento. Esto es un electrodo Clase II, ejemplos de estos son los electrodos de referencia de calomelanos y Ag/AgCl. Sin embargo también son algo selectivos en su reacción a la concentración del anión. Esto se comprende si se sustituye la actividad del ion metálico en la ecuación de Nernst por su valor obtenido a partir del producto de solubilidad. En el caso del electrodo de cloruro de plata, a Ag+ = Ks/a Cl- y: E = E loga Ag+ = E logKs loga Cl- = E ' pCl Por tanto, el electrodo reacciona selectivamente ante la presencia del ion Cl -, pero cualesquiera otras especies que afecten la actividad del ion Ag +, como Br - o NH 3, también interferirán. Una manera adecuada de preparar un electrodo sensible a los cloruros es poner un alambre de plata pura como ánodo en una celda electrolítica que contenga cloruro de potasio. El alambre quedará revestido con un depósito adherido de haluro de plata, que se equlibrará rápidamente con la capa superficial de una solución en la que esté sumergido. Dado que la solubilidad del cloruro de plata es baja, un electrodo obtenido de esta manera puede utilizarse para numerosas mediciones. Un electrodo importante de segunda clase para medir la actividad del anión Y 4- (EDTA) se basa en la respuesta de un electrodo de mercurio en presencia de una pequeña concentración de HgY 2- en la solución de analito. El complejo es tan estable (para HgY 2-, K f =6.3x10 21 ) que su actividad es en esencia constante en un amplio intervalo de actividades de Y 4-. Por tanto, la ecuación del potencial se expresa en la forma E ind = K - (0.0592V/2)loga Y4- = K + (0.0592V/2)pY donde la constante K es igual a K = (0.0592V/2)log(1/a HgY2- ) Este electrodo es útil para establecer los puntos finales en titulaciones con EDTA. Electrodos de tercera clase. En ciertas circunstancias, se puede hacer que un electrodo metálico responda a un catión diferente. Entonces se convierte en un electrodo de tercera clase. Como ejemplo, un electrodo de mercurio se ha usado para determinar pca de soluciones que contienen calcio. Indicadores redox metálicos. Los electrodos construidos con platino, oro, paladio u otros metales inertes sirven a menudo como indicadores para sistemas de oxidación-reducción. Si el material del electrodo es electroquímicamente inerte, no tendrá un potencial definido de tipo Clase I, sino que estará determinado por el redox de la solución, formando un electrodo redox. Se tiene como ejemplo un alambre de platino en una solución que contenga iones tanto Fe +++ como Fe ++.
3 E ind = E Vlog(a Fe2+ /a Fe3+ ) En estas aplicaciones, el electrodo inerte actúa como una fuente o un sumidero de electrones transferidos desde un sistema redox en la solución. Sin embargo, hay que hacer notar que los procesos de transferencia de electrones en los electrodos inertes no suelen ser reversibles. El resultado es que los electrodos inertes no responden de manera predecible a muchas de las semirreacciones que se encuentran en la tabla de potenciales de electrodo. Por ejemplo, un electrodo de platino sumergido en una solución de iones tiosulfato y tetrarionato no presenta potenciales reproducibles porque el proceso de transferencia de electrones S 4 O e - 2S 2 O 3 2- es lento y, por tanto, irreversible en la superficie del electrodo. Electrodos indicadores de membrana. Otro tipo es el electrodo de membrana, en donde el potencial se desarrolla a través de una membrana que separa una solución interna de la solución que interesa. El electrodo de vidrio y otros electrodos de ion selectivos se encuentran en esta categoría. A menudo, los electrodos de membrana se denominan electrodos selectivos de iones debido a la gran capacidad de discriminación de la mayor parte de estos dispositivos. Estos electrodos difieren en la composición física o química de la membrana. El mecanismo general por el cual se forma en estos dispositivos un potencial selectivo de iones depende de la naturaleza de la membrana y es por completo diferente del origen del potencial en los electrodos indicadores metálicos. Ya se ha visto que el potencial de un electrodometálico tiene su origen en la tendencia que existe en la superficie de éste a que se produzca una reacción de oxidación-reducción. En los electrodos de membrana, por el contrario, el que se observa es un tipo de potencial de unión que se desarrolla en la membrana que separa la solución del analito de la solución de referencia. Propiedades de las membranas selectivas de iones. Todas las membranas selectivas de iones presentan propiedades comunes que dan origen a su sensibilidad y selectividad hacia ciertos cationes y aniones. Entre estas prpiedades están las siguientes: Mínima solubilidad. Una propiedad necesaria de un medio selectivo de iones es que su solubilidad en las soluciones de analito, generalmente acuosas, se aproxime a cero. Por consiguiente, muchas membranas están formadas por moléculas grandes o grupos de ellas, como los vidrios de sílice o las resinas poliméricas. Los compuestos compuestos inorgánicos iónicos de baja solubilidad, como los haluros de plata, también se pueden convertir en membranas. Conductividad eléctrica. Una membrana debe presentar algo de conductividad eléctrica, aunque sea pequeña. En general, esta conducción toma la forma de migración de iones con una sola carga en el interior de la membrana. Reactividad selectiva con el analito. La membrana o alguna de las especies contenida en la matriz de la membrana debe ser capaz de unirse en forma selectiva con los iones del analito. Hay tres tipos de uniones: por intercambio iónico, por cristalización y por complejación. Los dos primeros son los más comunes. El electrodo de vidrio para medir ph. Este electrodo es anterior en varias décadas a todos los demás electrodos de membrana, y es el que más se utiliza en el mundo. Desde principios de los años treinta del siglo XX, la manera más adecuada de determinar el ph ha sido midiendo la diferencia de potencial a través de una membrana de vidrio que separa la solución de analito de una solución de referencia de acidez fija. El fenómeno en que se basa esta medida fue identificado por primera vez por Cremer en 1906 y Haber lo investigó sistemáticamente unos pocos años después. Los estudios sistemáticos de la sensibilidad al ph de las membranas de vidrio hizo que a finales de los años sesenta se perfeccionaran y comercializaran los electrodos de membrana para dos docenas o más de iones, como K +, Na +, Ca 2+, F - y NO 3-. La celda consiste en un electrodo indicador de vidrio y un electrodo de referencia de plata-cloruro de plata o de calomel saturado; los dos electrodos están sumergidos en una solución cuyo ph se desea determinar. El electrodo indicador consiste en una delgada membrana de vidrio sensible al ph sellada en el extremo de un tubo de vidrio de paredes gruesas o de plástico. El tubo contiene un pequeño volumen de ácido clorhídrico diluido saturado con cloruro de plata (en algunos electrodos la solución interna es un tampón o amortiguador que contiene ion cloro). En esta solución un alambre de plata forma un electrodo de referencia de plata-cloruro de plata interno, que se conecta a una de las terminales de un dispositivo para medir el potencial. El electrodo de referencia se conecta a la otra terminal. Entonces esta celda tiene dos electrodos de referencia: 1)el electrodo externo de plata-cloruro de plata y 2)el electrodo interno de plata-cloruro de plata. Aunque el electrodo de referencia interno forma parte del electrodo de vidrio, no es el elemento sensible al ph; es la delgada membrana de vidrio, en la base del electrodo, la que responde al ph. La configuración más común para medir el ph mediante un electrodo es el electrodo de vidrio combinado. En esta configuración, el electrodo de vidrio y su electrodo de referencia interno de Ag-AgCl están colocados en el centro de una sonda cilíndrica. Un electrodo de referencia externo (casi siempre del tipo Ag-AgCl) rodea al electrodo de vidrio. La presencia del electrodo de referencia externo no es tan obvia pero la sonda sencilla es más conveniente y puede ser más pequeña que el sistema doble. La membrana de vidrio sensible al ph está unida a la base de la sonda. Dichas sondas se hacen de formas y tamaños diferentes (5 cm a 5 mm) para adecuarse a una amplia gama de aplicaciones en ele laboratorio y la industria. Composición de las membranas de vidrio. Muchas investigaciones sistemáticas se ha dedicado al estudio de los efectos de la composición del vidrio en la sensibilidad de las membranas frente a los
4 protones y otros cationes, y en la actualidad se utiliza una variedad de formulaciones para la fabricación de electrodos. El vidrio Corning 015, que ha sido muy usado en las membranas, consta de casi 22% de Na2, O.6% de CaO y 72% de SiO 2. Esta membrana tiene una respuesta específica a los iones hidrógeno hasta un ph de aproximadamente 9. Con valores superiores, el vidrio empieza a dar una cierta respuesta al sodio, al igual que a otros cationes monovalentes. En la actualidad se utilizan otras formulaciones de vidrio en las que se han sustituido en diversos grados los iones sodio y calcio por iones bario y litio. Estas membranas tienen una selectividad superior a ph elevado. La higroscopicidad de las membranas de vidrio. La superficie de una membrana de vidrio debe estar hidratada antes de funcionar como electrodo de ph. La cantidad de agua necesaria es de aproximadamente 50mg por centímetro cúbico de vidrio. Los vidrios no higroscópicos no reaccionan con los H+ y, por lo tanto, el potencial no es dependiente del ph. Incluso los vidrios higroscópicos pierden su sensibilidad al ph después de deshidratarse si se les almacena en ausencia de humedad. Sin embargo, el efecto es reversible, y la respuesta del electrodo de vidrio se recupera después de remojarlo en agua. La hidratación de una membrana de vidrio sensible al ph consiste en una reacción de intercambio iónico entre los cationes monovalentes de la retícula del vidrio y los protones de la solución. Para que una membrana de vidrio sirva como indicador de protones, no solo debe conducir electricidad, sino que esta conducción debe ser dependiente de la actividad de H+ en la solución problema. Los iones sodio son los portadores de carga en el interior seco de la membrana. La conducción a través de las interfases solución-gel vitreo es debido a las reacciones H + sol1 + Gl - vidrio1 H + Gl - vidrio1 H + Gl - vidrio2 H + sol2 + Gl - vidrio2 el subíndice 1 se refiere a la interfase entre el vidrio y la solución de analito y el subíndice 2 se refiere ala interfase entre la solución interna y el vidrio. De esta forma la diferencia de potencial en cada interfase es dependiente de la actividad de del ion H + en las soluciones que se encuentran a ambos lados de la membrana. Se desarrolla así una diferencia de potencial de frontera o de superficie E b a través de la membrana. La magnitud del potencial de superficie depende de la relación entre las actividades del ion en las dos soluciones. Esta diferencia de potencial es la que sirve como parámetro analítico en las mediciones potenciométricas del ph con un electrodo de membrana. El potencial de superficie o de frontera consta de dos potenciales, E 1 y E 2, cada uno de los cuales se relaciona con una de las dos superficies de vidrio. El potencial de superficie es simplemente la diferencia entre ellos: E b = E 1 - E 2 A partir de consideraciones termodinámicas se puede demostrar que E 1 y E 2 están relacionados con las actividades del ion hidrógeno en cada superficie por relaciones nernstianas: Electrodo de referencia 1 E 1 = j log a' 1 n a 1 E 2 = j n log a' 2 a 2 donde j 1 y j 2 son constantes y a 1 y a 2 son respectivamente las actividades de H + en las soluciones en los lados externo e interno de la membrana. Los términos a' 1 y a' 2 son las actividades de H + en las superficies externa e interna del vidrio que constituye la membrana. Si las dos superficies de la membrana tienen disponibles el mismo número de posiciones cargadas negativamente, como ocurre casi siempre, a partir de las cuales el H + se pueda disociar, entonces j 1 y j 2 son idénticas; también lo son a' 1 y a' 2. De esta forma se obtiene que E b = E 1 E 2 = log a 1 a 2 Por consiguiente, el potencial de superficie E b depende sólo de las actividades del ion hidrógeno en las soluciones a ambos lados de la membrana. En cuanto a un electrodo de vidrio de ph, la actividad del ion hidrógeno en la solución interna a2 se mantiene constante, por tanto la ecuación se simplifica a E b = L' Vlog a 1 = L' pH donde L' = Vlog a 2 El potencial de superficie es entonces una medida de la actividad del ion hidrógeno en la solución externa (a 1 ). Electrodo de vidrio ECS [H 3 O + ] = a 1 Membrana de vidrio [H 3 O + ] = a 2,[Cl - ] = 0.1M, AgCl (sat) Ag E 1 E 2 E b = E 1 - E 2 Electrodo de referencia 2, Potencial de asimetría. Cuando se colocan soluciones idénticas en los dos lados de una membrana de vidrio, el potencial de su superficie o de frontera debe ser cero en principio. Sin embargo, se observa un potencial de asimetría pequeño que cambia de manera gradual con el tiempo. E ref2
5 Las fuentes del potencia de asimetría son desconocidas, pero entre ellas están sin duda las diferencia en la deformación de las dos superficies de la membrana creadas durante la manufactura, la abrasión mecánica en la superficie exterior producida por el uso y el ataque químico de la superficie externa. Para eliminar la polarización causada por el potencial de asimetría, todos los electrodos de membrana tienen que estar calibrados respecto a una o más soluciones patrón de analito. Dichas calibraciones se deben de preferencia cada ves que se vaya a utilizar el electrodo. Potencial del electrodo de vidrio. Como ya se señaló, el potencial de un electrodo indicador de vidrio E ind tiene tres componentes: 1) el potencial de superficie, E b, el potencial E ref2, del electrodo de referencia interno Ag-AgCl y 3) un pequeño potencial de asimetría E asi. En forma de ecuación esto se expresa: E ind = E b + E ref2 + E asi Si se sustituye E b por la ecuación correspondiente se obtiene E ind = L' Vlog a 1 + E ref2 + E asi o bien, E ind = L Vlog a 1 = L V VpH L es una combinación de los tres términos constantes. Es decir, L = L' + E ref2 + E asi Es importante resaltar que aunque estas ecuaciones son similares a las obtenidas para los electrodos metálicos indicadores, las fuentes del potencial de los electrodos que describen son del todo diferentes, uno es un potencial redox, y el otro es un potencial de superficie. Error alcalino. En soluciones básicas, los electrodos de vidrio son sensibles a la concentración tanto del ion hidrógeno como de los iones de los metales alcalinos. Entonces, a ph 12, el electrodo con una membrana Corning 015 registra un ph de 11.3 cuando se sumerge en una solución que tiene una concentración 1 M de ion sodio, pero registra 11.7 en una solución 0.1 M de este ion. Todos los cationes con una sola carga inducen un error alcalino cuya magnitud de pende tanto del catión en cuestión como de la composición de la membrana de vidrio. El efecto de un ion de un metal alcalino sobre el potencial de membrana se puede tomar en cuenta si se añade un término más a la ecuación de E b : E b = L' Vlog (a 1 + k H,B b 1 ) donde k H,B es el coeficiente de selectividad del electrodo y b 1 es la actividad del ion del metal alcalino. Esta ecuación no sólo se aplica a los electrodos indicadores de vidrio para el ion hidrógeno, sino también a todos los otros tipos de electrodos de membrana. Los coeficientes de selectividad van desde cero (no ha y interferencia) a valores mayores que la unidad. Un coeficiente de selectividad igual a uno significa que el electrodo responde por igual al ion del analito y al ion interferente. Si un electrodo para un ion A responde 20 veces más al ion B que al ion A, entonces k A,B tiene un valor de 20. Si la respuesta del electrodo al ion C es veces su respuesta para A (una situación mucho más deseable), k A,C es El producto k H,B b 1 para el electrodo de vidrio de ph es por lo regular pequeño respecto a a 1 siempre que el ph sea inferior a 9. En los electrodos diseñados de manera específica para trabajar en medios fuertemente alcalinos, la magnitud de k H,B b 1 es mucho menor que en los electrodos de vidrio ordinarios. Electrodos de membrana cristalina. Los tipos más importantes de membranas cristalinas se fabrican a partir de un compuesto iónico o de una mezcla homogénea de compuestos iónicos. En algunos casos, la membrana se corta de un solo cristal; en otros, se forman discos mediante presiones elevadas a partir del sólido cristalino finamente molido o a partir del producto fundido. Las membranas características tienen un diámetro de alrededor de 10 mm y un espesor de 1 a 2 mm. Para formar un electrodo, la membrana se sella al final de un tubo construido con un plástico químicamente inerte, como el teflón o el policloruro de vinilo. La mayoría de los cristales iónicos son aislantes y carecen de la suficiente conductividad eléctrica a temperatura ambiente como para servir de electrodos de membrana. Los que son conductores se caracterizan por tener un pequeño ion monovalente móvil en la fase sólida El electrodo de fluoruro. El fluoruro de lantano, LaF3, es una sustancia casi ideal para la preparación de un electrodo de membrana cristalina para determinar ion fluoruro. El mecanismo de desarrollo de potencial sensible al fluoruro en una membrana de fluoruro de lantano es muy análogo al que se describió para las membranas de vidrio sensibles al ph. el potencial de una celda que contiene un electrodo de fluoruro de lantano se representa por la ecuación E ind = L loga F- = L VpF. Observe que están cambiados los signos de los segundos miembros de la derecha debido a que se está determinando un anión. Electrodos basados en sales de plata. Las membranas fabricadas a partir de un único cristal o de discos prensados de varios haluros de plata actúan de manera selectiva respecto a los iones haluro y plata. En general, su comportamiento está lejos del ideal debido a su baja conductividad, baja resistencia mecánica y a su tendencia a desarrollar elevados potenciales fotoeléctricos. Estas desventajas se reducen al mínimo si las sales de plata se mezclan con sulfuro de plata cristalino en una relación molar aproximada de 1:1. Electrodos de membrana líquida. Las membranas líquidas se forman a partir de líquidos inmiscibles que se unen de manera selectiva con algunos iones. Las membranas de este tipo son importantes en particular porque permiten la determinación potenciométrica directa de las actividades de varios cationes polivalentes y también de algunos aniones y cationes monovalentes. Las membranas líquidas se preparan a partir de intercambiadores de iones, líquidos e inmiscibles,
6 que están contenidos en un soporte sólido, inerte y poroso. Un disco de plástico o membranas resistentes de plicloruro de vinilo sirven para mantener la capa orgánica entre las dos soluciones acuosas. Para determinaciones de cationes divalentes, el tubo interno contiene una solución acuosa patrón de MCl 2, donde M 2+ es el catión cuya actividad se desea determinar. Esta solución también está saturada con AgCl para formar un electrodo de referencia de Ag-AgCl con el conductor de alambre de plata. Las sustancias activas en las membranas líquidas son de tres tipos: 1) intercambiadores catiónicos; 2) intercambiadores aniónicos; y 3)compuestos neutros macrocíclicos, que forman complejos con ciertos cationes en forma selectiva. Uno de los electrodos de membrana líquida más importante es el selectivo al ion calcio en medios neutros. El componente activo de la membrana es un intercambiador catiónico que consiste en un diéster alifático del ácido fosfórico disuelto en un solvente polar. el diéster contiene un único protón ácido; por tanto, reaccionan dos moléculas con el ion calcio divalente para formar un dialquilfosfato. La relación entre el potencial y el pca es análoga a la del electrodo de vidrio. Entonces, E ind = L pca 2 En este caso, el segundo término de la derecha está dividido entre dos debido a que el catión es divalente. El electrodo de membrana para el calcio es una herramienta valiosa en estudios fisiológicos, debido a que este ion desempeña funciones importantes en la conducción nerviosa, la formación de los huesos, la contracción muscular, la conducción y contracción cardiaca y en los tubos renales. Electrodos selectivos de iones basados en ionóforos. Cuando compuestos neutros, lipofílicos (llamados ionóforos, que forman complejos con iones blanco) se añaden a membranas líquidas o poliméricas junto con una pequeña cantidad de un intercambiador de iones lipofílico, los iones blanco son transportados al otro lado del límite solución-membrana mediante la formación del complejo. Los ionóforos están diseñados y sintetizados para maximizar la selectividad por un ion específico. Como ejemplos se pueden mencionar la valinomicina, un éter macrocíclico sin carga y antibiótico que tiene una gran afinidad con el potasio y la bis-tiourea que es especialmente selectiva hacia el cloruro. El electrodo selectivo de iones potasio tiene gran valor en estudios fisiológicos. La afinidad de una membrana líquida con el potasio respecto al sodio es muy importante porque ambos iones están presentes en todos los sistemas vivos y desempeñan funciones importantes en la transmisión neuronal. Transistores de efecto de campo selectivo de iones. El transistor semiconductor de efecto de campo hecho de óxido metálico, más conocido como MOSFET (por sus siglas en inglés), que es muy utilizado en computadoras y otros circuitos electrónicos como interruptor para controlar el flujo de corriente en los circuitos. Uno de los problemas en el empleo de este tipo de dispositivo en los circuitos electrónicos es su gran sensibilidad a las impurezas iónicas en su superficie, por lo que la industria electrónica ha destinado una gran cantidad de dinero y esfuerzo para reducir al mínimo o eliminar dicha sensibilidad con el fin de producir transistores estables. Debido a esta característica se ha pensado utilizar estos sistemas en la determinación potenciométrica selectiva de varios iones. Estos estudios han originado el desarrollo de cierto número de diferentes transistores de efecto de campo selectivos de iones (ISFET por sus siglas en inglés). Mecanismo del comportamiento selectivo de iones del ISFET. En su funcionamiento los ISFET son muy parecidos a los MOSFET que están formados por dos regiones n aisladas en un sustrato tipo p. Ambas regiones están cubiertas por una fina capa de dióxido de silicio muy aislante, la cual también puede estar revestida con una capa protectora de nitruro de silicio. Mediante un disolvente se hacen aberturas en las capas de modo que haya contacto eléctrico entre las dos regiones n. Se forman dos contactos más: uno con el sustrato y el otro con la superficie de la capa aislante. El contacto con la capa aislante se denomina compuerta porque el voltaje en este contacto determina la magnitud de la corriente positiva entre el drenaje y la fuente. Observe que la capa aislante de dióxido de silicio entre la terminal de la compuerta y el sustrato explica la alta impedancia de un MOSFET. En ausencia de un voltaje aplicado en la compuerta, ninguna corriente se genera entre el drenaje y la fuente porque una de las dos uniones pn está siempre en polarización inversa sin importar el signo del voltaje aplicado. El ISFET se diferencia sólo en que la variación de la concentración de los iones de interés proporciona el voltaje de compuerta variable para controlar la conductividad del canal. En este caso, en lugar del contacto metálico usual, la compuerta de un ISFET está cubierta con una capa aislante de nitruro de silicio (Si3N4). La solución de analito, que contiene iones hidrógeno, en el caso de un sensor de ph, está en contacto con esta capa aislante y con un electrodo de referencia. La superficie del aislante de la compuerta funciona de manera muy similar a la superficie de un electrodo de vidrio. Los protones procedentes de la solución pro estudiar están absorbidos en sitios microscópicos disponibles en el nitruro de silicio. Cualquier cambio en la concentración de ion hidrónio de la solución causa una cambio en la concentración de los protones adsorbidos. Entonces, el cambio en la concentración de los protones adsorbidos da origen a un cambio en el potencial electroquímico entre la compuerta y la fuente, lo que a su vez varía la conductividad del canal del ISFET. La conductividad del canal se puede controlar electrónicamente para proporcionar una señal que sea proporcional al logaritmo de la concentración de H+ en la solución. Evidentemente todo el ISFET, excepto el aislante de la compuerta, está cubierto con un encapsulante polimérico para que todas las conexiones eléctricas queden aisladas de la solución del analito. La superficie sensible a iones de un ISFET responde naturalmente a las variaciones en el ph, pero
7 el dispositivo puede volverse sensible a otras especies si el aislante de nitruro de silicio de la compuerta se recubre con un polímero que contenga moléculas que tiendan a formar complejos con especies diferentes del ion hidronio. Además, se pueden fabricar varios ISFET sobre el mismo sustrato de modo que puedan efectuarse de manera simultánea múltiples medidas. Los ISFET tienen ventajas significativas sobre los electrodos de membrana, entre las cuales están la construcción resistente, su pequeño tamaño, son inertes en ambientes agresivos, tienen respuesta rápida y baja impedancia eléctrica. A diferencia de los electrodos de membrana, los ISFET no requieren hidratación previa a su uso y pueden almacenarse por periodos indefinidos en estado seco. La razón de que no se haya generalizado su uso es que los fabricantes eran incapaces de desarrollar la técnica para encapsular los dispositivos con el fin de crear un producto que no presentara deriva e inestabilidad. La única desventaja importante de los ISFET aparte de la deriva al parecer es que requieren un electrodo de referencia más o menos tradicional. Este requisito coloca un límite inferior en las dimensiones de la sonda del ISFET. La promesa de un sensor diminuto pero fuerte que se pueda usar en diversos medios agresivos y poco comunes se cumple a medida que se resuelven los problemas de los electrodos de referencia. Sistemas de electrodo sensible a moléculas. Se han creado dos tipos de sistemas de electrodos de membrana que actúan selectivamente hacia ciertos tipos de moléculas. Uno de ellos se utiliza para la determinación de gases disueltos, como dióxido de carbono y amoniaco. El otro, que se basa en las membranas biocatalíticas, permite determinar una variedad de compuestos orgánicos, tales como glucosa y urea. Sondas sensibles a gases. De hecho, estos sistemas no son electrodos, sino celdas electroquímicas construidas con un electrodo específico y uno de referencia sumergidos en una solución interna que está retenida por una delgada membrana permeable a gases. Por consiguiente, sondas sensibles a gases es un nombre más apropiado para ellos. El corazón de las sonda es una membrana delgada y porosa que se reemplaza con facilidad. Para el caso se una sonda sensible a gases para dióxido de carbono la membrana separa la solución de analito de una solución interna que contiene bicarbonato de sodio y cloruro de sodio. Un electrodo de vidrio sensible al ph que tiene una membrana plana se coloca cuidadosamente de manera que una delgada película de solución interna quede entre él y la membrana permeable a los gases. También se coloca en la solución interna un electrodo de referencia de plata-cloruro de plata. El ph de la película de líquido adyacente al electrodo de vidrio es el que proporciona una medida del contenido de dióxido de carbono en la solución de analito situada al otro lado de la membrana. Existen dos tipos de materiales de membrana, a saber, microporosos y homgéneos. Los primeros se fabrican con polímeros hidrófobos, como el politetrafluoretileno o el polipropileno, que tienen una porosidad (volumen de huecos) de 1μm. Debido a las propiedades repelentes al agua y no polares de la película, las moléculas de agua y los iones del electrolito son expulsados de los poros; en cambio, las moléculas gaseosas se mueven libremente dentro y fuera de los poros por efusión y, por tanto, pueden cruzar esta barrera. Por lo regular, el espesor de las membranas microporosas mide alrededor de 0.1mm. Por el contrario, las películas homogéneas son sustancias poliméricas sólidas a través de las cuales el analito gaseoso pasa, disolviéndose en la membrana, se difunde y luego se desolvata en la solución interna. El material más utilizado para la construcción es la goma de silicón. En general, las películas homogéneas son más delgadas que las microporosas (0.01 a 0.03 mm) con el fin de acelerar la transferencia del gas y, por tanto, la velocidad de respuesta del sistema. En la siguiente tabla se presenta una lista de las sondas sensibles a gases que existen en el comercio. También e encuentra en el mercado una sonda sensible al oxígeno, pero se basa en una medición voltamperométrica que se tratará mas adelante. Gas Equilibrio en la solución interna Electrodo sensor NH 3 NH 3 + H 2 O = NH OH - Vidrio, ph CO 2 CO 2 + H 2 O = HCO H + Vidrio, ph HCN HCN = H + + CN - Ag 2 S, pcn HF HF = H + + F - LaF 3, pf H 2 S H 2 S = 2H + + S 2- Ag 2 S, ps SO 2 SO 2 + H 2 O = HSO H + Vidrio, ph NO 2 2NO 2 + H 2 O = NO NO H + Intercambio de ion inmovilizado, pno 3 Biosensores. En las pasadas tres décadas se ha efectuado un considerable esfuerzo para combinar la selectividad de materiales y reacciones bioquímicas con transductores electroquímicos para obtener biosensores muy selectivos que se utilicen en la determinación de compuestos biológicos y bioquímicos. Entre los materiales que se han probado para este acoplamiento están enzimas, ADN, antígenos, anticuerpos, bacterias, células, y todas las muestras de tejido animal y vegetal. Cuando las moléculas de analito reaccionan con estos materiales, la interacción desencadena la producción de especies que se pueden supervisar de manera directa o indirecta mediante uno de los electrodos que tiene afinidad con los iones o moléculas ya mencionados. La ventaja de la selectividad de los biosensores es contrarrestada por la estabilidad limitada de muchas sustancias bioquímicas, lo cual reduce el uso en ambientes agresivos. Esta desventaja se está venciendo en cierto grado mediante la fabricación de materiales sintéticos que tienen características similares a las naturales, pero que son más resistentes.
8 El biosensor que se ha estudiado más ampliamente y tal vez el más útil está construido a partir de enzimas. En estos dispositivos la muestra se pone en contacto con una enzima inmovilizada, la cual reacciona con el analito y produce una especie como amoniaco, dióxido de carbono, iones de hidrógeno o peróxido de hidrógeno. La concentración de este producto, que es proporcional a la concentración del analito, se determina mediante el transductor. Los transductores más comunes en estos dispositivos son los electrodos de membrana, las sondas sensibles a gases y los dispositivos voltamperométricos. Los biosensores basados en electrodos de membrana son ventajosos desde diferentes puntos de vista. Primer, porque las moléculas orgánicas complejas pueden determinarse, en principio, con la conveniencia, rapidez y facilidad que caracterizan a las mediciones selectivas de ciertos iones de especies inorgánicas. Segundo, porque las reacciones catalizadas con enzimas se realizan en condiciones de temperatura y ph suaves y con mínimas concentraciones de sustrato. Tercero, porque al combinar la selectividad de la reacción enzimática y la respuesta del electrodo se obtienen resultados que están libres de la mayoría de las interferencias. La principal limitación de los procedimientos enzimáticos es el elevado costo de las enzimas, sobre todo cuando se utilizan para mediciones de rutina o continuas. Esta desventaja ha ocasionada el uso de medios enzimáticos inmovilizados en los cuales unas pequeña cantidad de enzima se puede utilizar para análisis consecutivos de cientos de muestras. Otra desventaja es que la sonda puede tener coeficientes de selectividad elevados para otros metabolitos comunes, como el sodio y el potasio. Finalmente también se pueden encontrar problemas inherentes al comportamiento enzimático el cual es muy sensible al ph. En general se utilizan dos técnicas. En una, la muestra se hace pasar a través de un lecho fijo de enzimas inmovilizadas y, a continuación, al detector. En la segunda, se une directamente a la superficie del electrodo selectivo de iones una capa porosa de la enzima inmovilizada, con lo que se forma un electrodo enzimático. En tales dispositivos, el producto de la reacción alcanza la superficie de la membrana selectiva por difusión. Los factores que afectan los límites de detección de los biosensores basados en enzimas incluyen los límites de detección inherentes del electrodo selectivo de iones acoplado con la capa de enzima, las propiedades cinéti9cas de la reacción enzimática y la velocidad de transferencia de masa del sustrato hacia la capa. A pesar de la gran investigación sobre estos dispositivos y de las diversas membranas potencialmente útiles elaboradas con enzimas, sólo se han comercializado unos pocos electrodos enzimáticos potenciométricos debido al menos en parte a las limitaciones que se mencionaron antes. La determinación enzimática de nitrógeno de la urea en aplicaciones clínicas es un ejemplo excepcional de este tipo de sensores. Instrumentos para medir potenciales de celda. Una consideración fundamental en el diseño de un instrumento para medir potenciales de celda es que su resistencia debe ser grande respecto a la celda. Si no lo es, se producen errores notables como consecuencia de la caída IR en la celda. Se puede demostrar con facilidad que para reducir el error de carga a 1%, la resistencia del dispositivo de medición de voltaje debe ser alrededor de 100 veces mayor que la resistencia de la celda; en el caso de un error relativo de 0.1%, la resistencia debe ser 1000 veces mayor. La resistencia eléctrica de las celdas que contienen electrodos selectivos de iones puede ser de 100 MΩ o más, los dispositivos para medir el potencial que se utilizan con estos electrodos tienen generalmente una resistencia interna de por lo menos Ω. Todos los métodos potencimétricos directos se basan en las ecuaciones px = log a X = n E K cel V y pa = n E cel K V donde K es una constante y ax es la actividad del catión. Por lo que se refiere a los electrodos indicadores metálicos, K involucra de ordinario el potencial del electrodo estándar, el potencial del electrodo de referencia y el potencial de unión líquida; para los electrodos de membrana, K es la suma de varias constantes, como los potenciales de los electrodos de referencia interno y externo, y el potencial de asimetría que es dependiente del tiempo de vida del electrodo y tiene una magnitud indeterminada. La diferencia de signo entre las dos ecuaciones tiene una sutil pero importante consecuencia en la forma en que los electrodos selectivos de iones se conectan a los medidores de ph y de pion. Cuando se resuelven las dos ecuaciones y se determina finalmente E cel, se encuentra que para los cationes E cel = K V px y para los aniones E n cel = K V pa n La ecuación correspondiente a los cationes muestra un aumento en px da lugar a una disminución en E cel. Por consiguiente, cuando se conecta de manera usual un voltímetro de elevada resistencia a la celda, y el electrodo indicador está unido a la terminal positiva, la lectura del medidor disminuye a medida que el px aumenta, a menos de que los fabricantes indiquen que se inviertan las conexiones para invertir la respuesta. Por otro lado, los electrodos selectivos de aniones se conectan a la terminal positiva del medidor de modo que los aumentos en pa también den lecturas positivas grandes. La constante K de las ecuaciones de E cel incluye varias constantes, que en ocasiones no pueden medirse o calcularse con exactitud. Por tanto, antes de poder utilizar estas ecuaciones para determinar px o pa, se debe evaluar K experimentalmente con una o más soluciones patrón del analito. En el método de calibración del electrodo, K se determina al medir E cel para una o más soluciones patrón de px o pa conocidas. La suposición que se plantea entonces es que K no cambia cundo el patrón se sustituye por la solución del analito. Por lo común, la calibración se efectúa en el momento en que se desea determinar px o pa de la muestra. Con electrodos de membrana podría ser necesaria la
9 recalibración si las mediciones se efectúan durante varias horas debido al cambio lento del potencial de asimetría. Una grave desventaja del método de calibración de un electrodo es la incertidumbre inherente que resulta de suponer que K es constante durante la calibración y la determinación del analito. Esta suposición rara vez puede ser exactamente cierta debido a que las composiciones electrolíticas de la muestra y de la solución que se emplea para la calibración casi siempre son diferentes. con frecuencia, esta incertidumbre es del orden de 1 mv o más. El grado de incertidumbre en la concentración del analito se puede calcular al derivar las ecuaciones con respecto a K mientras que E cel se mantiene constante. después del procedimiento se obtiene para el caso de la determinación de un catión: %error relativo = a X a X 100% = n K % La cantidad Δa X /a X es el error relativo a X asociado con una incertidumbre absoluta ΔK en K. Por ejemplo, si ΔK es ±0.001 V, es de esperarse un error relativo de alrededor de ±4n% en la actividad. Es importante tener en cuenta que esta incertidumbre es característica de todas las mediciones en las que se utilicen celdas con un puente salino y que no puede eliminarse ni con las mediciones más cuidadosas de los potenciales de celda ni con los dispositivos de medición más sensibles y precisos. Además, al parecer es imposible idear un método que elimine la incertidumbre en K que es el origen del problema. Titulaciones potenciométricas. El potencial de un electrodo indicador adecuado es apropiado para establecer el punto de equivalencia de una titulación. Una titulación potenciométrica proporciona una información diferente de la de una medición potenciométrica directa. Por ejemplo, la medición directa de soluciones de ácido acético M y ácido clorhídrico M con un electrodo sensible al ph produce valores de ph muy diferentes debido a que el ácido acético sólo está parcialmente disociado. Por otro lado, las titulaciones potenciométricas de volúmenes iguales de los dos ácidos requieren la misma cantidad de base patrón para su neutralización. El punto final potenciométrico es ampliamente aplicable y proporciona datos más exactos que el método correspondiente que utiliza indicadores. Es en particular útil para la titulación de soluciones coloreadas o turbias y para detectar la presencia de especies insospechadas en una solución. Pero requiere más tiempo que una titulación que utilice un indicador, a no se que se utilice un titulador automático. Diversas compañías fabrican tituladores automáticos. Estos dispositivos están equipados con un depósito de titulante, un despachador de titulante, como una bomba con jeringa y un acomodo de tubos y válvulas para servir volúmenes medidos de titulante a una velocidad aceptable. El titulador obtiene la información de una sonda de ph u otro sensor para supervisar el avance de la titulación. El punto final de la titulación lo determina un programa que ya está incorporado y se basa en las técnicas de la primera y segunda derivadas o algún otro método especificado o programado por el usuario.
Métodos Potenciométricos
Métodos Potenciométricos Ing. Carlos Brunatti Ing. Hernán De Napoli Se puede describir la potenciometría simplemente como la medición de un potencial en una celda electroquímica. Es el único método electroquímico
Los métodos potenciométricos se basan en la medida del potencial eléctrico (respecto a una referencia) de un electrodo sumergido en la disolución
Potenciometrias Los métodos potenciométricos se basan en la medida del potencial eléctrico (respecto a una referencia) de un electrodo sumergido en la disolución problema, a partir de la cual es posible
POTENCIOMETRIA INTRODUCCIÓN:
POTENCIOMETRIA INTRODUCCIÓN: Los métodos potenciométricos de análisis se basan en las medidas del potencial de celdas electroquímicas en ausencia de corrientes apreciables. Dicho de otra manera, los métodos
DETERMINACIÓN DE FLUORUROS EN AGUAS CON EL ELECTRODO SELECTIVO
DETERMINACIÓN DE FLUORUROS EN AGUAS CON EL ELECTRODO SELECTIVO 1. OBLETIVO: 1 Llevar a cabo medidas de potenciales con un electrodo selectivo de iones fluoruro para determinar la concentración de este
Unidades de masa atómica
Unidades de masa atómica La estructura química y las fórmulas químicas sirven para estudiar las relaciones de masa de átomos y moléculas. Estas relaciones ayudan a explicar la composición de los compuestos
Métodos analíticos cuantitativos basados en las propiedades eléctricas de una solución de analito cuando forma parte de una celda electroquímica
POTENCIOMETRÍA Química electroanalítica Métodos analíticos cuantitativos basados en las propiedades eléctricas de una solución de analito cuando forma parte de una celda electroquímica Electroquímica Conversión
Reacciones en disolución acuosa
Reacciones en disolución acuosa (no redox) Ramón L. Hernández-Castillo, Ph.D. Química 106 (laboratorio) Objetivos Reglas de Solubilidad en medio acuoso Reacciones típicas en medio acuoso (precipitación,
POTENCIOMETRIA KCL. Cl - CELDAS GALVANICAS DEPOSITO DE COBRE SOBRE UNA LAMINA DE ZINC CELDA GALVANICA POTENCIALES REDOX CELDA GALVANICA
POTENCIOMETRIA TOPICOS: Celdas galvánicas Potenciales estándar de electrodo Ecuación de Nernst Electrodos de referencia: primario y secundario Medición de ph Celdas electrolíticas Titulaciones potenciométricas
Clasificación de Electrolitos
8/11/14 Conductancia eléctrica Lalboratorio de Química Física I QUIM 451 http://www.usm.maine.edu/chy/manuals/114/text/conduct.html Ileana Nieves Martínez agosto 14 1 Clasificación de Electrolitos Electrolitos
MÉTODOS ELECTROQUÍMICOS
MÉTODOS ELECTROQUÍMICOS Técnicas instrumentales de análisis que pueden usarse para la identificación y/o cuantificación de analitos mediante mediciones de variables como: Intensidad de corriente eléctrica
TÉCNICAS DE MUESTREO, ANÁLISIS E INTERPRETACIÓN DE DATOS. Ingeniería Ambiental
TÉCNICAS DE MUESTREO, ANÁLISIS E INTERPRETACIÓN DE DATOS Ingeniería Ambiental Problema Elección del método analítico Toma de muestra Tratamiento de la muestra Proceso de medida Tratamiento de los datos
Reacciones Oxido- Reducción (REDOX)
Reacciones Oxido- Reducción (REDOX) Se llama Reacción Óxido-Reducción (REDOX) a una transferencia de electrones entre átomos. Por ejemplo: Cu +2 + e- Cu + Donde el signo + en el átomo de cobre que se encuentra
Las ecuaciones químicas
Las reacciones químicas se representan escribiendo las fórmulas de los reactivos en el primer miembro de una ecuación y las de los productos en el segundo. El signo igual se sustituye por una flecha (
Tema 1 Introducción a la Ciencia de los Materiales.
Tema 1 Introducción a la Ciencia de los Materiales. La Ciencia de los Materiales es la disciplina que se encarga de estudiar cómo están formados los materiales y cuáles son sus propiedades. El objetivo
EL ENLACE QUÍMICO. La unión consiste en que uno o más electrones de valencia de algunos de los átomos se introduce en la esfera electrónica del otro.
EL ENLACE QUÍMICO Electrones de valencia La unión entre los átomos se realiza mediante los electrones de la última capa exterior, que reciben el nombre de electrones de valencia. La unión consiste en que
Unidad 6: ELECTROQUIMICA
Unidad 6: ELECTROQUIMICA REACCIONES DE OXIDACION-REDUCCION Las reacciones redox son aquellas en las cuales hay intercambio de electrones entre las sustancias que intervienen en la reacción. Oxidación:
De qué se Compone la Materia?
8vo Básico> Ciencias Naturales Composición de la materia De qué se Compone la Materia? Observa la siguiente situación y responde las preguntas propuestas: La profesora comienza su clase y pregunta: Profesora:
DESALACIÓN MEDIANTE ELECTRODIÁLIS
DESALACIÓN MEDIANTE ELECTRODIÁLIS Ecoagua Ingenieros Avda. Manoteras, 38, C-314 28050-Madrid (Spain) Tel.: +(34) 913 923 562 TEC-006 Edition: 01 Date: 18/04/09 Page: 1 de 5 1. DESCRIPCION DEL PROCESO Fijándonos
PROBLEMAS EQUILIBRIO ÁCIDO BASE
PROBLEMAS EQUILIBRIO ÁCIDO BASE 1.- a) Aplicando la teoría de Brönsted-Lowry, explique razonadamente, utilizando las ecuaciones químicas necesarias, si las siguientes especies químicas se comportan como
Director de Curso Francisco J. Giraldo R.
Director de Curso Francisco J. Giraldo R. REACCIONES QUÍMICAS Evidencia de las reacciones químicas Cambio físico la composición química de una sustancia permanece constante. Fundir hielo Cambio químico
El enlace iónico. Los cationes y los aniones están unidos por la fuerza electroestática.
El enlace iónico Los elementos con bajas energías de ionización tienden a formar cationes, en cambio los elementos con alta afinidad electrónicas tienden a formar aniones. Los metales alcalinos (IA) y
Potenciometría. Química Analítica II Curso 2017
Potenciometría Química Analítica II Curso 2017 Potenciometría Electrodos y sensores Métodos directos Titulaciones potenciométricas Aplicaciones comunes Análisis de iones de procesos industriales batch
Tema 5: Propiedades de las sustancias en función n del tipo de enlace que poseen.
Tema 5: Propiedades de las sustancias en función n del tipo de enlace que poseen. Relacionar las propiedades de las sustancias, con el tipo de enlace que tiene lugar entre los átomos que la constituyen,
UNIDAD 5: LOS ÁTOMOS Y LAS MOLÉCULAS
UNIDAD 5: LOS ÁTOMOS Y LAS MOLÉCULAS Lee atentamente: 1. LA MISMA SUSTANCIA EN LOS TRES ESTADOS Todos los cuerpos están formados por sustancias: las personas, los coches, los muebles, el aire, etc. Todas
QUÍMICA 2º Bachillerato Ejercicios: Reacciones de Oxidación Reducción (II)
1(10) Ejercicio nº 1 El KCl reacciona con KMnO 4, en medio ácido sulfúrico, para dar cloro gaseoso, sulfato de manganeso (II), agua y sulfato de potasio. a) Iguale la ecuación molecular por el método del
1010 DEPARTAMENTO DE FÍSICA Y QUÍMICA 2º Bachillerato QUÍMICA
1.- La constante de equilibrio, K p, para la siguiente reacción química: C 2 H 4 (g) + H 2 (g) C 2 H 6 (g), vale 5 x 10 17, a 25º C. Calcula, a la misma temperatura, el valor de K c. Solución: K c = 1,22
Estructura atómica: tipos de enlaces
Estructura atómica: tipos de enlaces Estructura de los átomos Modelo atómico de Bohr Masa (g) Carga (C) Protón 1.673 x 10-24 1.602 x 10-19 Neutrón 1.675 x 10-24 0 Electrón 9.109 x 10-28 1.602 x 10-19 Los
PROCESOS DE OXIDACIÓN-REDUCCIÓN. ELECTROQUÍMICA.
PROCESOS DE OXIDACIÓN-REDUCCIÓN. ELECTROQUÍMICA. Ajustar las reacciones: MnO - 4 + Fe 2+ + H + Mn 2+ + Fe 3+ + H 2 O - MnO 4 + I - + H 2 O I 2 + MnO 2 + OH - ClO - 3 + Co 2+ + H + Cl - + Co 3+ + H 2 O
IV UNIDAD TRANSFERENCIA DE MASA
IV UNIDAD TRANSFERENCIA DE MASA La transferencia de masa es la tendencia de uno o más componentes de una mezcla a transportarse desde una zona de alta concentración del o de los componentes a otra zona
Las disoluciones son mezclas homogéneas. Están compuestas por un soluto y un disolvente.
Liceo Confederación Suiza Guía de aprendizaje Agosto,2014 SECTOR: Química PROFESORA: Genny Astudillo Castillo UNIDAD TEMÁTICA o DE APRENDIZAJE: Disoluciones NIVEL/CURSO:2 Medio CONTENIDO: -Conceptos Básicos
Formas de expresar la concentración de disoluciones. Química General II 2011
Formas de expresar la concentración de disoluciones Química General II 2011 Concentración de las disoluciones Es la cantidad de soluto presente en cierta cantidad de disolución. Fracción que se busca Porcentaje
Refuerzo Modelos atómicos
Refuerzo Modelos atómicos 1 1. Completa la siguiente tabla: CARGA MASA UBICACIÓN EN EL ÁTOMO DESCUBRIDOR AÑO DE DESCUBRIMIENTO Electrón Protón Neutrón. Resume en la tabla siguiente los distintos modelos
ENERGIA. La energía se define como la capacidad que tiene un sistema para producir trabajo.
ENERGIA La energía se define como la capacidad que tiene un sistema para producir trabajo. Tipos de energía almacenada: son aquellos que se encuentran dentro del sistema 1. Energía potencial: es debida
BIOELECTRICIDAD Y POTENCIAL DE MEMBRANA
BIOELECTRICIDAD Y POTENCIAL DE MEMBRANA CONCEPTOS BASICOS DE BIOFISICA CARGA (q) DIFERENCIA DE POTENCIAL ( V) CORRIENTE ELECTRICA CONDUCTANCIA (g) / RESISTENCIA CAPACITANCIA CARGA CARGA (q) - Propiedad
Departamento de Física y Química Adaptaciones 3º E.S.O.
Los elementos químicos se ordenan en la Tabla de los elementos (Tabla periódica) siguiendo el criterio de número atómico creciente, es decir, según el número de protones que tienen en el núcleo. El primer
15/03/2010. Definición:
ph Definición: El ph es una medida de la acidez El ph es una medida de la acidez o alcalinidad de una sustancia. Es un valor numérico que expresa la concentración de iones de hidrógeno (H + ). El ph no
Autor: Sabino Menolasina Mérida, 2010. 1ª Ed. 562 p. ISBN 978-980-11-1276-1 PRÓLOGO... 17
QUÍMICA GENERAL APLICADA A LAS CIENCIAS DE LA SALUD Autor: Sabino Menolasina Mérida, 2010. 1ª Ed. 562 p. ISBN 978-980-11-1276-1 En esta obra, el autor expone una serie de conceptos fundamentales y ejercicios
SESIÓN 1 CÁLCULOS QUÍMICOS
SESIÓN 1 CÁLCULOS QUÍMICOS I. CONTENIDOS: 1. Nomenclatura química. 2. atómica. 3. molecular. 4. Concepto mol. 5. El número de Avogadro. II. OBJETIVOS: Al término de la Sesión, el alumno: Recordará las
Ambas semireacciones no pueden ocurrir por separado. La reacción global sería:
TEMA 13 REACCIONES DE OXIDACIÓN-REDUCCIÓN I. CONCEPTO DE OXIDACIÓN-REDUCCIÓN Una reacción de oxidación-reducción (redox) es una reacción de transferencia de electrones. La especie que pierde los electrones
Introducción. Condensadores
. Introducción Un condensador es un dispositivo que sirve para almacenar carga y energía. Está constituido por dos conductores aislados uno de otro, que poseen cargas iguales y opuestas. Los condensadores
Química general Primera Unidad: LA QUÍMICA UNA CIENCIA BÁSICA
Química general Primera Unidad: LA QUÍMICA UNA CIENCIA BÁSICA Describe los fundamentos de la formación de enlace iónicos y covalentes y su relación con la polaridad de las moléculas resultantes. Mg. Emilio
TERMODINÁMICA DEL EQUILIBRIO CAPÍTULO II. SOLUCIONES QUÍMICAS
Ing. Federico G. Salazar Termodinámica del Equilibrio TERMODINÁMICA DEL EQUILIBRIO CAPÍTULO II. SOLUCIONES QUÍMICAS Contenido 1. Propiedades Parciales Molares 2. Entalpía de Mezcla 3. Efectos caloríficos
NÚCLEO ATÓMICO Profesor: Juan T. Valverde
6 1.- Deduce la masa atómica del litio a partir de sus isótopos Li con una abundancia del 7 7,5% y Li con una abundancia del 92,5%. http://www.youtube.com/watch?v=8vvo-xqynea&feature=youtu.be 2.- Calcula
Licenciatura en Nutrición. Curso Introductorio. Introducción a la Bioquímica Módulo 1 Leccion 2
Licenciatura en Nutrición Curso Introductorio Introducción a la Bioquímica Módulo 1 Leccion 2 1 MOLÉCULAS Y COMPUESTOS Objetivos Describir los dos tipos fundamentales de enlaces químicos. Describir las
QUÍMICA ANALÍTICA I. Etapa analítica. Análisis volumétrico: Titulaciones complejométricas
QUÍMICA ANALÍTICA I Etapa analítica Análisis volumétrico: Titulaciones complejométricas Contenidos Proceso de medida química: Etapa analítica Aspectos generales de las volumetrías Requisitos de la reacción
Electrodo selectivo de. iones
Electrodo selectivo de INTEGRANTES: iones Cristian Araya Jonathan Castillo Diego Díaz Jaime Espinoza Nicolás Saavedra Métodos Electroanalíticos Métodos en la interfase Métodos en la disolución Métodos
PILAS ELECTROQUIMICAS
PILAS ELECTROQUIMICAS En las reacciones de redox existe una transferencia de electrones entre en dador (especie que se oxida) y un aceptor (especie que se reduce).esta transferencia de electrones desde
UNA ONG ESPERA TU RESPUESTA, ATIÉNDELA PARA QUE PUEDA AYUDAR A OTROS OPCIÓN A
UNA ONG ESPERA TU RESPUESTA, ATIÉNDELA PARA QUE PUEDA AYUDAR A OTROS OPCIÓN A CUESTIÓN.- Cuál de las siguientes reacciones nunca será espontánea independientemente del valor de la temperatura?, cuál será
QUÍMICA I. TEMA 10 Equilibrio de solubilidad. Tecnólogo en Minería
QUÍMICA I TEMA 10 Equilibrio de solubilidad Tecnólogo en Minería O b j e t i v o Examinar las propiedades físicas de las disoluciones y compararlas con las de sus componentes Disoluciones acuosas de sustancias
Y ACONDICIONADORES TEMA 11 BIOSENSORES
SENSORES Y ACONDICIONADORES TEMA 11 BIOSENSORES (Principios físicos de funcionamiento) Profesores: Enrique Mandado Pérez Antonio Murillo Roldan Tema 11-1 DEFINICIÓN Son sensores que combinan una membrana
ANIONES. Aniones monoatómicos: suelen corresponder a no metales que han ganado electrones completando su capa de valencia.
ANIONES Son iones con carga negativa. Los hay monoatómicos y poliatómicos. Aniones monoatómicos: suelen corresponder a no metales que han ganado electrones completando su capa de valencia. Tradicional:
Química I. Objetivos de aprendizaje. Tema 7 Enlaces. Al finalizar el tema serás capaz de:
Química I Tema 7 Enlaces Objetivos de aprendizaje Al finalizar el tema serás capaz de: Describir las características y propiedades del enlace iónico así como citar ejemplos. Identificar enlaces covalentes
TEMA 6.- Reacciones de trans- ferencia de protones
TEMA 6.- Reacciones de trans- ferencia de protones CUESTIONES 51.- Razone la veracidad o falsedad de las siguientes afirmaciones: a) A igual molaridad, cuanto más débil es un ácido menor es el ph de sus
LA NUTRICIÓN: OBTENCIÓN Y USO DE MATERIA Y ENERGÍA POR LOS SERES VIVOS
LA NUTRICIÓN: OBTENCIÓN Y USO DE MATERIA Y ENERGÍA POR LOS SERES VIVOS Todos los seres vivos necesitan nutrientes para mantener sus funciones vitales y por lo tanto mantenerse con vida. Las células tienen
MÉTODOS ELECTROQUÍMICOS
MÉTODOS ELECTROQUÍMICOS INTRODUCCIÓN Son todos los métodos instrumentales que se emplean para medir corrientes eléctricas, carga y potenciales para aplicaciones analíticas. Los procesos a los cuales es
Tema 3: Ecuaciones químicas y concentraciones
Tema 3: Ecuaciones químicas y concentraciones Definición de disolución. Clases de disoluciones. Formas de expresar la concentración de una disolución. Proceso de dilución. Solubilidad. Diagramas de fases
ÁREA DE INGENIERÍA QUÍMICA Prof. Isidoro García García. Operaciones Básicas de Transferencia de Materia. Tema 1
ÁREA DE INGENIERÍA QUÍMICA Operaciones Básicas de Transferencia de Materia Los procesos químicos modifican las condiciones de una determinada cantidad de materia: modificando su masa o composición modificando
4. TEORÍA ATÓMICO-MOLECULAR
4. TEORÍA ATÓMICO-MOLECULAR Sustancias que reaccionan 1. Explica qué son los procesos o cambios físicos y pon ejemplos de ellos. Los procesos o cambios físicos no producen modificaciones en la naturaleza
IES Atenea (S.S. de los Reyes) Departamento de Física y Química. PAU Química. Septiembre 2010. Fase general OPCIÓN A
1 PAU Química. Septiembre 2010. Fase general OPCIÓN A Cuestión 1A. Considerando el elemento alcalinotérreo del tercer periodo y el segundo elemento del grupo de los halógenos: a) Escriba sus configuraciones
UNIDAD EDUCATIVA MONTE TABOR NAZARET Área de Ciencias Experimentales Actividades de refuerzo académico I QM 2015-2016
NOMBRE: CURSO: PRIMERO DE BACHILERATO UNIDAD EDUCATIVA MONTE TABOR NAZARET Área de Ciencias Experimentales Actividades de refuerzo académico I QM 2015-2016 Contenido: Caligrafía: Presentación Ortografía:
La IUPAC recomienda lo siguiente para formular los hidrácidos: Para los hidrácidos la nomenclatura tradicional y la sistemática coinciden:
ACIDOS HIDRÁCIDOS: Son compuestos formados por HIDRÓGENO y un NO METAL de los grupos 6A y 7A. El hidrógeno presenta un estado de oxidación 1+ por lo que el no metal tomará un estado de oxidación negativo,
Análisis Químico Análisis Fisicoquímico
1 Química Analítica Instrumental I Nota de clase 1: Introducción a la electroquímica analítica. Dr. Alejandro Baeza Los métodos electrométricos La Química Analítica proporciona los elementos para diseñar
DIFERENCIA ENTRE CAMPO ELÉCTRICO, ENERGÍA POTENCIAL ELÉCTRICA Y POTENCIAL ELÉCTRICO
DIFERENCIA ENTRE CAMPO ELÉCTRICO, ENERGÍA POTENCIAL ELÉCTRICA Y POTENCIAL ELÉCTRICO CAMPO ELÉCTRICO El espacio que rodea a un objeto cargado se altera en presencia de la carga. Podemos postular la existencia
FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Sistemas Físicos y Químicos
1(7) Ejercicio nº 1 Una muestra de sulfuro de hierro de 60,5 g contiene 28 g de azufre. Cuál es la fórmula empírica de dicho compuesto? Ejercicio nº 2 150 g de un compuesto contienen 45,65 g de nitrógeno
Prof. Jorge Luis Colmenares 2011-II
Prof. Jorge Luis Colmenares 2011-II Ciclos BIOGEOQUIMICOS SON LOS MOVIMIENTOS DE CANTIDADES MASIVAS O NO, DE ELEMENTOS INORGÁNICOS ENTRE LOS COMPONENTES VIVIENTES Y NO VIVIENTES DEL AMBIENTE (ATMÓSFERA
La separación de las especies minerales se produce mediante la aplicación selectiva de fuerzas.
MINERALURGIA: Es la rama de la ciencia de los materiales, que se encarga de estudiar los principios físicos y los procesos a través de los cuales se realiza la separación y/o el beneficio de las diferentes
APUNTES DE FÍSICA Y QUÍMICA 4º DE ESO UNIDAD DIDÁCTICA 3 REACCIONES QUÍMICAS 1.- REACCIONES ÁCIDO- BASE
APUNTES DE FÍSICA Y QUÍMICA 4º DE ESO UNIDAD DIDÁCTICA 3 REACCIONES QUÍMICAS 1.- REACCIONES ÁCIDO- BASE La reacción entre un ácido y una base se llama neutralización. Durante este proceso se forma una
INSTITUTO TECNOLÓGICO de Durango ELECTROQUÍMICA FISICOQUÍMICA 2. Dr. Carlos Francisco Cruz Fierro. Revisión Fisicoquímica 2.
INSTITUTO TECNOLÓGICO de Durango ELECTROQUÍMICA FISICOQUÍMICA 2 Dr. Carlos Francisco Cruz Fierro Revisión 1 69156.17 7-ene-13 1 Electroquímica Relación entre la electricidad y la química Involucra la medición
Oferta tecnológica: Novedoso equipo para determinar simultáneamente la adsorción de mezclas binarias de gases en sólidos adsorbentes
Oferta tecnológica: Novedoso equipo para determinar simultáneamente la adsorción de mezclas binarias de gases en sólidos adsorbentes Oferta tecnológica: Novedoso equipo para determinar simultáneamente
COMPARACIÓN DE LAS PRINCIPALES FUENTES DE POTASIO APLICADAS EN FERTIRRIGACIÓN PARA LA AGRICULTURA
COMPARACIÓN DE LAS PRINCIPALES FUENTES DE POTASIO APLICADAS EN FERTIRRIGACIÓN PARA LA AGRICULTURA Dr. José Manuel Fontanilla Puerto Director de marketing de Haifa Iberia www.haifa-group.com La importancia
PRUEBA DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS PRUEBA ESPECÍFICA QUÍMICA
PRUEBA DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 5 AÑOS QUÍMICA 1.- Cómo se nombra este compuesto? Seleccione la respuesta correcta a) -in-propano b) butano c) butino d) 1-in-propano CH C CH CH.- Una
CUADERNO DE PRÁCTICAS
CUADERNO DE PRÁCTICAS ANÁLISIS INDUSTRIAL Área de Química Analítica Facultad de Ciencias Químicas Curso 2006/2007 Cuaderno de Prácticas 2006/2007 1 ÍNDICE *Práctica 1.- Práctica 2.- Determinación de Cu
TEORICO-PRÁCTICO N 5: LEYES DE LOS GASES IDEALES
TEORICO-PRÁCTICO N 5: LEYES DE LOS GASES IDEALES FUNDAMENTO TEÓRICO: La materia puede estar en tres estados: sólido, líquido y gaseoso. Los gases, no tienen forma ni volumen fijo, las fuerzas que mantienen
32. Se conecta un condensador de 10 µf y otro de 20 µf en paralelo y se aplica al conjunto
2. Conductores y dieléctricos. Capacidad, condensadores. Energía electrostática. 24. Cargamos un condensador de 100 pf hasta que adquiere una ddp de 50 V. En ese momento desconectamos la batería. Conectamos
LA TABLA PERIÓDICA. 2ºbachillerato QUÍMICA
LA TABLA PERIÓDICA 2ºbachillerato QUÍMICA 1 A lo lo largo de la la historia, los químicos han intentado ordenar los elementos de forma agrupada, de tal manera que aquellos que posean propiedades similares
Desorción (Stripping)
INTRODUCCIÓN A LA ABSORCIÓN DE GASES Definición Operación unitaria de transferencia de materia que consiste en poner un gas en contacto con un líquido, a fin de disolver de manera selectiva uno o mas componentes
ÁCIDO-BASE. ÁCIDO: Sustancia que en disolución acuosa disocia cationes H +. BASE: Sustancia que en disolución acuosa disocia aniones OH.
ÁCIDO-BASE Ácidos: 1. CARACTERÍSTICAS DE ÁCIDOS Y BASES. Tienen sabor agrio, son corrosivos para la piel, enrojecen ciertos colorantes, vegetales. Disuelven sustancias, atacan a los metales desprendiendo
Transporte de oxígeno y de dióxido de carbono (CO 2 ) en la sangre. La hemoglobina aumenta la capacidad de la sangre para transportar oxígeno.
Transporte de oxígeno y de dióxido de carbono (CO 2 ) en la sangre La sangre transporta los gases respiratorios por todo el organismo. El O2 se transporta desde los pulmones hasta todos los tejidos del
UNIDAD 4. ESTRUCTURA DE LA MATERIA.
UNIDAD 4. ESTRUCTURA DE LA MATERIA. 1.- Resume las características principales de los distintos modelos atómicos que has estudiado y ordénalos cronológicamente. (Pág. 74 a 78) 2.- Indica si las siguientes
Ejercicios de repaso
Ejercicios de repaso 1. (2001) Tenemos 250 ml de una disolución de KOH 0 2 M. a) Cuántos moles de KOH hay disueltos? b) Cuántos gramos de KOH hay disueltos? c) Describa el procedimiento e indique el material
REACCIONES DE TRANSFERENCIA DE ELECTRONES (Reacciones Redox)
REACCIONES DE TRANSFERENCIA DE ELECTRONES (Reacciones Redox) 1 2 Tipos de reacciones redox (según su espontaneidad) Reacciones espontáneas: G
PREGUNTAS DE TEST SOBRE OXIDACIÓN-REDUCCIÓN
PREGUNTAS DE TEST SOBRE OXIDACIÓNREDUCCIÓN R CONCEPTO DE OXIDACIÓN Y REDUCCIÓN: R CONCEPTO DE OXIDACIÓN Y REDUCCIÓN: R1 UN OXIDANTE ES: A Aquel elemento que gana electrones al formarse. B Aquella sustancia
OXIDACIÓN-REDUCCIÓN - PREGUNTAS DE TEST
OXIDACIÓNREDUCCIÓN PREGUNTAS DE TEST Serie A CONCEPTO DE OXIDACIÓN Y REDUCCIÓN: Serie B CALCULO DE NÚMEROS DE OXIDACIÓN Serie C REACCIONES REDOX Serie A CONCEPTO DE OXIDACIÓN Y REDUCCIÓN: A 1 UN OXIDANTE
Definición Bronsted-Lowry
TEMA 4.- Acidos y bases. Propiedades ácido-base de los compuestos orgánicos. Grupos funcionales con carácter ácido. Grupos funcionales con carácter básico. Fuerza de los ácidos. Fuerza de las bases. Acidez
FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Estequiometría
1(7) Ejercicio nº 1 El acetileno o etino (C 2 H 2 ) arde en el aire con llama muy luminosa. a) Qué volumen de acetileno, medido en c.n. será preciso utilizar si en esta reacción se han obtenido 100 litros
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 011 QUÍMICA TEMA 7: REACCIONES REDOX Junio, Ejercicio, Opción B Reserva 1, Ejercicio 5, Opción A Reserva, Ejercicio 5, Opción A Reserva, Ejercicio, Opción A Reserva,
EJERCICIOS DE SELECTIVIDAD 99/00
EJERCICIOS DE SELECTIVIDAD 99/00 1. Tres elementos tienen de número atómico 25, 35 y 38, respectivamente. a) Escriba la configuración electrónica de los mismos. b) Indique, razonadamente, el grupo y periodo
Redox 3: Celdas electroquímicas 1
V.Chan Celdas electroquímicas Celda electroquímica Representación simbólica de una celda Celda electroquímica: sistema en el cual se lleva a cabo una reacción redox que utiliza o consume corriente eléctrica.
CROMATOGRAFÍA IÓNICA Instrumentación
CROMATOGRAFÍA IÓNICA Instrumentación 1.-RECIPIENTES DE ELUYENTES Y REGENERANTES -Filtro de inicio de línea -Eluyentes DESGASIFICADOS y/o PRESURIZADOS -Con HELIO - VACÍO 2.-BOMBAS DE ALTA PPRESIÓN - Doble
PROTONES Y ELECTRONES
reflexiona Imagina que tienes un tazón de naranjas, plátanos, piñas, bayas, peras y sandía. Cómo identificas cada trozo de fruta? Es muy probable que estés familiarizado con las características de cada
QUÍMICA 2º Bachillerato Ejercicios: Cálculos en Química
1(8) Ejercicio nº 1 Se dispone de tres recipientes que contienen 1 litro de metano gas, dos litros de nitrógeno gas y 1,5 litros de ozono gas, respectivamente, en las mismas condiciones de presión y temperatura.
QUÍMICA DEL CARBONO Principales Tipos de Reacciones Orgánicas
1/5 DEL ARBN Para realizar un estudio completo de los compuestos de carbono, es necesario también conocer las propiedades químicas de los mismos, es decir, su reactividad. Una parte muy importante de la
6. ELEMENTOS Y COMPUESTOS
6. ELEMENTOS Y COMPUESTOS 1. Cuáles son metales y cuáles no metales de los siguientes elementos: carbono, azufre, cobre y aluminio? Por qué? Son metales el cobre y el aluminio, y son no metales el carbono
EQUILIBRIO ÁCIDO-BASE.
EQUILIBRIO ÁCIDOBASE. 1. PROPIEDADES DE ÁCIDOS Y BASES. 2. TEORÍA DE ARRHENIUS. 3. TEORÍA DE BRONSTED Y LOWRY. 4. TEORÍA DE LEWIS. 5. FUERZAS DE ÁCIDOS Y BASES. CONSTANTES DE DISOCIACIÓN. 6. EQUILIBRIO
Estándar Anual. Ejercicios PSU. Ciencias Básicas Química. Guía práctica: El enlace químico GUICES004CB33-A16V1. Programa
Programa Estándar Anual Nº Guía práctica: El enlace químico Ejercicios PSU 1. Con respecto al enlace químico, se afirma que A) el enlace iónico se establece entre elementos de electronegatividad similar.
REACCIONES QUÍMICAS : TRANSFORMACIONES DE MATERIALES.
REACCIONES QUÍMICAS : TRANSFORMACIONES DE MATERIALES. Para qué se estudian las reacciones químicas? El estudio de una reacción permite entender qué sucede con los átomos y sus uniones, cuales son las que
REACCIONES DE TRANSFERENCIA DE ELECTRONES (Reacciones Redox)
REACCIONES DE TRANSFERENCIA DE ELECTRONES (Reacciones Redox) 1 2 Tipos de reacciones redox (según su espontaneidad) Reacciones espontáneas: G
1.2 LA MATERIA Y LOS CAMBIOS
1.2 LA MATERIA Y LOS CAMBIOS Por equipo definir que es átomo, molécula y de que están formados Equipo Átomo Molécula 1 2 3 4 5 6 7 8 ÁTOMO 1. Un átomo es eléctricamente neutro. tiene el mismo número
