CAPÍTULO 1 INTRODUCCIÓN
|
|
|
- Rosa María Belmonte Plaza
- hace 9 años
- Vistas:
Transcripción
1 CAPÍTULO 1 INTRODUCCIÓN 1.1 MOTIVACIÓN Los motores de corriente continua (CC) han sido tradicionalmente usados en los accionamientos eléctricos. Las ventajas del motor de CC son: la capacidad de desarrollar elevadas cuplas sobre un amplio rango de velocidades, y su simple control. En cambio el motor de corriente alterna (CA) no ha sido tan empleado en aplicaciones de velocidad variable debido a la complejidad de la electrónica de potencia requerida así como de las estrategias de control necesarias para obtener prestaciones comparables con el equivalente de CC. Los avances recientes en los dispositivos de conmutación de potencia cada vez más rápidos, así como en los dispositivos de microcómputo que permiten implementar complicados algoritmos de control en tiempo real; han determinado el desarrollo de los accionamientos electrónicos de velocidad variable para motores de alterna [1][2][3][4] [5]. En el último cuarto de siglo el motor de inducción se constituyó en el principal protagonista de las aplicaciones con accionamientos de corriente alterna, pero este panorama tiende a cambiar en la medida que se están desarrollando motores más compatibles con la naturaleza discontinua de los convertidores de potencia. Desde este punto de vista hoy se está centrando la atención en el desarrollo integrado del motor y su controlador electrónico. Dos ejemplos notables de esta tendencia son el motor CC sin escobillas ("brushless DC motor") [1][6][7] y el motor de reluctancia conmutada (switched-reluctance motor (SRM)) [6][7][8][9]. En los últimos años el SRM se ha presentado como una interesante alternativa en aplicaciones de velocidad variable, frente a los motores de inducción o sincrónicos con imán permanente, y está recibiendo una atención creciente. Su principal atractivo radica en su bajo costo y su estructura simple y robusta, con bobinados concentrados en el estator y sin ningún conductor en el rotor. Además, este motor requiere una alimentación con corriente unipolar que permite el uso de convertidores de potencia más simples y confiables que los inversores habituales en otros accionamientos de CA. Como contrapartida de sus ventajas, su análisis es bastante complicado debido a que constituye 1
2 un sistema muy alineal. Por lo tanto, resulta de gran interés determinar las características de control del SRM que permitan optimizar el desarrollo de sus accionamientos. El objetivo de esta Tesis es analizar las características de control del SRM, y desarrollar un sistema de control para el mismo. Para cumplir con el objetivo, en primer término se desarrolla un modelo del comportamiento electromagnético del SRM que facilita un análisis matemático relativamente simple, y al mismo tiempo permite predecir con buena aproximación la prestación del motor[65]. El modelo propuesto es empleado en la determinación de las características de control del SRM. En este análisis se pone especial atención a la influencia de la saturación del circuito magnético sobre la controlabilidad del motor. Se analizan las diferencias de comportamiento cuando el motor es alimentado con una fuente de corriente o de tensión, y se proponen distintos esquemas para el control de velocidad de un SRM [83][86]. Finalmente, con la experiencia adquirida en el análisis, se proponen dos sistemas de control de velocidad para el SRM: uno basado en técnicas de control de sistemas lineales [124], y otro que emplea estrategias de control por modos deslizantes [125][126]. 1.2 RESEÑA HISTÓRICA El motor de reluctancia variable, en el cual la capacidad de producción de cupla y potencia dependen exclusivamente de la fuerza de atracción magnética del hierro, es el motor eléctrico más simple que se haya construido, y también el más antiguo [10] [11]. Si bien su invención se atribuye a Davidson en 1837, sus orígenes se remontan al inicio de la década de 1820 cuando Ampere demostró que un solenoide es un imán controlado eléctricamente. Un solenoide alimentado produce fuerzas sobre elementos de hierro cercanos, proporcionales a la corriente de excitación. En estos sistemas electromecánicos, las fuerzas se establecen de modo tal que los elementos del mismo se reorganizan hasta minimizar la energía almacenada en el campo magnético. Es decir, hasta lograr que el flujo magnético encuentre la trayectoria de mínima reluctancia. El motor construido por Davidson se movía por la acción de electroimanes distribuidos a lo largo de una circunferencia, los cuales eran excitados en forma secuencial para obtener una cupla relativamente uniforme. Este motor constituyó el primer intento para reemplazar la máquina de vapor, pero presentaba problemas estructurales originados en las elevadas fuerzas pulsantes que lo movían. El invento del motor de CC, en 1860, desplazó al motor de reluctancia como fuente de potencia mecánica, y mucho tiempo debió transcurrir antes de que fuera redescubierto como un eficiente convertidor 2
3 electromecánico de energía. Se pueden distinguir dos tipos de motor de reluctancia variable: 1) Sincrónico o de simple reluctancia [12][13]: que presenta un estator cilíndrico con bobinados distribuidos alimentados con generadores sinusoidales, y tiene polos salientes en el rotor. En este motor el rotor se mueve en sincronismo con el campo rotante generado por los bobinados estatóricos, buscando la posición de mínima reluctancia. 2) De doble reluctancia [8]: que presenta polos salientes tanto en el rotor como en el estator, con bobinados concentrados sobre los polos estatóricos. La cupla producida por este tipo de motor es esencialmente discontinua y una alimentación secuencial de las fases del estator da lugar a un movimiento por pasos entre posiciones adyacentes de mínima reluctancia. Ambos tipos de motor siguieron caminos independientes en su evolución. Mientras el desarrollo del motor de simple reluctancia estuvo ligado a los motores sincrónicos trifásicos, el de doble reluctancia adquirió notoriedad a través de los motores "paso a paso". En los años sesenta el motor paso a paso fue descubierto como un servoactuador capaz de funcionar a lazo abierto, y adquirió gran popularidad como posicionador entre los periféricos de las computadoras. Su simplicidad constructiva y su creciente popularidad dieron lugar a una amplia investigación que se desarrolló en torno a ellos buscando mejorar su prestación [14][15][16]. Como consecuencia de esta investigación, se determinó que se podían obtener grandes mejoras en la eficiencia de estos motores explotando la saturación magnética [17][18][19][20]. Dos hechos fundamentales: 1) la disponibilidad de llaves semiconductores de potencia, y 2) la comprensión de la mejora en la eficiencia de conversión de energía que podía obtenerse explotando la saturación magnética han permitido pensar en el motor de doble reluctancia como un transductor electromecánico eficiente. En la segunda mitad de los setenta, un programa de investigación, desarrollado en las Universidades de Leeds y Nottingham en Inglaterra, marcó el comienzo del desarrollo de los accionamientos de motores de reluctancia 3
4 conmutada (SRM) [21][22][23]. A partir de 1980 se han multiplicado las investigaciones alrededor del SRM y su aplicación en diferentes campos como ser: tracción de vehículos [24][25][26][27], accionamientos industriales en general [28][30][31][32][33], aplicaciones aeroespaciales [34] o en ambientes peligrosos [29][35], electrodomésticos [36][37][38], servoaccionamientos [39][40][41] y en robótica [42][43]. 1.3 ORGANIZACIÓN DE LA TESIS La tesis está organizada de la siguiente manera. En el Capítulo 2 se reven las características fundamentales del SRM como ser: la variación de la reluctancia, el mecanismo de producción de cupla, la alimentación del motor, las características de cupla en función de la velocidad, y los principales detalles de la geometría del motor. En el Capítulo 3 se describen diferentes alternativas empleadas en la modelización de la operación electromagnética del motor. La primera contribución original de esta Tesis es el desarrollo de un modelo lineal por tramos que describe con buena aproximación las características magnéticas del motor tanto en la zona lineal como en aquella con saturación magnética [65]. El modelo desarrollado es empleado en el análisis de la prestación del motor y su variación con el grado de saturación. En el Capítulo 4 se introduce otra contribución original que constituye un análisis exhaustivo de las características de control, que clarifica los criterios de diseño del control de accionamientos con SRM. Para obtener una mayor claridad primero se analiza el comportamiento del motor limitando su funcionamiento a la zona lineal del circuito magnético [83] y luego se analiza la operación del motor trabajando con saturación magnética [86]. En ambos casos se identifican las variables de control y su rango de variación; se calcula la relación entre el par medio desarrollado y las variables de control, y se determina la máxima cupla obtenible. Finalmente se presentan algunos esquemas básicos para el control de velocidad. En el Capítulo 5 de describen las distintas topologías de convertidores de potencia empleados en la alimentación del SRM, y se realiza un análisis comparativo de los mismos [93]. En el Capítulo 6 se sintetizan los aportes originales de la Tesis, en el desarrollo de sistemas de control para el SRM. Con este objetivo se aplican las características determinadas en el Capítulo 4, y se emplean dos de los circuitos descriptos en el Capítulo 5. Se realizan dos propuestas. En la primera se implementa un regulador de velocidad, 4
5 típico de otros accionamientos, empleando técnicas de control de sistemas lineales [124]. En la segunda se propone el empleo de técnicas de control por modos deslizantes para disminuir la pulsación de cupla característica de los SRMs [125][126]. Ambos sistemas propuestos son evaluados por simulación. Finalmente en el Capítulo 7 se presentan las conclusiones de la Tesis y se realizan algunas sugerencias para futuros trabajos de investigación en el tema. 5
Ley de Ampere. Campo magnético producido por la corriente que circula en un arreglo de conductores
Ley de Ampere Campo magnético producido por la corriente que circula en un arreglo de conductores En cualquier instante, la integral de línea de la intensidad de campo magnético (H) a lo largo de cualquier
Contenido. Acerca del autor... Prólogo... Agradecimientos...
Contenido Acerca del autor... Prólogo... Agradecimientos... xiii xv xix Capítulo 1: CIRCUITOS MAGNÉTICOS Y CONVERSIÓN DE ENERGÍA...... 1 1.1. Introducción.................................... 1 1.2. Materiales
Ley de Ampere. Campo magnético producido por la corriente que circula en un arreglo de conductores
Ley de Ampere Campo magnético producido por la corriente que circula en un arreglo de conductores En cualquier instante, la integral de línea de la intensidad de campo magnético (H) a lo largo de cualquier
I 1 H 1 " SJBLIOT~ Acerca del autor... Prólogo... Agradecimientos...
Contenido u :..:1. F CU1 SJBLIOT~ I 1 H 1 " Acerca del autor.......................................................... Prólogo................................ Agradecimientos..........................................................
1. Concepto de amplificación de señales en los circuitos de control Amplificadores estáticos Amplificadores magnéticos...
Contenido 1. Concepto de amplificación de señales en los circuitos de control.... 2 2. Amplificadores estáticos.... 2 2.1. Amplificadores magnéticos... 2 2.2. Amplificadores electrónicos.... 3 3. Amplificadores
Motores de corriente directa (DC) Motores de corriente alterna (AC):
De acuerdo a la fuente de tensión n que alimente al motor, podemos realizar la siguiente clasificación: Motores de corriente directa (DC) Motores de corriente alterna (AC): El Motor Asíncrono o de Inducción
RINCON DEL TECNICO
RINCON DEL TECNICO http://www.postventa.webcindario.com Motor Síncrono de imanes permanentes Tutorial básico para entender el funcionamiento y constitución de este tipo de motores de corriente alterna.
EL 4001 Conversión de la Energía y Sistemas Eléctricos
EL 4001 Conversión de la Energía y Sistemas Eléctricos Clase 17: Máquinas Sincrónicas 1 AREA DE ENERGIA DEPARTAMENTO DE INGENIERIA ELECTRICA Temas Introducción Estructura General Características Constructivas
MOTORES PASO A PASO. Se define un motor como aquella máquina eléctrica rotativa que es capaz de transformar energía eléctrica en energía mecánica.
MOTORES PASO A PASO 1. INTRODUCCIÓN Se define un motor como aquella máquina eléctrica rotativa que es capaz de transformar energía eléctrica en energía mecánica. ENERGÍA ELÉCTRICA ENERGÍA MECÁNICA Figura
CONTROL DE MAQUINAS ELECTRICAS ELT Control Escalar De Maquinas Asíncronas
CONTROL DE MAQUINAS ELECTRICAS ELT 3790 Control Escalar De Maquinas Asíncronas Objetivo Conocer que es un control escalar. Conocer el principio de funcionamiento del control escalar. Ventajas y desventajas.
INDICE Capitulo 1. Motores Eléctricos J. Kirtley Capitulo 2. Terminología de definiciones N. Ghai
INDICE Prefacio XIII Capitulo 1. Motores Eléctricos J. Kirtley 1 1.1. Motores eléctricos 1 1.2. Tipos de motores 2 1.2.1. Motores de cd 2 1.2.2. Motores de ca 3 1.3. Descripción de retos de libro 4 Capitulo
SISTEMAS ELECTROMECÁNICOS
Universidad Técnica Federico Santa María Departamento de Electrónica Valparaíso-Chile SISTEMAS ELECTROMECÁNICOS José Rodríguez Agosto de 1999 Introducción. Introducción. Este apunte contiene las figuras
3.1.1)Sistemas traslacionales:
CAPÍTULO 3 3.1)SISTEMAS MECÁNICOS. 3.1.1)Sistemas traslacionales: x Energía eléctrica Transductor electromecánico F el D M F ext K Fig.3.1.: Sistema electromecánico completo. Donde: x: posición. M: masa
INDICE. Prefacio Acerca del autor Capitulo 1 Introducción XI XIV
INDICE Prefacio Acerca del autor Capitulo 1 Introducción 1 1.1. Que 1.2. Cuando 1.3. Donde 2 1.4. Como 3 Capitulo 2 Circuitos en estado estable senoidal 2.1. Introducción 2.2. Principios de favores y de
Existen dos tipos principales de máquinas síncronas que pueden actuar como motores y como generadores:
Máquinas síncronas Una máquina síncrona es una máquina AC en cuyo rotor existe un mecanismo capaz de producir un campo magnético de amplitud constante e independiente del campo magnético que pueda ser
Nombre de la asignatura: MÁQUINAS ELÉCTRICAS II. Dr. Sergio Sellschopp Dr. Marco A. Arjona L. MC Ricardo Vargas S.
1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: MÁQUINAS ELÉCTRICAS II Carrera: INGENIERÍA ELECTRÓNICA Clave de la asignatura: Horas teoría - horas práctica créditos: 3 2 8 2.- HISTORIA DEL PROGRAMA
Tecnologías de actuadores
C.U. UAEM Valle de Teotihuacán Licenciatura en Ingeniería en Computación Tecnologías de actuadores Unidad de Aprendizaje: Fundamentos de robótica Unidad de competencia III Elaborado por: M. en I. José
5.1.1)Principio de funcionamiento.
CAPÍTULO 5 MÁQUINAS DE CORRIENTE CONTINUA 5.1)ASPECTOS CONSTRUCTIVOS Y PRINCI- PIO DE FUNCIONAMIENTO. 5.1.1)Principio de funcionamiento. Devanado de Estator (campo): - Objetivo: producir el campo que posibilita
Conversión Electromecánica de Energía - III. Curso Máquinas Eléctricas
Conversión Electromecánica de Energía - III Curso Máquinas Eléctricas Bibliografía 1- Apuntes del curso de Máquinas Eléctricas (ediciones anteriores) https://eva.fing.edu.uy/pluginfile.php/98578/mod_folder/con
ELECTRÓNICA DE POTENCIA
ELECTRÓNICA DE POTENCIA Curso 2017 Práctica Nº5 Control de Motores de CC Nota: En todos los ejercicios se utiliza la siguiente nomenclatura, donde I a e I f son las corrientes de armadura y de campo respectivamente:
CONTROL VECTORIAL DE MÁQUINAS ASÍNCRONAS. Raúl Choque Sandoval
CONTROL VECTORIAL DE MÁQUINAS ASÍNCRONAS Raúl Choque Sandoval INTRODUCCIÓN Por qué controlar un motor eléctrico? Motor de inducción versus motor DC. Técnicas de control utilizadas en los motores de inducción.
CAPITULO 1. Métodos para controlar la velocidad de un motor de inducción. El desarrollo de sistemas para controlar la velocidad en motores de
CAPITULO 1 Métodos para controlar la velocidad de un motor de inducción El desarrollo de sistemas para controlar la velocidad en motores de inducción se ha venido dando desde hace muchos años. Se da una
Modelado y Simulación de Máquinas de Inducción Simétricas
Universidad de Sevilla Escuela Superior de Ingenieros Departamento de Ingeniería Eléctrica Proyecto Fin de Carrera Modelado y Simulación de Máquinas de Inducción Simétricas José Manuel Ortiz Ruiz Directores:
Electrónica de Potencia
Electrónica de Potencia Dra. Victoria Serrano II Semestre 2018 Electrónica de Potencia 1 Introducción Objetivo de la Electrónica de Potencia Procesar el flujo de energía eléctrica de forma óptima para
Planificaciones Máquinas Eléctricas I. Docente responsable: PODESTA HORACIO EDUARDO. 1 de 8
Planificaciones 8506 - s Eléctricas I Docente responsable: PODESTA HORACIO EDUARDO 1 de 8 OBJETIVOS Que los alumnos de la carrera Ingeniería Electricista puedan: - Comprender los principios de conversión
Tema 3. Accionamientos
Tema 3. Accionamientos Índice Motores en robótica: tipos y características. Motores eléctricos: corriente continua, motores paso a paso, y sin escobillas. Motores y actuadores neumáticos, hidráulicos y
RINCON DEL TECNICO
RINCON DEL TECNICO http://www.postventa.webcindario.com Motor Síncrono de Reluctancia Tutorial para entender el funcionamiento, como esta constituido este tipo de motores. Autor: Joaquín García Conocemos
Unidad 7: Motores eléctricos de corriente continua I. Los motores eléctricos se pueden clasificar según la corriente empleada en:
INTRODUCCIÓN Los motores eléctricos se pueden clasificar según la corriente empleada en: PARTES DE UN MOTOR ELÉCTRICO Hemos visto que el generador es una máquina reversible. Es decir, puede actuar también
INDICE Capítulo 1. Conversión de Energía Capítulo 2. Inductancia Capítulo 3. Transformador
INDICE Capítulo 1. Conversión de Energía 1 1.1. Fuerza en un capacitor 2 1.2. El Toroide 5 1.3. Circuitos magnéticos en serie y paralelo 7 1.4. Otros sistemas comunes de unidades magnéticas 8 1.5. Materiales
Máquinas Sincrónicas. EL Conversión de la Energía y Sistemas Eléctricos
Máquinas incrónicas Temas - Generalidades - Tipos de máquinas sincrónicas - Modelo de la máquina sincrónica (conectada a la red) - Modos de operación - Carta de operación - Problema : Auxiliar 9 (5/06/010)
4.1.1)Introducción. Fig.4.1.: Partes básicas de una máquina rotatoria. Fig.4.3.: Campo magnético en el entrehierro de una máquina.
CAPÍTULO 4 4.1)CAMPOS MAGNÉTICOS PRODUCIDOS EN LAS MÁQUINAS ROTATORIAS. 4.1.1)Introducción. Fig.4.1.: Partes básicas de una máquina rotatoria. Fig.4.2.: Componentes básicas de una máquina rotatoria. Fig.4.3.:
EL MOTOR ELÉCTRICO (I)
1 EL MOTOR ELÉCTRICO (I) Contenidos 1. El motor trifásico. Fundamentos 2. Constitución del motor trifásico 3. Par motor y par resistente. Velocidad 4. Intensidades de corriente de un motor trifásico 5.
MOTORES ELECTRICOS. Motores de Corriente Directa (DC)
MOTORES ELECTRICOS Los motores eléctricos son máquinas utilizadas en transformar energía eléctrica en mecánica. Son los motores utilizados en la industria, pues combinan las ventajas del uso de la energía
1. Conceptos básicos sobre motores eléctricos
1. Conceptos básicos sobre motores eléctricos Anibal T. De Almeida ISR-Universidad de Coímbra 1 Temario Sistemas de motores: uso de la energía Definición de sistema de motores Tipos de motores eléctricos
MÁQUINAS ELÉCTRICAS-OPENLAB kw
ESTE SISTEMA ESTÁ CONSTITUIDO POR UN CONJUNTO DE COMPONENTES Y MÓDULOS ADECUADOS PARA EL ENSAMBLAJE DE MÁQUINAS ELÉCTRICAS ROTANTES, TANTO PARA CORRIENTE DIRECTA COMO PARA CORRIENTE ALTERNA. LOS ESTUDIANTES
UNIVERSIDAD TÉCNICA NACIONAL CARRERA: INGENIERÍA EN ELECTRÓNICA
UNIVERSIDAD TÉCNICA NACIONAL CARRERA: INGENIERÍA EN ELECTRÓNICA CURSO: ELECTRÓNICA DE POTENCIA CÓDIGO: IEL-1324 NIVEL: XIII NATURALEZA DEL CURSO: TEÓRICO-PRÁCTICO CRÉDITOS: 3 MODALIDAD: CUATRIMESTRAL HORAS
Capítulo 4: Ecuaciones dinámicas del conjunto motor-carga
Capítulo 4: Ecuaciones dinámicas del conjunto motor-carga Capítulo 4: Ecuaciones dinámicas del conjunto motor-carga 4.1. Introducción Los motores de corriente continua sin escobillas ( DC brushless motors
ELECTROMAGNETISMO ELECTROIMANES.
ELECTROMAGNETISMO El electromagnetismo hace referencia a la relación existente entre electricidad y magnetismo. Esta relación fue descubierta por el físico danés Christian Ørsted, cuando observó que la
CARACTERISTICAS Y SELECCIÓN MOTORES ELECTRICOS. Universidad Católica del Maule Escuela de Ingeniería en Construcción Asignatura : Circuitos Eléctricos
Universidad Católica del Maule Escuela de Ingeniería en Construcción Asignatura : Circuitos Eléctricos CARACTERISTICAS Y SELECCIÓN DE MOTORES ELECTRICOS Profesor: Francisco Valdebenito A. CLASIFICACIÓN
MÁQUINAS ELÉCTRICAS CONVENCIONALES
CAPÍTULO 1 MÁQUINAS ELÉCTRICAS CONVENCIONALES Las máquinas eléctricas están a nuestro alrededor en todas partes, generadores en plantas de energía están conectados a una red eléctrica trifásica de corriente
MÁQUINAS ELÉCTRICAS-OPENLAB kw
ESTE SISTEMA ESTÁ CONSTITUIDO POR UN CONJUNTO DE COMPONENTES Y MÓDULOS ADECUADOS PARA EL ENSAMBLAJE DE MÁQUINAS ELÉCTRICAS ROTANTES, TANTO PARA CORRIENTE DIRECTA COMO PARA CORRIENTE ALTERNA. LOS ESTUDIANTES
UD. 4 MAQUINAS ELECTRICAS ELECTROTECNIA APLICADA A LA INGENIERIA MECÁNICA
ELECTROTECNIA APLICADA A LA INGENIERIA MECÁNICA UD. 4 MAQUINAS ELECTRICAS Descripción: Principios de electromagnetismo y funcionamiento y aplicaciones de las diferentes máquinas eléctricas. 1 Tema 4.3.
Introducción a los principios de las máquinas
CONTENIDO Prefacio Capítulo 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 Introducción a los principios de las máquinas Las máquinas eléctricas, los transformadores y la vida diaria Nota referente a las unidades
FORMATO DE SILABO I. DATOS GENERALES
FORMATO DE SILABO I. DATOS GENERALES 1. Nombre de la Asignatura: MAQUINAS ELÉCTRICAS 2. Carácter : OBLIGATORIO 3. Carrera Profesional : INGENIERIA MECANICA Y ELECTRICA 4. Código : IM0605 5. Semestre Académico
UniTrain. Cursos UniTrain. Cursos UniTrain. Lucas Nülle GmbH Página 1/13
UniTrain Unitrain el sistema de aprendizaje multimedial con laboratorio de electrotecnía/electrónica móbil para la formación y el entrenamiento continuo integrado. Cursos UniTrain Cursos UniTrain Lucas
7.1.1)Introducción. Fig.7.1.: Aspecto externo de un motor de inducción típico. SISTEMAS ELECTROMECÁNICOS Pág 116
CAPÍTULO 7 7.1)ASPECTOS CONSTRUCTIVOS Y PRINCIPIO DE FUNCIONAMIENTO. 7.1.1)Introducción. Fig.7.1.: Aspecto externo de un motor de inducción típico. SISTEMAS ELECTROMECÁNICOS Pág 116 Fig.7.2.: Partes componentes
AUIN 1314 motor G13. En nuestro caso, estamos hablando de motores eléctricos, es decir, que utilizan energía eléctrica, para generar energía mecánica.
Contingut AUIN 1314 motor G13 1 MOTORES ELÉCTRICOS DE CORRIENTE ALTERNA (AC) 1.1 MONOFÁSICOS 1.1.1 Universal 1.1.2 Aplicaciones 1.2 TRIFÁSICOS 1.2.1 Síncronos 1.2.1.1 Aplicaciones 1.2.1.2 Métodos de arranque
CONCEPTOS BÁSICOS GENERADORES
CONCEPTOS BÁSICOS 1. Los dos cables de alimentación de un motor tienen una longitud de 3 m y están separados entre sí por 5 mm. Calcula la fuerza que se ejercen entre sí cuando por los cables circula una
SERVOMOTORES. AADECA - Asociación Argentina de Control Automático JORNADA SOBRE CONTROL DE MOVIMIENTOS
SERVOMOTORES 1 Contenido 1. Tipos de motores. 2. Motores asincrónicos y sincrónicos 3. Servomotores 4. Sistemas de realimentación. 2 1. Tipos de Motores Motor Con escobilla Sin Escobilla Motor DC sincrónico
TEMA 7. Máquinas rotativas de corriente continua. Principio y descripción CONSTITUCIÓN DE UNA MÁQUINA DE CORRIENTE CONTINUA.
TEMA 7. Máquinas rotativas de corriente continua. Principio y descripción. CONTENIDO: 7.1.- Constitución de una máquina de corriente continua. 7.2.- Principio de funcionamiento. 7.3.- Tipos de excitación.
PROFESIONALES [PRESENCIAL]
SILABO POR ASIGNATURA 1. INFORMACION GENERAL Coordinador: GONZALEZ MORALES LUIS GERARDO([email protected]) Facultad(es): [FACULTAD DE INGENIERÍA] Carrera(s): Denominación de la asignatura: Código
Clase 4 y 5. Accionamientos.
AUTOMATIZACIÓN Optativa Ingenierías Informáticas Clase 4 y 5. Accionamientos. F. Torres Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal Grupo de Automática, Robótica y Visión Artificial
El circuito magnético principal de las máquinas lineales Líneas de fuerza principales de las máquinas lineales
13.2 - El circuito magnético principal de las máquinas lineales 13.2.1 - Líneas de fuerza principales de las máquinas lineales El flujo inductor que atraviesa el entrehierro y que constituye el flujo activo
TEMA 9: MÁQUINAS ELÉCTRICAS. MOTORES DE CORRIENTE CONTINUA
TEMA 9: MÁQNAS ELÉCTRCAS. MOTORES DE CORRENTE CONTNA 1.- Clasificación de las máquinas eléctricas Se denomina máquina eléctrica a todo dispositivo capaz de generar, transformar o aprovechar la energía
MODULO Nº13 PROPULSORES DE CC
MODULO Nº13 PROPULSORES DE CC UNIDAD: CONVERTIDORES CC - CC TEMAS: Propulsores de CC. Conceptos Básicos de los Motores CC. Técnica PWM. Propulsores Pulsantes. OBJETIVOS: Explicar las características principales
GUÍA IV : TENSIONES INDUCIDAS Y CAMPOS MAGNÉTICOS EN DEVANADOS
GUÍA IV : TENSIONES INDUCIDAS Y CAMPOS MAGNÉTICOS EN DEVANADOS 1. Una máquina tiene un devanado de polos distribuidos en 4 ranuras en el estator. El rotor tiene un devanado monofásico alimentado con corriente
PRESENTACIÓN Y OBJETIVOS...17 AUTORES...19
ÍNDICE PRESENTACIÓN Y OBJETIVOS...17 AUTORES...19 CAPÍTULO 1. ELECTROSTÁTICA...21 1.1 ELECTRICIDAD Y ELECTROTECNIA...22 1.2 ELECTRIZACIÓN DE UN CUERPO. CARGA ELÉCTRICA...23 1.3 ESTRUCTURA ATÓMICA DE LA
TEMA 10: MÁQUINAS ELÉCTRICAS. MOTORES DE CORRIENTE CONTINUA
TEMA 10: MÁQNAS ELÉCTRCAS. MOTORES DE CORRENTE CONTNA 1.- Clasificación de las máquinas eléctricas Se denomina máquina eléctrica a todo dispositivo capaz de generar, transformar o aprovechar la energía
TEMA 10: MÁQUINAS ELÉCTRICAS. MOTORES DE CORRIENTE CONTINUA
TEMA 10: MÁQNAS ELÉCTRCAS. MOTORES DE CORRENTE CONTNA 1.- Clasificación de las máquinas eléctricas Se denomina máquina eléctrica a todo dispositivo capaz de generar, transformar o aprovechar la energía
Sea un motor de inducción con las siguientes indicaciones en su placa de características:
Examen de Máquinas Eléctricas I. 3 de febrero de 2004. Ingeniería Técnica Industrial. Universidad de La Laguna. Sea un motor de inducción con las siguientes indicaciones en su placa de características:
Planificaciones MAQUINAS ELECTRICAS. Docente responsable: RUIZ IGNACIO MANUEL. 1 de 6
Planificaciones 8536 - MAQUINAS ELECTRICAS Docente responsable: RUIZ IGNACIO MANUEL 1 de 6 OBJETIVOS Objetivos (Ing. Mecánica) La materia brinda conocimientos teóricos y prácticos fundamentales sobre máquinas
EL 40E ELECTROTECNIA Y ELECTRONICA
EL 40E ELECTROTECNIA Y ELECTRONICA 10 U.D. DH:(4,5-2,0-3,5) REQUISITO: FI 33A Electromagnetismo ó FI 302 Electricidad y Magnetismo CARACTER: Obligatorio de Licenciatura en Ciencias de la Ingeniería, mención
Inducción electromagnética
Fenómeno consistente en provocar o inducir una corriente eléctrica mediante un campo magnético variable. Experiencias de Faraday Una bobina conectada a una batería, otra bobina conectada a un galvanómetro.
Curso de Capacitación: Electricistas Categoría III. para la Ley de Seguridad Eléctrica de la Provincia de Córdoba
Curso de Capacitación: Electricistas Categoría III para la Ley de Seguridad Eléctrica de la Provincia de Córdoba MÓDULO III TEMA III.3 Máquinas Eléctricas Manual del Instalador Electricista Cat.III Pag.228
2012 Arrancador con anillos rozantes
Nombre: Geraldo Antonio Apellido: Donayre Correa 2012 Arrancador con anillos rozantes Universidad: san Luis Gonzaga de Ica Docente: Ing. Wilder Enrique Román Munive Materia: dibujo electrónico Geraldo
ME2EE - Máquinas Eléctricas II
Unidad responsable: 820 - EEBE - Escuela Universitaria de Ingeniería Técnica Industrial de Barcelona Unidad que imparte: 709 - EE - Departamento de Ingeniería Eléctrica Curso: Titulación: 2016 GRADO EN
MÁQUINAS ELÉCTRICAS ELECTROMAGNETISMO-MOTORES Y GENERADORES
MÁQUINAS ELÉCTRICAS ELECTROMAGNETISMO-MOTORES Y GENERADORES FUNDAMENTO DE LAS MÁQUINAS ELÉCTRICAS (MOTORES) En una espira cuando pasa a través de ella una corriente eléctrica, se crea en cada una de sus
CRONOGRAMA DE MATERIA PROFESOR: TEL: E. MAIL: PRE-REQUISITOS COMPETENCIAS
1 CENTRO UNIVERSITARIO DE CIENCIAS EXACTAS E INGENIERIAS DIVISIÓN DE INGENIERIAS DEPARTAMENTO DE INGENIERIA MECANICA ELECTRICA CRONOGRAMA DE MATERIA CARRERA: ING. COM. Y ELECT. HORAS SEM: T: 60 hrs. P:
Universidad de Navarra Nafarroako Unibertsitatea. Escuela Superior de Ingenieros Ingeniarien Goi Mailako Estola ASIGNATURA GAIA: SISTEMAS ELÉCTRICOS
Ingeniarien Goi Mailako Estola ASIGNATURA GAIA: SISTEMAS ELÉCTRICOS CURSO KURTSOA: 3º FECHA DATA: 10-09-2005 PRIMERA PARTE DEL EXAMEN TEST Y TEORÍA Tiempo: 90 minutos AULA Fila Columna NOMBRE IZENA: 1ª
Electrónica de Potencia
LECCIÓN 1: FUNDAMENTOS DE LA ELECTRÓNICA DE POTENCIA 1.1 Campo de aplicación de la electrónica de potencia Electrónica Analógica Electrónica Digital Instrumentación Electrónica Fotónica y Optoelectrónica
Motores paso a paso: Características
Motores paso a paso: Características Similares a los motores de corriente continua. Diferencia principal: se usan más para posicionamiento electromecánico. Otras diferencias: la conmutación de polos es
Capítulo 4: DEVANADOS
Capítulo 4: DEVANADOS Universidad Técnica Federico Santa María ELO 281 Sistemas Electromecánicos J. Pontt O. Felipe Leiva Cruz 4.1 Campo magnético producido en máquinas rotatorias 4.1.1 Estructura de las
SÍLABO DE FUNDAMENTOS DE MÁQUINAS ELECTRICAS
SÍLABO DE FUNDAMENTOS DE MÁQUINAS ELECTRICAS I. DATOS GENERALES CÓDIGO CARÁCTER A0999 Obligatorio CRÉDITOS 5 PERIODO ACADÉMICO 2016 PRERREQUISITO Teoría Electromagnética HORAS Teóricas: 4 Prácticas: 2
Montaje de circuitos. Arranque de motores
Montaje de circuitos Arranque de motores Convencionales Motor en cortocircuito CONVENCIONALES Arranque directo Arranque con inversión de giro Arranque estrella triangulo Arranque con autotransformador
MÁQUINAS ELÉCTRICAS ROTATIVAS: MOTORES DE CC
MÁQUINAS ELÉCTRICAS ROTATIVAS: MOTORES DE CC 1.- Concepto y principal clasificación de las máquinas eléctricas Una máquina eléctrica es un dispositivo capaz de generar, aprovechar o transformar la energía
Carrera: ELC Participantes Representante de las academias de ingeniería eléctrica de los Institutos Tecnológicos.
.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Conversión de la Energía II Ingeniería Eléctrica ELC-0 --0.- HISTORIA DEL PROGRAMA
Clase VI. Máquinas de Corriente Directa: Generadores de Corriente Directa. Generalidades
Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electromecánica Curso: Máquinas Eléctricas para Mecatrónica Profesor: Ing. Greivin Barahona Guzmán Clase VI Máquinas de Corriente Directa: Generadores
3. MOTORES MONOFÁSICOS
3. MOTORES MONOFÁSICOS 142 Temario El motor de inducción monofásico. Con un devanado auxiliar. Con arranque por capacitor. Con capacitor permanente. Con arranque por capacitor y operación por capacitor.
I. RESULTADOS DE APRENDIZAJE. Implementar un circuito de control para el funcionamiento de un motor rotor devanado. II.
UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELÉCTRICA Y MECÁNICA CICLO II-15 CONTROL DE MOTORES ELÉCTRICOS GUÍA DE LABORATORIO # 4 NOMBRE DE LA PRÁCTICA: ARRANQUE DE MOTORES
INTRODUCCIÓN A LOS MOTORES
P Á G I N A 1 D E 5 TECNOLOGIA III 1er BLOQUE SEMANA 12 al 16 de Noviembre Actividad 56 INTRODUCCIÓN A LOS MOTORES Básicamente existen dos tipos de micromotores que se utilizan en robótica. Los motores
Resumen y Tópicos Especiales
UNIVERSIDAD NACIONAL DE MAR DEL PLATA Máquinas Eléctricas (342) Curso: Ingeniería Mecánica Resumen y Tópicos Especiales Prof. Justo José Roberts Resumen y Tópicos Especiales Introducción Resumen Clasificación
