FÍSICAII (Prontuario de actividades. de aprendizaje; conceptos y ejercicios)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "FÍSICAII (Prontuario de actividades. de aprendizaje; conceptos y ejercicios)"

Transcripción

1 FÍSICA II n FÍSICAII (Prontuario de actividades de aprendizaje; conceptos y ejercicios)

2 D IS T R IB UC IÓ N D E B L O Q U E S Y SU CONTENIDO El programa de Física II, está conformado por cuatro bloques (pregúntale a tu profesor sobre los periodos en las fechas en que veraz estos temas. Estos 4 bloques se detallan a continuación: BLOQUE I: EXPLICAS EL COMPORTAMIENTO DE LOS FLUIDOS (20 HRS) El bloque I inicia con el estudio de los grandes grupos en que se divide la mecánica de los fluidos, la Hidrostática y la Hidrodinámica. En el primero se analizan las principales características de los fluidos como son la capilaridad, la tensión superficial, la presión, la densidad, entre otros; así como los principios de Pascal y de Arquímedes. Mientras que el segundo es un análisis de la conservación de la masa y la energía en los fluidos en movimiento, que permite comprender el principio de Bernoulli y sus aplicaciones en situaciones de la vida cotidiana y comprensión del funcionamiento de instrumentos tecnológicos basados en este principio. BLOQUE II: IDENTIFICAS DIFERENCIAS ENTRE CALOR Y TEMPERATURA (20 HRS) En el bloque II se introducirá la diferencia entre temperatura y calor, para luego presentar las escalas termométricas. De la misma manera se discutirá el efecto de la temperatura sobre la materia, enfatizando en las dilataciones térmicas: lineal, superficial y cúbica. Se incluirá un apartado sobre los mecanismos de transferencia de calor (conducción, convección y radiación), al final se analizarán las leyes de la termodinámica y como, a partir de ellas, se caracterizan los procesos térmicos que involucran gases ideales. BLOQUE III: COMPRENDES LAS LEYES DE LA ELECTRICIDAD (20 HRS) El bloque III presenta un análisis de las propiedades de las cargas eléctricas y la ley fundamental de la electrostática (Ley de Coulomb) que existe entre ellas, como parte del inicio del estudio de los fenómenos eléctricos. Los fundamentos de la electrodinámica son descritos a través de las leyes de Ohm, Watt y Joule y su aplicación en la comprensión del comportamiento de la electricidad en circuitos con resistencias colocadas en serie y en paralelo. BLOQUE IV: RELACIONAS LA ELECTRICIDAD CON EL MAGNETISMO En el bloque IV inicialmente se describen las características de los imanes y las propiedades del campo magnético, para después relacionar la electricidad y el magnetismo a través del experimento de Oersted. La aplicación del electromagnetismo en la construcción de motores, generadores y transformadores eléctricos es parte fundamental del presente bloque.

3 BLOQUE III: COMPRENDES LAS LEYES DE LA ELECTRICIDAD (TIEMPO ASIGNADO 20 HRS) El bloque III presenta un análisis de las propiedades de las cargas eléctricas y la ley fundamental de la electrostática (Ley de Coulomb) que existe entre ellas, como parte del inicio del estudio de los fenómenos eléctricos. Los fundamentos de la electrodinámica son descritos a través de las leyes de Ohm, Watt y Joule y su aplicación en la comprensión del comportamiento de la electricidad en circuitos con resistencias colocadas en serie y en paralelo. En física, la carga eléctrica es una propiedad intrínseca de algunas subatómicas que se manifiesta mediante atracciones y repulsiones que determinan las interacciones electromagnéticas entre ellas. La materia cargada eléctricamente es influida por los campos electromagnéticos, siendo a su vez, generadora de ellos. La interacción entre carga y campo eléctrico origina una de las cuatro interacciones fundamentales: la interacción electromagnética. Desde el punto de vista del modelo estándar la carga eléctrica es una medida de la capacidad de la partícula para intercambiar fotones. La ley de Coulomb puede expresarse como: La magnitud de cada una de las fuerzas eléctricas con que interactúan dos cargas puntuales en reposo es directamente proporcional al producto de la magnitud de ambas cargas e inversamente proporcional al cuadrado de la distancia que las separa y tiene la dirección de la línea que las une. La fuerza es de repulsión si las cargas son de igual signo, y de atracción si son de signo contrario.

4 Enunciado de la ley La ley de Coulomb es válida sólo en condiciones estacionarias, es decir, cuando no hay movimiento de las cargas o, como aproximación cuando el movimiento se realiza a velocidades bajas y en trayectorias rectilíneas uniformes. Es por ello que es llamada fuerza electrostática. En términos matemáticos, la magnitud de la fuerza que cada una de las dos cargas puntuales y ejerce sobre la otra separadas por una distancia se expresa como: Dadas dos cargas puntuales y separadas una distancia en el vacío, se atraen o repelen entre sí con una fuerza cuya magnitud está dada por: Ejercicio 1 Determinar la fuerza que actúa sobre las cargas eléctricas q 1 = + 1 x 10-6 C. y q 2 = + 2,5 x 10-6 C. que se encuentran en reposo y en el vacío a una distancia de 5 cm.

5 Resolución: Para calcular la fuerza de interacción entre dos cargas eléctricas puntuales en reposo recurriremos a la ley de Coulomb por lo tanto previo transformar todas las magnitudes en juego a unidades del sistema internacional de medidas nos queda que: F= K (q1 x q2) / d2 F= (9x109 NM2/C2) (1x10-6 C x 2.5x10-6 C / (0.05 M)2 = 9N Como la respuesta obtenida es de signo positivo nos está indicando que la fuerza es de repulsión. Ejercicio 2 Determinar la fuerza que actúa sobre las cargas eléctricas q 1 = -1,25 x 10-9 C. y q 2 = +2 x 10-5 C. que se encuentran en reposo y en el vacío a una distancia de 10 cm. Resolución: Para calcular la fuerza de interacción entre dos cargas eléctricas puntuales en reposo recurriremos a la ley de Coulomb por lo tanto previo transformar todas las magnitudes en juego a unidades del sistema internacional de medidas nos queda que: F= K (q1 x q2) / d2 F= (9x109 NM/C2) (-1x25-9 C x -2x10-5 C / (0.1M)2 = -2.25x10-2N Como la respuesta obtenida es de signo negativo nos está indicando que la fuerza es de atracción.

6 Electrodinámica La electrodinámica es la rama del electromagnetismo que trata de la evolución temporal en sistemas donde interactúan campos eléctricos y magnéticos con cargas en movimiento.

7 La ley de Ohm dice que la intensidad que circula entre dos puntos de un circuito eléctrico es proporcional a la tensión eléctrica entre dichos puntos. Esta constante es la conductancia eléctrica, que es lo contrario a la resistencia eléctrica. La intensidad de corriente que circula por un circuito dado, es directamente proporcional a la tensión aplicada e inversamente proporcional a la resistencia del mismo. La ecuación matemática que describe esta relación es: La ley de Watt dice que la potencia eléctrica es directamente proporcional al voltage de un circuito y a la intensidad que circula por él. Voltage en voltios (v) Intensidad (i) Potencia en Vatios (P) Ecuación de Watt: P = V. I

8 Ejemplos usando los datos del triangulo: Ejemplos usando el círculo arriba mostrado: P=VI P=VI V=P/I P= I2R I= P/V V= IR ETC. Se conoce como efecto Joule al fenómeno por el cual si en un conductor circula corriente eléctrica, parte de la energía cinética de los electrones se transforma en calor debido a los choques que sufren con los átomos del material conductor por el que circulan, elevando la temperatura del mismo. El nombre es en honor a su descubridor, el físico británico James Prescott Joule. El movimiento de los electrones en un cable es desordenado, esto provoca continuos choques entre ellos y como consecuencia un aumento de la temperatura en el propio cable.

9 Ley de Joule Este efecto es utilizado en la actualidad aprovechando las noblezas de la electricidad y se representa de la siguiente manera (Q= CALOR GENERADO) (Por eso es el fenómeno que si ponemos el cableado eléctrico en una casa, y el cable es demasiado pequeño de diámetro (mayor resistencia al paso de la corriente), entonces los cables se calientan mucho y pagamos mas luz (parte de la energía eléctrica se pierde en forma de calor) Las propiedades físicas fundamentales de la corriente eléctrica son tres: Intensidad (I) Tensión (t) Resistencia (R ) Algunos Ejemplos de artículos que por su construcción tienen resistencias que ponen mucha oposición al paso de la corriente y por lo tanto producen mucho calor (efecto Joule); (y también consumen mucha electricidad)

10 Intensidad de corriente - I Como ya sabemos, la corriente eléctrica consiste en un flujo de electrones que van desde un punto con más carga negativa que otro. La intensidad depende del número de electrones que circulen en el circuito. La unidad empleada para su medida es el Amperio (A). Cuando en un circuito se mueve una carga de 63 trillones de electrones (un culombio) en cada segundo, se dice que en el circuito circula una intensidad de un amperio (1 A). Esta unidad es grande, así que será normal referirnos a un submúltiplo del amperio, el miliamperio (ma), equivalente a una milésima de amperio. 1 A = 1000 ma 1 ma = 0'001 A Ejemplos: 1) A Cuanto equivale 1.30 amperes, en Mili amperes? Respuesta A x 1000 ma = 1300 Mili amperes 2) A Cuanto equivale 1.65 amperes, en Mili amperes? Respuesta A x 1000 ma = 1650 Mili amperes 3) A Cuanto equivalen 2500 Mili amperes, en amperes? Respuesta ma x A = 2.5 amperes 4) A Cuanto equivalen 6800 Mili amperes, en amperes? Respuesta ma x A = 6.8 amperes Ya notaste la diferencia entre amperes y mili amperes? Para medir esta magnitud se emplea el amperímetro.

11 Tensión eléctrica = V Tensión eléctrica, voltaje o diferencia de potencial son tres nombres con los que nos referiremos a la diferencia de cargas eléctricas que existe entre los polos positivo y negativo del generador del circuito. Esta magnitud es indicativa de la cantidad de energía que será capaz de desarrollar la corriente de electrones, para una misma intensidad de corriente. La unidad de medida es el voltio (V), y el elemento usado para medir su valor en un circuito se llama voltímetro. Resistencia eléctrica = R Es la oposición que presentan a la circulación de los electrones los distintos elementos intercalados en el circuito, incluido el conductor. La unidad de medida es el ohmio (Ω). Esta unidad es demasiado pequeña por lo que es frecuente encontrar múltiplos como el kilo ohmio (KΩ), equivalente a 1000 Ω, y el mega ohmio (MΩ), equivalente a 10 6 Ω. Para medir la resistencia eléctrica de un elemento se utiliza el óhmetro. Cuando se instalan varios receptores, éstos pueden ser montados de diferentes maneras: En serie En paralelo Mixtos

12 Circuitos en serie En un circuito en serie los receptores están instalados uno a continuación de otro en la línea eléctrica, de tal forma que la corriente que atraviesa el primero de ellos será la misma que la que atraviesa el último. Para instalar un nuevo elemento en serie en un circuito tendremos que cortar el cable y cada uno de los terminales generados conectarlos al receptor. Circuito en paralelo En un circuito en paralelo cada receptor conectado a la fuente de alimentación lo está de forma independiente al resto; cada uno tiene su propia línea, aunque haya parte de esa línea que sea común a todos. Para conectar un nuevo receptor en paralelo, añadiremos una nueva línea conectada a los terminales de las líneas que ya hay en el circuito.

13 Ejemplos prácticos de circuito en serie y de circuito en paralelo: Vamos a ver dos ejemplos de cálculo de problemas de circuitos en serie y en paralelo. Ejemplo 1: En el circuito de la figura sabemos que la pila es de 4'5 V, y las lámparas tienen una resistencia de R1= 60 Ω y R2= 30 Ω. Se pide: 1. Dibujar el esquema del circuito; 2. calcular la resistencia total o equivalente del circuito, la intensidad de corriente que circulará por él cuando se cierre el interruptor y las caídas de tensión en cada una de las bombillas. Ejemplo 2: En el circuito de la figura sabemos que la pila es de 4'5V, y las lámparas son de 60Ω y 30Ω, respectivamente. Calcular: 1. La intensidad en cada rama del circuito, la intensidad total que circulará y la resistencia equivalente. 2. Dibujar el esquema del circuito.

14 Cálculos con la ley de Ohm Ejemplo 1: Un circuito eléctrico está formado por una pila de petaca de 4'5V, una bombilla que tiene una resistencia de 90, un interruptor y los cables necesarios para unir todos ellos. Se pide una representación gráfica del circuito y que se calcule la intensidad de la corriente que circulará cada vez que cerremos el interruptor. Ejemplo 2: En un circuito con una resistencia y una pila de 20 V circula una corriente de 0'2 A. Calcular el valor de dicha resistencia.

15 Ejemplo 3: Cuál será la tensión que suministra una pila sabiendo que al conectarla a un circuito en el que hay una resistencia de 45, la intensidad es de 0'1 A. (Sol.: 4'5 V) Ley de Ohm: problemas para resolver (Dibuja las graficas de los circuitos, apóyate con tu profesor) 1. Se conecta una resistencia de 45 Ω a una pila de 9 V. Calcula la intensidad de corriente que circula por el circuito. (Sol.: 200 ma) Respuesta: 1 paso, Datos: Voltaje = 9 V, Resistencia (R) = 45 ohmios, Corriente (I)=? 2 paso, Formula V=IR, Despejando I, tenemos I=V/R 3 paso, sustituir valores I= 9/45, lo que da como resultado 0.2 a (amperes) o lo que es lo mismo 200 ma 2. Calcula la intensidad de corriente en un circuito compuesto por una resistencia de 1'2 KΩ y una fuente de alimentación de 12 V. (Sol.: 10 ma). Aclaración: 1'2 KΩ = 1200 Ω. Respuesta: 1 paso, Datos: Voltaje = 12, Resistencia (R) = 1.2 Kilo ohmios (lo que equivale a 1200 ohmios) 2 paso, Formula: V=IR (Recuerda, antes de utilizar la formula se deben convertir los milis o los kilo a sus unidades básicas; es decir V (volts), ohmios, amperes. Por lo tanto despejando la intensidad (corriente) que es lo que piden, obtenemos; I=V/R 3 paso, sustituir valores I= 12/1200, lo que da como resultado 0.01 a (amperes) o lo que es lo mismo 10 ma

16 3. Calcular el valor de la resistencia de una bombilla de 230 V, sabiendo que al conectarla circula por ella una corriente de 0'20 A. (Sol.: 1150 Ω). Respuesta: 1 paso, Datos: Voltaje (V)= 230, Corriente (I)= 0.20 a 2 paso, Formula: V=IR, por lo tanto despejando la resistencia (R), obtenemos; R=V/I 3 paso, sustituir valores R= 230/0.20, lo que da como resultado 1150 ohmios 4. Una resistencia de 100 Ω se conecta a una batería de 10 V. Dibuja el esquema del circuito y calcula la intensidad de corriente que circula por el mismo. (Sol.: 100 ma). Respuesta 1 paso, Datos: Voltaje (V)= 10, resistencia (R)= 100 ohmios 2 paso, Formula: V=IR, por lo tanto despejando la corriente (I), obtenemos; I=V/R 3 paso, sustituir valores I= 10/100, lo que da como resultado 0.10 amperes o lo que es lo mismo 100 ma. 5.- Calcula el valor de una resistencia sabiendo que la intensidad en el circuito es de 0,2 A y la fuente de alimentación de 10 V. Dibuja el circuito. (Sol: 50 Ω). Respuesta 1 paso, Datos: Voltaje (V)= 10, corriente (I)= 0.2 amperes 2 paso, Formula: V=IR, por lo tanto despejando la resistencia (R), obtenemos R=V/I 3 paso, sustituir valores R=10/0.2, lo que da como resultado 50 ohmios 6.- Por un circuito con una resistencia de 150 Ω circula una intensidad de 100 ma. Calcula el voltaje de la fuente de alimentación. (Sol: 15 V). Respuesta 1 paso, Datos: Resistencia (R)= 150 ohmios, corriente (I)= 100 ma o lo que es lo mismo 0.1 amperes 2 paso, Formula: V=IR 3 paso, sustituir valores V=150x0.1, lo que da como resultado 15 Voltios 7. Al circuito anterior le cambiamos la fuente de alimentación por otra de 20V. Cuál será ahora la intensidad que atraviesa la resistencia? (Sol: 133 ma). Aclaración: ten en cuenta que la resistencia tendrá que ser la misma, ya que sólo se ha cambiado la fuente de alimentación. Respuesta 1 paso, Datos: Voltaje (V)= 20, Resistencia (R)= 150 ohmios 2 paso, Formula: V=IR, por lo tanto despejando la corriente (I), obtenemos I=V/R 3 paso, sustituir valores I=20/150, lo que da como resultado amperes, o lo que es lo mismo 133 ma

17 8. Cuánta resistencia le tendremos que poner a un circuito con una fuente de alimentación de 100 V para que no circulen más de 400 ma? (Sol: 250 Ω). Respuesta 1 paso, Datos: Voltaje (V)= 100, corriente (I) = 400 ma o lo que es lo mismo 0.4 amperes 2 paso, Formula: V=IR, por lo tanto despejando la resistencia (R), obtenemos R=V/I 3 paso, sustituir valores R=100/0.4, lo que da como resultado 250 ohmios Problemas: Ley de Ohm (dibuja las gráficas de los circuitos ///serie, paralelo o combinado/// apóyate con tu profesor. Soluciona los siguientes problemas en tu cuaderno: 1. Calcular la resistencia equivalente a dos resistencias de 20 Ω y 30 Ω, conectadas en serie. Calcular la intensidad que atravesará dicho circuito cuando se conecta a una pila de 4'5 V y la caída de tensión en cada bombilla. (Sol.: Re = 50 Ω; I = 90 ma; V1=1'8 V; V2= 2'7 V). Respuesta 1 paso, dibuja el circuito eléctrico para que tengas una mayor comprensión, recuerda es un circuito en serie. 2 paso, Datos: Resistencia 1 (R1)=20 ohmios, Resistencia 2 (R2)= 30 ohmios, Voltaje (V)= paso, el Procedimiento: a) para obtener la resistencia equivalente en un circuito en serie, solamente se SUMAN (ojo, tiene que ser circuito en serie) Re= R1+R2 = = 50 ohmios b) para calcular la intensidad o corriente que atravesará el circuito, se utiliza la formula: V=IR en la cual se despeja la corriente quedando I=V/Re por lo que sustituyendo queda I=4.5/50 lo que es igual a 0.09 amperes (o 90 ma) c) para calcular la caída de tensión en cada resistencia se vuelve a usar la formula: V=IR en cada una de las resistencia. V (en R1)= 0.09x20 = 1.8 Voltios y V (en R2)=0.09x30= 2.7 Voltios (Nótese que en un circuito en serie, que la suma de las caídas de tensión de las resistencias es igual a la fuente original, ( = 4.5)

18 2. Calcular el valor de la resistencia equivalente en un circuito compuesto por tres bombillas de 30 Ω conectadas en serie Hallar el valor de la intensidad de corriente que atravesará el circuito sabiendo que está conectado a una fuente de alimentación de 4'5 V y la caída de tensión en cada bombilla. ( Sol: Re = 90 Ω; I = 50 ma, V1= V2 = V3= 1'5 V). 1 paso, dibuja el circuito eléctrico para que tengas una mayor comprensión, recuerda es un circuito en serie. 2 paso, Datos: Resistencia 1 (R1)=30 ohmios, Resistencia 2 (R2)= 30 ohmios, Resistencia 3 (R3)= 30 ohmios Voltaje (V)= paso, el Procedimiento: a) para obtener la resistencia equivalente en un circuito en serie, solamente se SUMAN (ojo, tiene que ser circuito en serie) Re= R1+R2+R3 = = 90 ohmios b) para calcular la intensidad o corriente que atravesará el circuito, se utiliza la formula: V=IR en la cual se despeja la corriente quedando I=V/Re por lo que sustituyendo queda I=4.5/90 lo que es igual a 0.05 amperes (o 50 ma) c) para calcular la caída de tensión en cada resistencia se vuelve a usar la formula: V=IR en cada una de las resistencia. V (en R1)= 0.05x30 = 1.5 Voltios y como las tres resistencias son iguales y pasa la misma corriente, la caída de voltaje es igual en las tres bombillas (resistencias) (Nótese que en un circuito en serie, que la suma de las caídas de tensión de las resistencias es igual a la fuente original, ( = 4.5) Has tu el ejercicio siguiente número 3 (compara tus resultados con la solución) 3. Dos operadores con resistencia de 30 Ω cada uno se conectan en serie a una fuente de alimentación Calcular la tensión que deberá suministrar dicha fuente si la intensidad que debe atravesar a los citados operadores debe ser de 50 ma. Qué caída de tensión habrá en cada operador? (Sol: V= 3 V; Vr= 1'5 V). 4. Necesitamos conectar un operador con una resistencia de 30 Ω en un circuito con una pila de 9 V. La intensidad que debe atravesar dicho operador debe ser de 0'1 A. Hallar el valor de la resistencia que debemos conectar en serie al operador para conseguir aquel valor de la intensidad. (Sol.: 60 Ω). 1 paso, dibuja el circuito para que tengas una mayor comprensión del problema. V R1 R2 I En donde: V= voltaje= 9, R1= resistencia1= 30, I= corriente= 0.1 amperes, R2= resistencia =? (es lo que buscamos)

19 Entonces la resistencia equivalente es la suma de las resistencias (recuerda que es un circuito en serie), quedando Re= R1+R2 por lo tanto aplicando la formula V=I x Re y sustituyendo los valores que tenemos, nos queda: 9= 0.1 x Re o lo que es lo mismo 9= 0.1 (R1+R2) y continuando con la sustitución nos queda 9= 0.1 (30+R2) De aquí en adelante es una caso de matemáticas, en el cual se debe despejar R2 y encontrar su valor, quedando así: 9= (0.1x30) + (0.1xR2) 9= R2 por lo tanto R2= 6/0.1= 60 ohmios 5. Averiguar la intensidad que atravesará cada una de las resistencias y la total en el circuito cuando se conectan en paralelo dos resistencias de 20 Ω a una pila de 8 V. Calcular la resistencia equivalente (Sol.: I= 0,8 A; Ir= 0'4 A; Re= 10 Ω). Recuerda que para sacar la resistencia equivalente, en este caso no se suman porque se trata de un circuito en paralelo (solamente en los circuitos en serie se suman) 1 paso, dibuja el circuito para que tengas una mayor comprensión del problema. R1 It V R2 En donde V (voltaje) = 8, R1 y R2 = 20 cada una, I (corriente) =? 2 paso, sacamos la corriente que pasa por cada resistencia (acuérdate que la suma de las corrientes que pasan por R1 y R2 resultará en la corriente total (It) V=IR entonces I=V/R, sustituyendo primero en R1 para sacar su corriente tenemos I= 8/20= 0.4 a (y como las resistencias valen lo mismo podemos deducir que la corriente que pasa por R2=R1. Entonces la corriente total (It)= I1+I2= = 0.8 Ya con la corriente total (It) conocida, podemos calcular la resistencia equivalente, quedando así: V=IR, despejando R=V/I y sustituyendo nos queda Re= 8/0.8= 10 ohmios

20 Has tu los ejercicios siguientes números 6, 7, 8, 9, 10, 11, 12 Y 13 (compara tus resultados con las soluciones) 6. Hallar la resistencia equivalente de un circuito con dos resistencias de 15 Ω conectadas en paralelo a una pila de 3V. Calcular la intensidad total y por rama en el circuito. (Sol.: Ir= 0'2 A; It= 0'4 A; Re= 7'5 Ω). 7. Hallar la resistencia equivalente de un circuito con dos resistencias, una de 15 Ω y otra de 30 Ω conectadas en paralelo a una pila de 9V, así como la intensidad total y por rama. (Sol.: I1= 0'6 A; I2= 0'3 A; It= 0'9 A; Re= 10 Ω). 8. Hallar la resistencia equivalente de un circuito con dos resistencias, una de 20 Ω y otra de 30 Ω conectadas en paralelo a una fuente de alimentación de 48 V. Calcular las intensidades por rama y la total. (Sol.: I1= 2'4 A; I2= 1'6 A; It= 4 A Re= 12 Ω). 9. Un circuito dispone de una pila de 9V, un pequeño motor eléctrico con una resistencia de 12 Ω, y dos pequeñas lámparas de 30 Ω cada una -todos los receptores están instalados en paralelo-. Dibujar el esquema del circuito y averiguar la resistencia equivalente del mismo, la intensidad total que sale del generador, y la que atraviesa cada uno de los receptores. (Sol: Im= 0'75 A; Ib= 0'3 A; It= 1'35 A; Re= 6'67 Ω) 10. Conectamos a un circuito dos resistencias de 20 Ω en paralelo Calcular su resistencia equivalente Calcular la intensidad total que recorrerá el circuito y la que atravesará cada una de las resistencias, cuando se conectan a una pila de 9 V. (Sol.: Re = 10 Ω; I = 900 ma; Ir= 450 ma) 11. Conectamos en paralelo una resistencia de 30 Ω con otra de 60 Ω Calcular la resistencia equivalente Hallar la intensidad que atraviesa el circuito, así como la que circulará a través de cada una de las resistencias, al conectar el montaje a una pila de 4'5 V. (Sol.: Re = 20 Ω; I1 = 150 ma; I2 = 75 ma; IT = 225 ma). 12. Conectamos en paralelo dos lámparas de 45 Ω y 30 Ω con una pila de 9 V. Calcular la resistencia equivalente del circuito y la intensidad de corriente que circulará por él y por cada uno de sus receptores. (Sol.: Re = 18 Ω; I1 = 200 ma; I2 = 300 ma; IT = 500 ma). 13. Calcular la resistencia equivalente de un circuito paralelo compuesto por 4 bombillas de 80 Ω de resistencia, a 220 V Calcular cuál será la intensidad que recorrerá el circuito y la que atravesará cada una de las lámparas. (Sol.: Re = 20 Ω; I parcial = 2'75 A; IT = 11 A).

21 14. Un fusible es un elemento de protección que se funde cuando por él circula una intensidad de corriente superior a un límite. Calcula cuántas lámparas de 200 Ω se podrán conectar en paralelo a una pila de 9V, si la instalación tiene un fusible de 1 A. (Sol.: 22 lámparas). 1 paso, dibuja el circuito para que tengas una mayor comprensión del problema? Fusible Batería Solución: It Datos: cuantas lámparas se pueden conectar=? / Cada lámpara tiene una resistencia de 200 ohmios / Una Batería de voltaje = 9 / y el fusible tiene una capacidad máxima para resistir 1 ampere. Solución: Considerando que es un circuito en paralelo la corriente total (It) es la suma de cada una de las corrientes que pasa por cada foco. Y si cada foco tiene una resistencia de 200 ohmios, podemos obtener que la corriente que pasa por cada foco es de I=V/R por lo que sustituyendo valores tendríamos I=9/200 lo que es = Por lo tanto deducimos que si el fusible aguanta un paso de corriente de 1 amp, y por cada foco pasan amp; simplemente dividimos 1/0.045= por lo tanto el circuito solamente tiene capacidad de conectar en paralelo 22 lámparas. 15. Un circuito está formado por 10 lámparas de 90 Ω conectadas en paralelo, un interruptor y una pila de 4'5V Deseo instalar un fusible en dicho circuito, para lo que dispongo de tres modelos diferentes: de 300 ma, de 600 ma y de 800 ma Calcula cuál sería el modelo más adecuado para instalar. (Sol.: el de 600 ma). 1 paso, dibuja el circuito para que tengas una mayor comprensión del problema. Interruptor fusible Batería Solución: Datos: 10 focos de una resistencia de 90 ohmios cada uno. / Una Batería (pila) de Voltaje= 4.5 Solución: Utilizamos nuevamente la fórmula V=IR Antes de utilizar la formula, debemos de obtener la corriente que pasara por cada foco para luego sumar las diez corrientes y obtener una corriente total.

22 V=IR, despejando obtenemos I=V/R y por el foco 1 pasa una corriente de I=4.5/90 = 0.05 amperes Entonces considerando que los focos tiene la misma resistencia, deducimos que la corriente en cada foco es la misma, por lo tanto sumamos las corrientes de los 10 focos, quedando una corriente total de: It= 0.05 x 10 = 0.5 amperes (o lo que es lo mismo 500 ma) Por lo tanto el fusible de 300 ma se quemaría y el de 800 ma queda demasiado grande ; la respuesta correcta es el de 600 ma

23 ANEXOBLOQUEIII Tabla No. 13 Aplicacionesde la electricidad En el hogar: Licuadoras, televii En laindustria: t léf compu- Maquinas, En comunicaciones: tradios, d teléfonos Entreotros Alumbrados, semáforos Tabla No. 14 Modelosmatemáticosde lasvariables Concepto Expresión matemática Significado devariables Unidadesdemedida Trabajo W=FD W= trabajo, F= fuerza, D= distancia Potencia P=W/T P=potencia, W=trabajo, T= tiempo Resistencia (en electricidad) R=V/I R= resistencia, V= voltaje, I= corriente Intensidad decorrienteeléctrica I=V/R I=corriente, V= voltaje, R= resistencia Voltaje V=IR V= voltaje, I= corriente, R= resistencia Efecto Joule Q=I2 RT Q= calor, I=corriente, T=tiempo Ley deohm V=IR, I=V/R, R=V/I Relación entre el voltaje, la resistencia y la corriente Ley dewatt P=IV, I=P/V, V=P/I Relación entre potencia, corriente y voltaje Kilográmetros HP / Watts OHMS amperes Volts Vatio-segundo Volts, amperes u ohms (depende) Watts, volts, amperes (depende)

24 PRONTUARIO DE LA MATERIA DE FISICA II: CONCEPTOS Y PROBLEMAS RESUELTOS COLEGIO DE BACHILLERES DEL ESTADO DE BAJA CALIFORNIA SUR DIRECTOR GENERAL / ING. ROBERTOPANTOJA CASTRO DIRECTOR ACADEMICO / ING. JOSE ARTURO HERNANDEZ HERNANDEZ PRONTUARIO ELABORADO POR: JEFATURA DE MATERIAS DE FISICA / ING.ALFONSO MARTINEZ LLANTADA (ESTE PRONTUARIO ES UN COMPENDIO DE DIFERENTES FUENTES DE INFORMACIÓN Y NO ESTÁ ELABORADO CON FINES DE LUCRO SOLO CON FINES EDUCATIVOS HACIA ESTUDIANTES DE LA INSTITUCIÓN)

UD6. ELECTRICIDAD Y ELECTRÓNICA

UD6. ELECTRICIDAD Y ELECTRÓNICA UD6. ELECTRICIDAD Y ELECTRÓNICA BLOQUE 1 1. LA CORRIENTE ELÉCTRICA Y SUS MAGNITUDES. VOLTAJE RESISTENCIA INTENSIDAD LEY DE OHM POTENCIA ELÉCTRICA ENERGÍA ELÉCTRICA 2. CORRIENTE CONTINUA Y CORRIENTE ALTERNA.

Más detalles

Fecha de Entrega: 20/8/2013. Resolver los ejercicios 4, 5, 9, 15, 17, 22, 24, 28, 30, 34, 37, 43, 44, 46, 49, 52, 54, 56. Índice

Fecha de Entrega: 20/8/2013. Resolver los ejercicios 4, 5, 9, 15, 17, 22, 24, 28, 30, 34, 37, 43, 44, 46, 49, 52, 54, 56. Índice Gabinete Tema 1: Definiciones Básicas de Corriente Fecha de Entrega: 20/8/2013 Resolver los ejercicios 4, 5, 9, 15, 17, 22, 24, 28, 30, 34, 37, 43, 44, 46, 49, 52, 54, 56 Índice 1 Definiciones Básicas...

Más detalles

CONTROL DE CIRCUITOS MAGNITUDES ELÉCTRICAS

CONTROL DE CIRCUITOS MAGNITUDES ELÉCTRICAS CONTROL DE CIRCUITOS Como se comprobó en el apartado anterior (ELEMENTOS DE CONTROL MANUAL EN CIRCUITOS ELÉCTRICOS), el paso de corriente por un circuito elemental depende de la posición del elemento de

Más detalles

1. Calcula la intensidad que circula por una resistencia de 30 Ω conectada a un generador de 15 V. Resultado: I = 0,5 A

1. Calcula la intensidad que circula por una resistencia de 30 Ω conectada a un generador de 15 V. Resultado: I = 0,5 A Corriente eléctrica: magnitudes fundamentales 1. Calcula la intensidad que circula por una resistencia de 30 Ω conectada a un generador de 15 V. Resultado: I = 0,5 A 2. Calcula el voltaje al que hay que

Más detalles

TEMA 5 CIRCUITOS ELÉCTRICOS TECNOLOGÍA 1º ESO. Samuel Escudero Melendo

TEMA 5 CIRCUITOS ELÉCTRICOS TECNOLOGÍA 1º ESO. Samuel Escudero Melendo TEMA 5 CIRCUITOS ELÉCTRICOS TECNOLOGÍA 1º ESO Samuel Escudero Melendo QUÉ ES UN CIRCUITO ELÉCTRICO? QUÉ VEREMOS? ELEMENTOS DE UN CIRCUITO ELÉCTRICO GENERADOR ELÉCTRICO VOLTAJE CONDUCTORES Y AISLANTES

Más detalles

EL CIRCUITO ELÉCTRICO

EL CIRCUITO ELÉCTRICO EL CIRCUITO ELÉCTRICO -ELEMENTOS DE UN CIRCUITO -MAGNITUDES ELÉCTRICAS -LEY DE OHM -ASOCIACIÓN DE ELEMENTOS -TIPOS DE CORRIENTE -ENERGÍA ELÉCTRICA. POTENCIA -EFECTOS DE LA CORRIENTE ELÉCTRICA 1. EL CIRCUITO

Más detalles

índice DEFINICIÓN DE ELECTRICIDAD ORIGEN DE LOS FENÓMENOS ELÉCTRICOS CONCEPTO DE CARGA ELÉCTRICA

índice DEFINICIÓN DE ELECTRICIDAD ORIGEN DE LOS FENÓMENOS ELÉCTRICOS CONCEPTO DE CARGA ELÉCTRICA índice Efectos de la energía eléctrica. Conversión y aplicaciones. Magnitudes eléctricas básicas. Ley de Ohm. Elementos de un circuito eléctrico. Simbología. Tipos de circuitos eléctricos. Potencia y energía

Más detalles

1. COMPONENTES DE UN CIRCUITO.

1. COMPONENTES DE UN CIRCUITO. . COMPONENTES DE UN CIRCUITO. Los circuitos eléctricos son sistemas por los que circula una corriente eléctrica. Un circuito eléctrico esta compuesto por los siguientes elementos: INTENSIDAD DE CORRIENTE

Más detalles

ACTIVIDADES ELECTRICIDAD

ACTIVIDADES ELECTRICIDAD 1.- INTRODUCCIÓN. ACTIVIDADES ELECTRICIDAD 1.1.- Observa los dos montajes, razona la respuesta que creas que es correcta. a) La pila A es más nueva. b) Son iguales, pero la A se acabará antes. c) Las bombillas

Más detalles

UNIDAD TEMÁTICA 3: ELECTRÓNICA. 10. Dibuja los esquemas simbólicos de los siguientes circuitos.

UNIDAD TEMÁTICA 3: ELECTRÓNICA. 10. Dibuja los esquemas simbólicos de los siguientes circuitos. 10. Dibuja los esquemas simbólicos de los siguientes circuitos. 11. Sobre los esquemas dibujados en el ejercicio anterior indica mediante flechas el sentido de la corriente eléctrica: (considera que los

Más detalles

ELECTROESTÁTICA. Física 1º bachillerato Electroestática 1

ELECTROESTÁTICA. Física 1º bachillerato Electroestática 1 ELECTROESTÁTICA 1. Naturaleza eléctrica. 2. Interacción electroestática. 3. Campo eléctrico. 4. Energía potencial eléctrica. 5. Potencial eléctrico. 6. Corriente eléctrica continua. 7. Ley de Ohm. 8. Asociación

Más detalles

La anterior ecuación se puede también expresar de las siguientes formas:

La anterior ecuación se puede también expresar de las siguientes formas: 1. LEY DE OHM GUÍA 1: LEYES ELÉCTRICAS El circuito eléctrico es parecido a un circuito hidráulico ya que puede considerarse como el camino que recorre la corriente (el agua) desde un generador de tensión

Más detalles

Nombre: 1. ACCIONES ENTRE CARGAS ELÉCTRICAS

Nombre: 1. ACCIONES ENTRE CARGAS ELÉCTRICAS / / UDI 2 - ELECTRICIDAD - FICHAS DE RECUPERACIÓN 3º ESO Nombre: 1. ACCIONES ENTRE CARGAS ELÉCTRICAS 2. CORRIENTE ELÉCTRICA Es un movimiento de electrones a través de un material conductor (cobre, aluminio,

Más detalles

CONFIGURACIONES BÁSICAS DE CIRCUITOS

CONFIGURACIONES BÁSICAS DE CIRCUITOS INSTITUCIÓN EDUCATIVA JOSÉ EUSEBIO CARO ÁREA DE TECNOLOGÍA E INFORMÁTICA 2016 DOCENTE JESÚS EDUARDO MADROÑERO RUALES CORREO jesus.madronero@hotmail.com GRADO ONCE FECHA 02 DE MAYO DE 2016 CONFIGURACIONES

Más detalles

Fenómenos electromagnéticos

Fenómenos electromagnéticos Fenómenos electromagnéticos por Enrique Hernández Para comenzar a estudiar los fenómenos electromagnéticos es necesario precisar que la electrostática es la rama de la física que estudia los fenómenos

Más detalles

Solución a los problemas de agrupación de receptores:

Solución a los problemas de agrupación de receptores: Dpto. Tecnología del IES Bahía de Algeciras 1 Solución a los problemas de agrupación de receptores: 1. Calcular la resistencia equivalente a dos resistencias de 20 Ω y 30 Ω, conectadas en serie. Calcular

Más detalles

1 Leyes y magnitudes fundamentales de los circuitos eléctricos

1 Leyes y magnitudes fundamentales de los circuitos eléctricos 1 Leyes y magnitudes fundamentales de los circuitos eléctricos 1.1 Tensión Se denomina tensión eléctrica a la diferencia de potencial existente entre dos puntos de un circuito eléctrico. Su unidad de medida

Más detalles

ELECTRODINAMICA. Nombre: Curso: CONEXIÓN DE RESISTENCIAS ELÉCTRICAS

ELECTRODINAMICA. Nombre: Curso: CONEXIÓN DE RESISTENCIAS ELÉCTRICAS 1 ELECTRODINAMICA Nombre: Curso: CONEXIÓN DE RESISTENCIAS ELÉCTRICAS.Las resistencias eléctricas pueden conectarse o asociarse de tres maneras diferentes. 1. En serie 2. En paralelo o derivación 3. Mixto

Más detalles

U.D. 0: REPASO CONTENIDOS BÁSICOS DE ELECTRICIDAD

U.D. 0: REPASO CONTENIDOS BÁSICOS DE ELECTRICIDAD INSTITUTO DE ENSEÑANZA SECUNDARIA VILLA DE MAZO CONSEJERÍA DE EDUCACIÓN CULTURA DEPORTE GOBIERNO DE CANARIAS DEPARTAMENTO DE TECNOLOGÍA. U.D. 0: REPASO CONTENIDOS BÁSICOS DE ELECTRICIDAD Definición Se

Más detalles

TEMA: CIRCUITOS ELÉCTRICOS

TEMA: CIRCUITOS ELÉCTRICOS TEMA: CIRCUITOS ELÉCTRICOS ÍNDICE 1. INTRODUCCIÓN 2 2. LA ELECTRICIDAD 2 3. EL CIRCUITO ELÉCTRICO 2 a) Generador de corriente 3 b) Conductor 3 c) Receptores 3 d) Controladores 3 4. TIPOS DE CIRCUITOS 3

Más detalles

FICHAS DE RECUPERACIÓN DE 3º ESO Nombre:... Curso:... 1) ELECTRICIDAD: EL CIRCUITO ELÉCTRICO

FICHAS DE RECUPERACIÓN DE 3º ESO Nombre:... Curso:... 1) ELECTRICIDAD: EL CIRCUITO ELÉCTRICO FICHAS DE RECUPERACIÓN DE 3º ESO Nombre:... Curso:... CALIFICACIÓN: 1) ELECTRICIDAD: EL CIRCUITO ELÉCTRICO El circuito eléctrico es la unión de varios aparatos por los que se mueven los electrones, este

Más detalles

Tema 5 Electricidad. Cómo medimos el valor de la carga eléctrica? Pues la unidad en la que se mide es el Culombio, C, que equivale a:

Tema 5 Electricidad. Cómo medimos el valor de la carga eléctrica? Pues la unidad en la que se mide es el Culombio, C, que equivale a: Tema 5 Electricidad 5.1.- INTRODUCCIÓN. LA CARGA ELÉCTRICA Los materiales están formados por átomos que se componen a su vez de: - Electrones: son partículas con carga eléctrica negativa. - Protones: son

Más detalles

CORRIENTE ELÉCTRICA. Materiales conductores y aislantes:

CORRIENTE ELÉCTRICA. Materiales conductores y aislantes: CORRIENTE ELÉCTRICA Definición: La corriente eléctrica se define como el movimiento de cargas a través de un conductor. Para que haya circulación de cargas necesitamos que exista tensión eléctrica, es

Más detalles

DISEÑO DE REA: ELEMENTOS DE PROTECCIÓN DE INSTALACIONES ELÉCTRICAS EN VIVIENDAS. EL MAGNETOTÉRMICO Y EL FUSIBLE.

DISEÑO DE REA: ELEMENTOS DE PROTECCIÓN DE INSTALACIONES ELÉCTRICAS EN VIVIENDAS. EL MAGNETOTÉRMICO Y EL FUSIBLE. DISEÑO DE REA: ELEMENTOS DE PROTECCIÓN DE INSTALACIONES ELÉCTRICAS EN VIVIENDAS. EL MAGNETOTÉRMICO Y EL FUSIBLE. ORGANIZACIÓN DEL REA OBJETIVOS Identificar y conocer el funcionamiento de los elementos

Más detalles

3ºE.S.O. 4: ELECTRICIDAD

3ºE.S.O. 4: ELECTRICIDAD Tecnologías 3ºE.S.O. Tema 4: ELECTRICIDAD 1. Qué es un átomo? Haz un dibujo de éste, señala sus elementos e indica la carga de cada uno de ellos. PROTÓN (carga POSITIVA) NEUTRÓN (SIN carga) ELECTRÓN (carga

Más detalles

Movimiento de cargas y corriente eléctrica

Movimiento de cargas y corriente eléctrica Movimiento de cargas y corriente eléctrica La presencia de un campo eléctrico permanente en el seno de un conductor es la causa del movimiento continuado de las cargas libres. En términos de potencial

Más detalles

Unidad 12. Circuitos eléctricos de corriente continua

Unidad 12. Circuitos eléctricos de corriente continua Unidad 12. Circuitos eléctricos de corriente continua 1. El circuito eléctrico 2. Magnitudes eléctricas 3. Elementos de un circuito 4. Resolución de problemas complejos 5. Distribución de la energía eléctrica

Más detalles

CIRCUITOS ELÉCTRICOS

CIRCUITOS ELÉCTRICOS CICUITOS ELÉCTICOS.- CONCEPTOS FUNDAMENTALES Energía eléctrica. Actualmente, la eléctrica es la forma de energía más usada por varios motivos: Es fácil de producir. Se puede transportar a grandes distancias.

Más detalles

EL ÁTOMO. Quiénes componen el átomo? El ion. Circulación de la corriente eléctrica

EL ÁTOMO. Quiénes componen el átomo? El ion. Circulación de la corriente eléctrica EL ÁTOMO Quiénes componen el átomo? El ion Circulación de la corriente eléctrica EL CIRCUITO ELÉCTRICO (1) Por qué se enciende la bombilla? Definición de circuito eléctrico Corriente eléctrica EL CIRCUITO

Más detalles

ACADEMIA DE CIENCIAS EXPERIMENTALES GUÍA PARA EL EXAMEN EXTRAORDINARIO DE ASIGNATURA: FÍSICA II TURNO MATUTINO CICLO ESCOLAR: A

ACADEMIA DE CIENCIAS EXPERIMENTALES GUÍA PARA EL EXAMEN EXTRAORDINARIO DE ASIGNATURA: FÍSICA II TURNO MATUTINO CICLO ESCOLAR: A CENTRO DE ESTUDIOS DE BACHILLERATO 4/2 LIC. JESÚS REYES HEROLES ACADEMIA DE CIENCIAS EXPERIMENTALES Nombre y firma del alumno (a) Situación académica (X) Egresado ( ) Baja Temporal ( ) Inscrito ( ) GUÍA

Más detalles

Física y Química 1 - ANAYA

Física y Química 1 - ANAYA UNIDAD 0 - Corriente eléctrica ' Cuestiones! #$# Qué es la intensidad de una corriente eléctrica? Es el cociente entre la carga que atraviesa un conductor y el tiempo. 2 Por qué la intensidad de corriente

Más detalles

Sistemas y Circuitos Eléctricos 1 GSE Juan Carlos García Cazcarra

Sistemas y Circuitos Eléctricos 1 GSE Juan Carlos García Cazcarra Unidad Didáctica 1: Corriente Continua. 1.- Naturaleza de la electricidad El átomo es la parte más pequeña que puede existir de un cuerpo simple o elemento. Está constituido por un núcleo y una corteza.

Más detalles

Circuitos Eléctricos Fundamentos

Circuitos Eléctricos Fundamentos Electricidad 1 Circuitos Eléctricos Fundamentos http://www.areatecnologia.com/ electricidad/circuitoselectricos.html QUÉ ES UN CIRCUITO ELÉCTRICO? Un Circuito Eléctrico es un conjunto de elementos conectados

Más detalles

Se insta a los estudiantes a estudiar y, en caso que corresponda, completar los ejercicios del material publicado anteriormente:

Se insta a los estudiantes a estudiar y, en caso que corresponda, completar los ejercicios del material publicado anteriormente: Material de apoyo para la realización de las actividades correspondientes a la preparación para el primer examen quimestral de la asignatura Física II. Parte A El presente material sirve de apoyo para

Más detalles

EJERCICIOS PROPUESTOS SOBRE ELECTROMAGNETISMO. Ley de Coulomb

EJERCICIOS PROPUESTOS SOBRE ELECTROMAGNETISMO. Ley de Coulomb EJERCICIOS PROPUESTOS SOBRE ELECTROMAGNETISMO Ley de Coulomb 1. Tres cargas iguales de 4 μc cada una se sitúan en el vacío sobre los vértices de un triángulo rectángulo cuyos catetos miden 12 cm y 16 cm.

Más detalles

Ejercicios propuestos para examen de supletorio de Física II. Ley de Coulomb

Ejercicios propuestos para examen de supletorio de Física II. Ley de Coulomb Ejercicios propuestos para examen de supletorio de Física II Ley de Coulomb 1. Tres cargas iguales de 4 μc cada una se sitúan en el vacío sobre los vértices de un triángulo rectángulo, cuyos catetos miden

Más detalles

ELECTRICIDAD QUE ES MAGNITUDES BÁSICAS_CIRCUITOS ELÉCTRICOS SERIE_PARALELO.KIRCHHOFF.

ELECTRICIDAD QUE ES MAGNITUDES BÁSICAS_CIRCUITOS ELÉCTRICOS SERIE_PARALELO.KIRCHHOFF. ELECTRICIDAD QUE ES MAGNITUDES BÁSICAS_CIRCUITOS ELÉCTRICOS SERIE_PARALELO.KIRCHHOFF. QUÉ ES? La electricidad se manifiesta por la presencia de cargas eléctricas ( negativas o positivas) tanto si están

Más detalles

Qué difewrencia de potencial hay que aplicar a un reóstato de 30 ohmios para que circulen a través de él 5 amperios?

Qué difewrencia de potencial hay que aplicar a un reóstato de 30 ohmios para que circulen a través de él 5 amperios? 1. CÁLCULO DE LA RESISTENCIA MEDIANTE LA LEY DE OHM. Hállese la resistencia de una estufa que consume 3 amperios a una tensión de 120 voltios. 2. CÁLCULO DE LA TENSIÓN DE UN CONDUCTOR Qué difewrencia de

Más detalles

Laboratorio Física II Práctica Nº 3 LEY DE OHM Y CIRCUITOS ELÉCTRICOS

Laboratorio Física II Práctica Nº 3 LEY DE OHM Y CIRCUITOS ELÉCTRICOS UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA MUNICIPALIZACIÓN TOCÓPERO ÁREA DE TECNOLOGÍA COORDINACIÓN DE LABORATORIOS DE FÍSICA Laboratorio Física II LEY DE OHM Y CIRCUITOS ELÉCTRICOS Adaptado

Más detalles

TEMA 5 ELECTRÓNICA TECNOLOGÍA 4º ESO. Samuel Escudero Melendo

TEMA 5 ELECTRÓNICA TECNOLOGÍA 4º ESO. Samuel Escudero Melendo TEMA 5 ELECTRÓNICA TECNOLOGÍA 4º ESO Samuel Escudero Melendo QUÉ VEREMOS? CONCEPTOS BÁSICOS ELECTRICIDAD y ELECTRÓNICA CANTIDAD DE CARGA, INTENSIDAD, VOLTAJE, RESISTENCIA LEY DE OHM ELEMENTOS DE CIRCUITOS

Más detalles

TEMA 3 ELECTRÓNICA TECNOLOGÍA 3º ESO. Samuel Escudero Melendo

TEMA 3 ELECTRÓNICA TECNOLOGÍA 3º ESO. Samuel Escudero Melendo TEMA 3 ELECTRÓNICA TECNOLOGÍA 3º ESO Samuel Escudero Melendo QUÉ VEREMOS? CONCEPTOS BÁSICOS ELECTRICIDAD y ELECTRÓNICA CANTIDAD DE CARGA, INTENSIDAD, VOLTAJE, RESISTENCIA LEY DE OHM ELEMENTOS DE CIRCUITOS

Más detalles

ACADEMIA DE CIENCIAS EXPERIMENTALES GUÍA PARA EL EXAMEN EXTRAORDINARIO DE ASIGNATURA: FÍSICA II TURNO MATUTINO CICLO ESCOLAR: A

ACADEMIA DE CIENCIAS EXPERIMENTALES GUÍA PARA EL EXAMEN EXTRAORDINARIO DE ASIGNATURA: FÍSICA II TURNO MATUTINO CICLO ESCOLAR: A CENTRO DE ESTUDIOS DE BACHILLERATO 4/2 LIC. JESÚS REYES HEROLES ACADEMIA DE CIENCIAS EXPERIMENTALES Nombre y firma del alumno (a) Situación académica (X) Egresado ( ) Baja Temporal ( ) Inscrito ( ) GUÍA

Más detalles

UNIDAD 8.ELECTRICIDAD

UNIDAD 8.ELECTRICIDAD UNIDAD 8.ELECTRICIDAD CORRIENTE ELÉCTRICA CIRCUITOS ELÉCTRICOS MAGNITUDES ELÉCTRICAS FUNDAMENTALES LEY DE OHM DEPARTAMENTO TECNOLOGÍA IES AVENIDA DE LOS TOREROS UD. 8: ELECTRICIDAD - 1 ELECTRICIDAD Por

Más detalles

Circuitos Eléctricos TPR 3º ESO

Circuitos Eléctricos TPR 3º ESO TEMA 1 CORRIENTE ELÉCTRICA INTRODUCCIÓN CIRCUITO ELÉCTRICO MAGNITUDES ELÉCTRICAS LEY DE OHM CORRIENTE ELÉCTRICA POTENCIA Y ENERGÍA 1._ INTRODUCCIÓN La materia está formada por átomos y cada uno de estos

Más detalles

ACCESO A LA INFORMACION

ACCESO A LA INFORMACION Subdirección de Educación Departamento de Educación Contratada Colegio CAFAM Bellavista CED GUIA DE APRENDIZAJE No 4 Docente: Carlos Andrés Pérez Oñate Grado: 9 Estudiante: Asignatura: TECNOLOGÍA Pensamiento:

Más detalles

E.E.S. I. Universidad Abierta Interamericana Facultad de Tecnología Informática. Trabajo de Investigación. Cristian La Salvia

E.E.S. I. Universidad Abierta Interamericana Facultad de Tecnología Informática. Trabajo de Investigación. Cristian La Salvia Universidad Abierta Interamericana Facultad de Tecnología Informática E.E.S. I Trabajo de Investigación Alumno: Profesor: Cristian La Salvia Lic. Carlos Vallhonrat 2009 Descripción de la investigación...

Más detalles

CARGA Y CORRIENTE ELÉCTRICA:

CARGA Y CORRIENTE ELÉCTRICA: ELECTRICIDAD: CARGA Y CORRIENTE ELÉCTRICA CARGA ELÉCTRICA CORRIENTE ELÉCTRICA CIRCUITO ELÉCTRICO DEFINICIÓN Y COMPONENTES EFECTOS DE LA CORRIENTE ELÉCTRICA TIPOS DE CIRCUITOS MAGNITUDES ELÉCTRICAS VOLTAJE

Más detalles

Tema 3. Iniciación a la electricidad

Tema 3. Iniciación a la electricidad Tema 3. Iniciación a la electricidad Víctor M. Acosta Guerrero José Antonio Zambrano García Departamento de Tecnología I.E.S. Maestro Juan Calero Tema 3. Iniciación a la electricidad. 1. INTRODUCCIÓN.

Más detalles

E l e c t r o s t á t i c a

E l e c t r o s t á t i c a E l e c t r o s t á t i c a Al campo de la física que estudia los fenómenos que se relacionan con la interacción entre cargas eléctricas en reposo se le conoce como electrostática. Los fenómenos relacionados

Más detalles

ELECTRICIDAD DINÁMICA. Profesor Mauricio Hernández F Física 8 Básico

ELECTRICIDAD DINÁMICA. Profesor Mauricio Hernández F Física 8 Básico ELECTRICIDAD DINÁMICA Durante las clases anteriores En qué se diferencia este tipo de electricidad de la que usamos en los electrodomésticos? 1 Electricidad básica http://dpto.educacion.navarra.es/micros/tecnologia/elect.swf

Más detalles

ALUMNO-A: CURSO: 2º ESO

ALUMNO-A: CURSO: 2º ESO UNIDAD: ELECTRICIDAD. CONOCIENDO LA ELECTRICIDAD ALUMNO-A: CURSO: 2º ESO 1.- INTRODUCCIÓN Hoy en día la energía eléctrica es imprescindible, gracias a ella funcionan infinidad de aparatos, máquinas, fábricas,

Más detalles

Introducción unidades eléctricas. leyes de la electricidad (Ohm y Kirchhoff) Circuitos en serie y en paralelo Corriente alterna

Introducción unidades eléctricas. leyes de la electricidad (Ohm y Kirchhoff) Circuitos en serie y en paralelo Corriente alterna Introducción unidades eléctricas corriente eléctrica leyes de la electricidad (Ohm y Kirchhoff) Circuitos en serie y en paralelo Corriente alterna Principios Básicos Inicialmente los átomos tienen carga

Más detalles

E l e c t r o s t á t i c a

E l e c t r o s t á t i c a E l e c t r o s t á t i c a Al campo de la física que estudia los fenómenos que se relacionan con la interacción entre cargas eléctricas en reposo se le conoce como electrostática. Los fenómenos relacionados

Más detalles

UNIDAD: ELECTRICIDAD BÁSICA

UNIDAD: ELECTRICIDAD BÁSICA UNIDAD: ELECTRICIDAD BÁSICA INSTRUCCIONES Para poder utilizar la RA, debes tener instalado en tu móvil el programa Aurasma. Tienes que estar registrado. Accede al canal pjguillen. Puedes llegar fácilmente

Más detalles

Lista de aplicaciones seleccionadas... x Prefacio... xv Al estudiante... xxi Agradecimientos... xxix

Lista de aplicaciones seleccionadas... x Prefacio... xv Al estudiante... xxi Agradecimientos... xxix ÍNDICE Lista de aplicaciones seleccionadas... x Prefacio... xv Al estudiante... xxi Agradecimientos... xxix Capítulo 1 Introducción... 1 1.1 Por qué estudiar física?... 2 1.2 Hablar de física... 2 1.3

Más detalles

3º ESO TECNOLOGÍA, PROGRAMACIÓN Y ROBÓTICA TEMA ELECTRICIDAD

3º ESO TECNOLOGÍA, PROGRAMACIÓN Y ROBÓTICA TEMA ELECTRICIDAD 3º ESO Tecnología, programación y robótica Tema Electricidad página 1 de 12 3º ESO TECNOLOGÍA, PROGRAMACIÓN Y ROBÓTICA TEMA ELECTRICIDAD 1.Circuito eléctrico...2 2.MAGNITUDES ELÉCTRICAS...2 3.LEY de OHM...3

Más detalles

Evaluación de Electricidad. 30 preguntas. Tiempo = 30 minutos. Se puede usar calculadora. Suerte

Evaluación de Electricidad. 30 preguntas. Tiempo = 30 minutos. Se puede usar calculadora. Suerte Evaluación de Electricidad. 30 preguntas. Tiempo = 30 minutos. Se puede usar calculadora. Suerte 1. Una batería de carbón y zinc tiene una F.E.M., de 9 volts y se le conecta una resistencia de 12 Kohms.

Más detalles

ELECTRICIDAD QUE ES MAGNITUDES BÁSICAS_CIRCUITOS ELÉCTRICOS SERIE_PARALELO

ELECTRICIDAD QUE ES MAGNITUDES BÁSICAS_CIRCUITOS ELÉCTRICOS SERIE_PARALELO ELECTRICIDAD QUE ES MAGNITUDES BÁSICAS_CIRCUITOS ELÉCTRICOS SERIE_PARALELO QUÉ ES? La electricidad se manifiesta por la presencia de cargas eléctricas ( negativas o positivas) tanto si están estáticas

Más detalles

UNIDAD DIDACTICA En el circuito de la figura, calcular la intensidad de la corriente que circula por las resistencias A y B.

UNIDAD DIDACTICA En el circuito de la figura, calcular la intensidad de la corriente que circula por las resistencias A y B. UNIDD DIDCTIC 3 1. Uniendo mediante una resistencia de 7 Ω los terminales de una batería de E=5 V de fuerza electromotriz y resistencia interna r, circula una corriente de 0,5. Hallar: a) esistencia interna

Más detalles

Símil Hidráulico: La corriente eléctrica equivale al agua que circula por una tubería.

Símil Hidráulico: La corriente eléctrica equivale al agua que circula por una tubería. 1 2 1. COMPONENTES DE UN CIRCUITO. Los circuitos eléctricos son sistemas por los que circula una corriente eléctrica. Un circuito eléctrico esta compuesto por los siguientes elementos: INTENSIDAD DE CORRIENTE

Más detalles

TEMA 1 - RESUMEN DE CONOCIMIENTOS PREVIOS DE ELECTRICIDAD

TEMA 1 - RESUMEN DE CONOCIMIENTOS PREVIOS DE ELECTRICIDAD TEMA 1 - RESUMEN DE CONOCIMIENTOS PREVIOS DE ELECTRICIDAD LA CORRIENTE ELÉCTRICA Corriente eléctrica: es el movimiento de las cargas (normalmente electrones) dentro de un conductor. Existen dos tipos de

Más detalles

Tema 6 ELECTROMAGNETISMO Física Experimental

Tema 6 ELECTROMAGNETISMO Física Experimental Tema 6 ELECTROMAGNETISMO Física Experimental Elaborado por: M en A M. del Carmen Maldonado Susano Campo eléctrico E F q N C 3M del Carmen Maldonado Susano Líneas de Campo Eléctrico Las líneas de campo

Más detalles

CULOMBIO: unidad de carga eléctrica, se representa por C acumular un culombio necesitamos 6, electrones.

CULOMBIO: unidad de carga eléctrica, se representa por C acumular un culombio necesitamos 6, electrones. VOCABULARIO CULOMBIO: unidad de carga eléctrica, se representa por C acumular un culombio necesitamos 6,25 10 18 electrones. ELECTRIZACIÓN: proceso por el cual un cuerpo adquiere carga positiva o negativa.

Más detalles

GUIA TERCER PARCIAL FÍSICA III GUÍA TERCER PARCIAL 1

GUIA TERCER PARCIAL FÍSICA III GUÍA TERCER PARCIAL 1 GUIA TERCER PARCIAL 1. Qué es electrodinámica? Es la parte de la física y la electricidad que estudia las cargas eléctricas en movimiento y los fenómenos originados por este. 2. Qué son las fuentes de

Más detalles

SERVICIO NACIONAL DE APRENDIZAJE SENA CENTRO DE ELECTRICIDAD Y AUTOMATIZACIÓN INDUSTRIAL CEAI PROGRAMA DE FORMACIÓN

SERVICIO NACIONAL DE APRENDIZAJE SENA CENTRO DE ELECTRICIDAD Y AUTOMATIZACIÓN INDUSTRIAL CEAI PROGRAMA DE FORMACIÓN SERVICIO NACIONAL DE APRENDIZAJE SENA CENTRO DE ELECTRICIDAD Y AUTOMATIZACIÓN INDUSTRIAL CEAI PROGRAMA DE FORMACIÓN MANTENIMIENTO ELECTRÓNICO A EQUIPOS DOMÉSTICOS Y DE PEQUEÑA INDUSTRIA ELECTRÓNICA BÁSICA

Más detalles

EXAMEN DE AUTOEVALUACION DEL PRIMER BIMESTRE GRADO 1 GRUPO I TECNOLOGIA: ELECTRONICA

EXAMEN DE AUTOEVALUACION DEL PRIMER BIMESTRE GRADO 1 GRUPO I TECNOLOGIA: ELECTRONICA Averigua lo que sabes La corriente eléctrica es: La agitación de los átomos de un objeto. EXAMEN DE AUTOEVALUACION DEL PRIMER BIMESTRE GRADO 1 GRUPO I TECNOLOGIA: ELECTRONICA El movimiento ordenado de

Más detalles

Electricidad. Electricidad. Tecnología

Electricidad. Electricidad. Tecnología Electricidad Tecnología LA CARGA ELÉCTRICA Oxford University Press España, S. A. Tecnología 2 Oxford University Press España, S. A. Tecnología 3 Oxford University Press España, S. A. Tecnología 4 Oxford

Más detalles

Tecnología 2ºESO. Tema 7. Electricidad

Tecnología 2ºESO. Tema 7. Electricidad Tema 7. Electricidad Para poder entender los fenómenos eléctricos debemos conocer cómo está constituida la materia. La materia está formada por partículas muy pequeñas llamadas átomos, que vendría a ser

Más detalles

CURSO ELEMENTAL DE ELECTRICIDAD PROFESSOR: JUAN PLAZA L

CURSO ELEMENTAL DE ELECTRICIDAD PROFESSOR: JUAN PLAZA L CURSO ELEMENTAL DE ELECTRICIDAD PROFESSOR: JUAN PLAZA L VALORES DE LA C.A. Valor máximo (Vmax): es el valor de cresta o pico,. Valor instantáneo (Vi): Es el valor que toma la corriente en un momento determinado.

Más detalles

Unidad 6 Electricidad

Unidad 6 Electricidad Unidad 6 Electricidad Preparación de la unidad Estamos acostumbrados a utilizar aparatos eléctricos sin saber cómo funciona la electricidad. Pero, por qué se enciende una bombilla cuando le damos al interruptor?

Más detalles

CIRCUITOS EN SERIE Y PARALELO

CIRCUITOS EN SERIE Y PARALELO Sistema de CIRCUITOS EN SERIE Y PARALELO Versión 1 Programa de Teleinformática Bogotá, Agosto Página 2 de 11 EJERCICIOS CIRCUITO EN SERIE 1. Menciónese tres reglas para la corriente, el voltaje y la resistencia

Más detalles

Inducción electromagnética. 1. Flujo de campo magnético

Inducción electromagnética. 1. Flujo de campo magnético Inducción electromagnética 1. Flujo de campo magnético 2. Inducción electromagnética 2.1 Experiencia de Henry 2.2 Experiencias de Faraday 2.3 Ley de Faraday-Henry 2.4 Ley de Faraday- Lenz 3. Otros caso

Más detalles

Los tubos fluorescentes contienen un gas que tiene la propiedad de producir luz al paso de la corriente eléctrica.

Los tubos fluorescentes contienen un gas que tiene la propiedad de producir luz al paso de la corriente eléctrica. TEMA VI. ELECTRICIDAD 1. CONCEPTO La electricidad es un fenómeno físico originado por cargas eléctricas estáticas o en movimiento. La circulación de cargas eléctricas a través de un conductor se le llama

Más detalles

ANALISIS DE CIRCUITOS ELECTRICOS. Mg. Amancio R. Rojas Flores

ANALISIS DE CIRCUITOS ELECTRICOS. Mg. Amancio R. Rojas Flores ANALISIS DE CIRCUITOS ELECTRICOS Mg. Amancio R. Rojas Flores INTRODUCCION La existencia de fenómenos de tipo eléctrico era conocida desde la época de la Grecia clásica, pero hasta que el italiano volta

Más detalles

CIRCUITOS DE CORRIENTE CONTINUA

CIRCUITOS DE CORRIENTE CONTINUA CIRCUITOS DE CORRIENTE CONTINUA Concha Rodríguez de Ávila Fuencisla Prados Santaengracia 1. NECESIDAD DE UN GENERADOR PARA QUE LA CORRIENTE CIRCULE DE FORMA CONTINUA. El funcionamiento de un circuito de

Más detalles

BLOQUE III CIRCUITOS ELÉCTRICOS EN CC

BLOQUE III CIRCUITOS ELÉCTRICOS EN CC 1.- En el circuito de la figura, se sabe que con K abierto, el amperímetro indica una lectura de 5 amperios. Hallar: a) Tensión UAB. b) Potencia disipada en la resistencia R. (Selectividad andaluza septiembre-2001)

Más detalles

TEMA 5. Electricidad

TEMA 5. Electricidad 9º CCNN Departamento de Ciencias Naturales Curso 2012-13 1. Las cargas eléctricas TEMA 5. Electricidad La materia es eléctricamente neutra, sin embargo, un cuerpo se dice que está electrizado cuando gana

Más detalles

Guía de conceptualización sobre circuitos eléctricos

Guía de conceptualización sobre circuitos eléctricos Guía de conceptualización sobre circuitos eléctricos Circuitos La corriente fluye en bucles cerrados denominados circuitos. Estos circuitos deben estar compuestos por materiales conductore s y deben tener

Más detalles

PROFESOR: JORGE ANTONIO POLANIA PUENTES CURSO: LEY DE OHM

PROFESOR: JORGE ANTONIO POLANIA PUENTES CURSO: LEY DE OHM PROFESOR: JORGE ANTONIO POLANIA PUENTES CURSO: LEY DE OHM UNIDAD 1: LEY DE OHM - TEORÍA En esta unidad usted aprenderá a aplicar la Ley de Ohm, a conocer las unidades eléctricas en la medición de las resistencias,

Más detalles

Índice general. Pág. N. 1. Magnitudes de la Física y Vectores. Cinemática. Cinemática Movimiento en dos dimensiones

Índice general. Pág. N. 1. Magnitudes de la Física y Vectores. Cinemática. Cinemática Movimiento en dos dimensiones Pág. N. 1 Índice general Magnitudes de la Física y Vectores 1.1. Introducción 1.2. Magnitudes físicas 1.3. Ecuaciones Dimensionales 1.4. Sistema de Unidades de Medida 1.5. Vectores 1.6. Operaciones gráficas

Más detalles

ELECTROTÉCNIA. Ing. Loraine Díaz Argote Facultad de Ingeniería Mecánica

ELECTROTÉCNIA. Ing. Loraine Díaz Argote Facultad de Ingeniería Mecánica ELECTROTÉCNIA Ing. Loraine Díaz Argote Facultad de Ingeniería Mecánica Electrotecnia La electrotecnia es la aplicación de la electricidad y también el magnetismo. Electro-techne Tecnología eléctrica Electrotecnia

Más detalles

GUIA DE EJRCICIOS CIRCUITOS 2os AÑOS

GUIA DE EJRCICIOS CIRCUITOS 2os AÑOS GUIA DE EJRCICIOS CIRCUITOS 2os AÑOS 1. Tres resistencias de 10, 20 y 30 ohm se conectan en serie a una fuente de 25 volts, encuentra: a) La resistencia total del circuito. b) La corriente que fluye por

Más detalles

Curso de electromagnetismo Test No 3. Circuitos de corriente continua

Curso de electromagnetismo Test No 3. Circuitos de corriente continua Curso de electromagnetismo Test No 3. Circuitos de corriente continua Este test contiene problemas sobre los siguientes temas: 1. Resistencia de un conductor 2. Combinación de resistencias 3. Ley de Ohm

Más detalles

Electricidad y magnetismo (parte 1)

Electricidad y magnetismo (parte 1) Semana Movimiento 12parabólico Semana 11 Empecemos! Ya hemos estudiado diferentes fenómenos físicos relacionados con el movimiento de los cuerpos. Para esta semana te presentamos los aspectos teóricos

Más detalles

ELECTRÓNICA ANALÓGICA. Tema 1 Introducción a la electrónica analógica

ELECTRÓNICA ANALÓGICA. Tema 1 Introducción a la electrónica analógica ELECTRÓNICA ANALÓGICA Tema 1 Introducción a la electrónica analógica Índice Tensión, diferencia de potencial o voltaje. Corriente eléctrica. Resistencia eléctrica. Potencia eléctrica. Circuito eléctrico

Más detalles

UNIDAD 5.- LA ELECTRICIDAD

UNIDAD 5.- LA ELECTRICIDAD UNIDAD 5.- LA ELECTRICIDAD 5.1. CONCEPTOS GENERALES. 5.2. CORRIENTE ELÉCTRICA. 5.3. CIRCUITO ELÉCTRICO: SIMBOLOGÍA 5.4. MAGNITUDES ELÉCTRICAS: LA LEY DE OMH 5.5. ASOCIACIÓN DE RECEPTORES 5.1. CONCEPTOS

Más detalles

ANALISIS DE CIRCUITOS ELECTRICOS. Mg. Amancio R. Rojas Flores

ANALISIS DE CIRCUITOS ELECTRICOS. Mg. Amancio R. Rojas Flores ANALISIS DE CIRCUITOS ELECTRICOS Mg. Amancio R. Rojas Flores INTRODUCCION La existencia de fenómenos de tipo eléctrico era conocida desde la época de la Grecia clásica, pero hasta que el italiano volta

Más detalles

TEMA 4. ELECTRICIDAD Y ELECTRÓNICA

TEMA 4. ELECTRICIDAD Y ELECTRÓNICA TEMA 4. ELECTRICIDAD Y ELECTRÓNICA 1. INTRODUCCIÓN La electricidad es una de las formas de energía más empleada por el hombre, hasta tal punto que hoy en día es difícil pensar en nuestra sociedad sin la

Más detalles

PROBLEMAS Y EJERCICIOS

PROBLEMAS Y EJERCICIOS 24 PROBLEMAS Y EJERCICIOS 1.- Una corriente permanente de 10 A de intensidad circula por un conductor durante un tiempo de un minuto. Hallar la carga desplazada. (Sol: 600 C) 2.- Calcula la resistencia

Más detalles

Circuitos resistivos 01

Circuitos resistivos 01 Ins. Ind. Luis A. Huergo Departamento de Telecomunicaciones Circuitos resistivos 0 introduccion A continuación se presentaran de forma sintética fundamentos teóricos básicos para el análisis de circuitos

Más detalles

Unidad 2: Electricidad. Departamento de Tecnoloxía do IES de Pastoriza

Unidad 2: Electricidad. Departamento de Tecnoloxía do IES de Pastoriza Unidad 2: Electricidad Departamento de Tecnoloxía do IES de Pastoriza Qué vamos a aprender? 1. Qué es la electricidad? 2.Magnitudes eléctricas 3.Ley de Ohm 4.Circuíto eléctrico: elementos 1. Generadores

Más detalles

REFUERZO TECNOLOGÍA DE 4º ESO

REFUERZO TECNOLOGÍA DE 4º ESO REFUERZO TECNOLOGÍA DE 4º ESO Los átomos están formados por un núcleo central donde se encuentran los protones (+) y los neutrones (sin carga) y una órbitas alrededor de éste dondesesitúanloselectrones

Más detalles

BLOQUE I MEDIDAS ELECTROTÉCNICAS

BLOQUE I MEDIDAS ELECTROTÉCNICAS 1.- Un galvanómetro cuyo cuadro móvil tiene una resistencia de 40Ω, su escala está dividida en 20 partes iguales y la aguja se desvía al fondo de la escala cuando circula por él una corriente de 1 ma.

Más detalles

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN MEDIA SUPERIOR

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN MEDIA SUPERIOR 1. REPASO NO. 1 FÍSICA IV LEY DE COULOMB Y CAMPO ELÉCTRICO 1. Una partícula alfa consiste en dos protones (qe = 1.6 x10-19 C) y dos neutrones (sin carga). Cuál es la fuerza de repulsión entre dos partículas

Más detalles

UNIDAD 5.- LA ELECTRICIDAD

UNIDAD 5.- LA ELECTRICIDAD UNIDAD 5.- LA ELECTRICIDAD 5.1. CONCEPTOS GENERALES. 5.2. CORRIENTE ELÉCTRICA. 5.3. CIRCUITO ELÉCTRICO: SIMBOLOGÍA 5.4. MAGNITUDES ELÉCTRICAS: LA LEY DE OMH 5.5. ASOCIACIÓN DE RECEPTORES 5.1. CONCEPTOS

Más detalles

TEMA Nº 10. ELECTROCINÉTICA. LEY DE OHM

TEMA Nº 10. ELECTROCINÉTICA. LEY DE OHM TEMA Nº 10. ELECTOCINÉTICA. LEY DE OHM 1.- Enuncia la ley de Ohm y establece su ecuación matemática. Determina y define las unidades, en el Sistema Internacional de Medidas, de cada una de las magnitudes

Más detalles

Ejercicios PSU. Programa Electivo Ciencias Básicas Física. GUÍA PRÁCTICA Electricidad II: circuitos eléctricos GUICEL002FS11-A16V1

Ejercicios PSU. Programa Electivo Ciencias Básicas Física. GUÍA PRÁCTICA Electricidad II: circuitos eléctricos GUICEL002FS11-A16V1 Nº GUÍA PRÁCTICA Electricidad II: circuitos eléctricos Ejercicios PSU 1. La corriente continua es generada por I) pilas. II) baterías. III) alternadores. Es (son) correcta(s) A) solo I. B) solo II. C)

Más detalles

CIRCUITO ELÉCTRICO FUERZA ELECTROMOTRIZ (FEM)

CIRCUITO ELÉCTRICO FUERZA ELECTROMOTRIZ (FEM) CIRCUITO ELÉCTRICO Se denomina circuito eléctrico al conjunto de elementos eléctricos conectados entre sí que permiten generar, transportar y utilizar la energía eléctrica con la finalidad de transformarla

Más detalles

Producida por. Cargas eléctricas

Producida por. Cargas eléctricas Electricidad Producida por Cargas eléctricas Hay de dos tipos Positivas Negativas Un cuerpo las adquiere por Frotamiento Contacto Inducción LEY DE COULOMB La fuerza de atracción o repulsión entre dos objetos

Más detalles

5.3 La energía en los circuitos eléctricos.

5.3 La energía en los circuitos eléctricos. CAPÍTULO 5 Corriente eléctrica y circuitos de corriente continua Índice del capítulo 5 51 5.1 Corriente eléctrica. 5.2 esistencia y la ley de Ohm. 5.3 La energía en los circuitos eléctricos. 5.4 Asociaciones

Más detalles