Comunicaciones Vía Satélite

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Comunicaciones Vía Satélite"

Transcripción

1 Comunicaciones Vía Satélite Introducción a los Sistemas Satelitales M.C. Enrique Stevens Navarro Facultad de Ciencias Satélite: cuerpo celeste que gira en órbita en torno a un planeta. En terminos aeroespaciales, un satélite es un vehículo espacial lanzado por humanos, que describe órbitas alrededor de la Tierra o de otro cuerpo celeste. Un satélite de comunicaciones es una repetidora de microondas en el cielo que permite efectuar un gran intercambio de información a través de enormes distancias. 1

2 Un satélite de comunicaciones esta formado por la convinación de uno o más de los siguientes dispositivos: Receptor. Transmisor. Regenerador. Filtros. CPU de abordo. Multiplexor/Demultiplexor. Antenas. Guía de Onda. Circuitos de Comunicaciones. Transpondedor: es un repetidor de radio en el cielo. (RX, TX, Amp.) Sistema Satelital: consiste en uno vehículos espaciales, una estación en la Tierra para control de su funcionamiento y una red de estaciones usuarias en la Tierra para recibir y transmitir trafico de telecomunicaciones. Tipos de transmisión de y hacia el satélite: Bus: mecanismos de control (telemetría). Carga Útil: información real de usuarios. 2

3 Tipos de Satélites: Satélites Pasivos: simplemente reflejan la señal, no tienen dispositivos de ganancia o amplificación. (+) No require equipo sofisticado. ($) (--) Requiere transmisor de guía de onda. (--) Uso ineficiente de la potencia trasmitida. Satélites Activos: Contienen elementos electrónicos para amplificar y retrasmitir la señal. (--) Requiere equipo sofisticado. ($) (+) Uso más eficiente de la potencia transmitida. (+) Servicios más sofisticados de comunicación. Un satélite permanece en orbita porque las fuerzas centrífugas causadas por su rotación en torno a la Tierra se equilibran con la atracción gravitacional de está. En el siglo XVII, J. Kepler descubrió las leyes que gobiernan el movimiento de los satélites. Las leyes del movimiento planetario describen la forma de la órbita, las velocidades del planeta y la distancia de un planeta con respecto al sol. 3

4 Las Leyes de Kepler son: 1.- Los planetas describen elipses con el Sol en uno de sus focos. 2.- La línea que une al Sol con un planeta barre áreas iguales en tiempos iguales. 3.- El cuadrado del tiempo de revolución de un planeta, dividido entre el cubo de su distancia al Sol es un número igual para todos los planetas Las Leyes de Kepler aplican a cualquier par de cuerpos en el espacio. El mayor se llama primario y el menor de los cuerpos secundario. Practica Leyes de Keppler Revisar: En el link que dice Keppler. Evidencia Traer una impresión de cada una de las leyes (Total 3). Fecha de entrega: 28 Ago (Anexo al Proy 1). 4

5 Primera Ley de Keppler Una elipse tiene dos focos (F1 y F2). Un eje mayor y un eje menor. Segunda Ley de Keppler A1 = A2 D1 > D2 v1 > v2 Orbitas de Satélites Satélites Orbitales (asíncronos) Giran en torno a la Tierra en órbitas elípticas o circulares. En una órbita circular la velocidad de rotación es constante; sin embargo, en una órbita elíptica la velocidad depende de la altura del satélite. La velocidad de rotación es mayor cuando el satélite está cerca de la Tierra que cuando está más lejos. 5

6 Satélites Orbitales (asíncronos) cont. Sat. con órbita prógrada o posígrada: su órbita es en la misma dirección de la Tierra y su velocidad angular es mayor que la de la Tierra. (ws > we). Sat. con órbita retrógrada: su órbita tiene dirección contraria que la Tierra (o la misma), pero con una velocidad angular menor que la de la Tierra. (ws < we) 6

7 Satélites Orbitales (asíncronos) cont. Desventajas: Su posición cambia en forma continua con respecto a un punto fijo en la Tierra, por tanto, se deben usar cuando están disponibles. (15 min. por órbita). Necesidad de equipo complicado y costoso de rastreo en las estaciones terrestres para localizar al satélite. Ventajas: No requiere cohetes de propulsión para mantenerse en su órbita. Categorías de elevación de satélites Órbita Terrestre Baja (LEO, low Earth orbit) Órbita Terrestre Intermedia (MEO, medium Earth orbit) Órbita Terrestre Geosíncrona (GEO, geosynchronous Earth orbit) 7

8 La mayoría de los satélites LEO trabajan en las frecuencias de 1.0 a 2.5 Ghz. Ventajas: Perdidas de trayectoria mucho menores entre satélites y estaciones terrestres. (Menos potencia de TX, menores antenas y menor peso). Ejemplo: Sistema Iridium (Motorola) de telefonía satelital. Constelación de 66 satélites LEO. Los satélites MEO trabajan en las frecuencias de 1.2 a 1.66 Ghz. Ejemplo: Sistema NAVSTAR del Depto. De Defensa USA para servicios de GPS. Constelación de 21 satélites MEO. 8

9 Los satélites GEO trabajan en las frecuencias de 2.0 a 18 Ghz. La mayoría de los Satélites de Comunicaciones están en órbita GEO. Tienen un tiempo de órbita aproximado de 24 horas, igual que la Tierra, por lo que parecen estacionarios, es decir, siempre en la misma posición respecto a determinado punto en la Tierra. Trayectorias orbitales de los satélites Apogeo: es el punto de una órbita que está más alejado de la Tierra. Perigeo: es el punto de una órbita que está más próximo a la Tierra. Eje Mayor: es la línea que une al perigeo con el apogeo y pasa por el centro de la Tierra. (Línea de los áspides) Eje Menor: perpendicular al Eje Mayor, a la mitad entre perigeo y apogeo. 9

10 Aunque existe una cantidad infinita de trayectorias orbitales, solo tres con útiles para seguir un satélite de comunicaciones. Las trayectorias pueden ser: Inclinada. Ecuatorial. Polar. Todos los satélites giran en torno a la Tierra describiendo una órbita que define un plano que pasa por el centro de gravedad de la Tierra, el llamado geocentro. 10

11 Órbitas Inclinadas: todas, excepto las que van arriba del Ecuador o de los polos Norte y Sur. Angulo de Inclinación: es el angulo que forma el plano ecuatorial terrestre con el plano orbital de un satélite. Nodo Ascendente: punto de la órbita donde curza el plano ecuatorial yendo de sur a norte. (giro CW) Nodo Descendente: punto de la órbita donde curza el plano ecuatorial yendo de norte a sur. (giro CW) Línea de Nodos: línea que une el nodo ascendente con el nodo descendente. 11

12 Los angulos de inclinación varían de 0 a 180. Para proporcionar cobertura a regiones de grandes latitudes, las órbitas inclinadas suelen ser elípticas. Órbita Ecuatorial: el satélite gira exactamente sobre el ecuador, generalmente, en trayectoria circular. Su angulo de elevación es 0 y no hay nodos ascendente ni descendente. Todos los satélites geosíncronos están en órbitas ecuatoriales. 12

13 Órbita Polar: el satélite gira sobre los polos (Norte y Sur), en una órbita perpendicular al plano ecuatorial. Siguen una trayectoria de baja altura, muy cercana a la Tierra. Su angulo de inclinación es 90. Se puede cubrir el 100% de la superficie terrestre con un solo satélite en órbita polar. Debido a la órbita del satélite y a la rotación de la Tierra, todo lugar sobre la Tierra queda dentro de su alcance de radiación dos veces al día. Nota Importante: La Tierra no es una esfera perfecta, ya que se ensancha en el ecuador. Un efecto importante de lo anterior es que causa que las órbitas elípticas giren de tal manera que el apogeo y el perigeo giren en torno a la Tierra. A este fenómeno se le llama rotación de la línea de áspides; sin embargo, si el ángulo de inclinación es de 63.4, la rotación es cero. Si un satélite debe tener un apogeo sobre determinada región se lanza con orbita en inclinación de 63.4 y a eso se le llama la ranura de

14 Caso Particular: Los satélites rusos Molniya (orbital). Tienen órbitas elípticas muy inclinadas para dar servicio a todo el norte de Rusia. El tamaño de la elipse se escogió para que el periodo fuera la mitad de un día sideral, 1 día sideral = 23 horas y 56 min (es el tiempo que tarda en dar la Tierra la cara a una misma constalación) 1 día terrestre = 24 horas (tiempo de una rotación de la Tierra sobre su eje) Debido a su forma orbital unica, los Molniya son síncronos con la rotación de la Tierra. De las 12 horas de su órbita pasan 11 sobre el hemisferio norte. Los satélites como el sistema Molniya se clasifican a veces como de órbita muy elíptica (HEO, High Elliptical Orbit) 14

15 Satélites Geoestacionarios (geosíncronos) Describen órbitas sobre el ecuador, con la misma velocidad angular que la Tierra. Parecen estar en un lugar fijo sobre un punto en la superficie terrestre. Un solo satélite GEO de gran altitud puede proporcionar comunicaciones confiables aprox. a un 40% de la superficie terrestre. Satélites Geoestacionarios (geosíncronos) Los satélites permanecen en órbita como resultado del equilibrio de fuerzas. (centrifuga vs gravitacional). A muy alta velocidad: (F. Centrifuga > F. Gravedad) => al espacio A muy baja velocidad: (F. Centrifuga < F. Gravedad) => a Tierra. 15

16 Satélites Geoestacionarios (geosíncronos) Ya que su órbita es circular, la velocidad angular del satélite es constante. Los satélites GEO se encuentran a una altitud sobre el nivel medio del mar de 35,768 Km. Cúal será la velocidad angular de un satélite GEO? Datos: h=35,768 Km Rt=6,378 Km (radio de la Tierra) Satélites Geoestacionarios (geosíncronos) Cúal sera el tiempo de retardo de propagación por viaje redondo de una señal a un satélite GEO? Idealmente, los satélites GEO deberían permanecer estacionarios sobre el lugar elegido sobre le ecuador, sin embargo, el Sol, la Luna, los vientos solares y el hecho de que la Tierra no es perfectamente esférica hacen que los satélites GEO se aparten en forma gradual de sus lugares asignados. Creando órbitas llamadas inclinadas estacionarias. 16

17 Satélites Geoestacionarios (geosíncronos) Para corregir el problema, los operadores en tierra deben ajustar en forma periódica las posiciones del satélite. Si no lo hacen, la desviación respecto al plano ecuatorial de los satélites GEO puede ser de 0.6 a 0.9 por año. Al proceso de maniobrar para mantener un satélite dentro de su órbita preasignada se llama mantenimiento de estación. Órbita de Clarke A una órbita geosíncrona se le llama tambien órbita de Clarke, o cinturón de Clarke, en honor de Artrhur C. Clarke, ya que postulo su existencia en 1945 y la propuso para uso de satélites de comunicaciones. La Órbita de Clarke cumple con las siguiente especificaciones: 1.- Directamente arriba del ecuador. 2.- Misma dirección y velocidad que la Tierra. 3.- Altitud de 35,768 Km. 4.- Una revolución cada 24 horas. 17

18 Tres satélites en órbita de Clarke, a 120 de longitud uno de otro, proporcionan comunicaciones en todo el globo terrestre, excepto los polos. Satélites Geoestacionarios (geosíncronos) Ventajas (+) Los satélites GEO permanecen casi estacionarios con respecto a una estación terrestre, por lo tanto, no se necesita costoso equipo de rastreo. (+) Los satélites GEO están disponibles para todas las estaciones dentro de su sombra el 100% del tiempo. (+) No hay necesidad de conmutar de un satélite GEO a otro porque pasen por su respectiva órbita. 18

19 Satélites Geoestacionarios (geosíncronos) Desventajas (+) Los satélites GEO requieren a bordo dispositivos complicados y pesados de propulsión para mantener su órbita. (+) Los satélites GEO están a gran altura e introducen retardos de propagación mayores. (400 a 500ms) (+) Los satélites GEO requieren mayor potencia de tx y receptores más sensibles, por la distancia mayor. (+) Se requieren artificios espaciales de gran precisión para poner en órbita un satélite GEO, y para mantenerlo en ella. Angulos Visuales de una Antena Para optimizar el funcionamiento de un sistemas de comunicación satelital, la dirección de una antena de estación terrestre (la mira) se debe apuntar directamente al satélite. Para lo anterior se deben determinar dos ángulos: Ángulo de Elevación. Ángulo de Azimut. (Angulos Visuales de la antena) 19

20 NOTA: En el caso de los satélites GEO, los ángulos visuales de las antenas terrestres solo se deben ajustar una vez. La ubicación de un satélite se suele especificar en terminos de latitud y longitud, en forma similar a como se ubica un punto sobre la Tierra. Ya que un satelite debido a su altitud no cuenta con latitud ni longitud, por tanto, su lugar se identifica con un punto sobre la superficie de la Tierra directamente bajo el satélite. Dicho punto es llamado: Punto Subsatelital (SSP, subsatellite point) Coordenadas Terrestres Coordenadas Normales de latitud y longitud: La convención normal de ángulos de longitud especifica entre 0 y 180 al este o al oeste del meridiano de Greenwich. Las latitudes del Hemisferio Norte son ángulos de 0 a 90 N, y las del Hemisferio Sur son de 0 a 90 S. 20

21 Ángulo de Elevación Es el ángulo vertical que se forma entre la dirección de movimiento de una onda electromagnética irradiada por una antena de estación terrestre que apunta directamente hacia un satélite, y el plano horizontal. Ángulo de Elevación Mientra menor es el ángulo de elvación, la distancia que debe recorrer una onda propagada a travéz de la atmósfera terrestre es mayor. Como en el caso de cualquier onda propagada por la atmósfera, sufre absorción, y también se puede contaminar mucho con ruido. Se considera que 5 es el angulo de elevación mínimo aceptable. 21

22 Atenuación por absorción atmosférica en la banda de 6/4 Ghz. Ángulo de Azimut Es la distancia angular horizontal a una dirección de referencia, que puede ser el punto sur o norte del horizonte. Es el ángulo horizontal de apuntamiento de una antena de estación terrestre. 22

23 Ángulo de Azimut En navegación, el azimut se suele medir en referencia al norte (0 ). Sin embargo, para las estaciones terrestres del Hemisferio Norte con satélites GEO la referencia es el sur (180 ). 23

24 Determinar Ángulos Visuales para un satélite GEO Los ángulos de elevación y azimut dependen de la latitud y longitud de la estación terrestre, y del satélite. 1.- Determinar la localización exacta de la estación terrestre. 2.- Determinar la longitud del satélite de interés. 3.- Calcular la diferencia, en grados ( L), entre la longitud del satélite y la de la estación terrestre. 4.- Determinar ángulo de azimut y elevación por medio de las figuras y

25 Satélites en órbitas geosíncronas GEO. ( O) 25

26 Determinar Ángulos Visuales para un satélite GEO Ejemplo: Estación: Houston, TX. (95 O, 29 N) Satélite: Satcom I (135 O) 26

Unidad 5. Aplicaciones

Unidad 5. Aplicaciones Unidad 5. Aplicaciones 5.1 Comunicaciones por Microondas. 5.2 Sistemas de Telecomunicaciones. 5.3 Comunicaciones Satelitales. 5.4 Comunicaciones Opticas. 5.5 Redes de Comunicación. 1 Orbitas de Satélites

Más detalles

Comunicaciones satelitales

Comunicaciones satelitales C A P Í T U L O 18 Comunicaciones satelitales INTRODUCCIÓN En términos astronómicos, un satélite es un cuerpo celeste que gira en órbita en torno a un planeta (por ejemplo, la Luna es un satélite de la

Más detalles

Ingeniería de Sistemas Espaciales

Ingeniería de Sistemas Espaciales Ingeniería de Sistemas Espaciales Aplicado a una misión CanSat Introducción a la mecánica orbital 2 Objetivos: Describir y explicar los elementos orbitales clásicos (EOCs). Usar los EOCs para describir

Más detalles

ASPECTOS ORBITALES DE UN SATELITE DE COMUNICACIONES

ASPECTOS ORBITALES DE UN SATELITE DE COMUNICACIONES GUIA DE LECTURA PARA LA ASPECTOS ORBITALES DE UN SATELITE DE COMUNICACIONES Orbitas Características Transferencias Lanzamientos POR SILCAR PÉREZ APONTE 2012 BIBLIOGRAFÍA Uso eficiente de la órbita de los

Más detalles

Términos y definiciones relativos a radiocomunicaciones espaciales

Términos y definiciones relativos a radiocomunicaciones espaciales Términos y definiciones relativos a radiocomunicaciones espaciales Los términos y definiciones concernientes a los sistemas, servicios y estaciones espaciales no se incluyen en el presente Anexo, por figurar

Más detalles

Misiones Geocéntricas(Planetocéntricas)

Misiones Geocéntricas(Planetocéntricas) Misiones Geocéntricas(Planetocéntricas) 1. 2. 3. 4. Órbitas de Aplicación Trazas Cobertura Visibilidad Mar-12-08 Rafael Vázquez Valenzuela Vehículos Espaciales y Misiles 1 1. Órbitas de Aplicación Órbita

Más detalles

Comunicaciones Satelitales. Expositor : Ing. Carlos A. Heredia F.

Comunicaciones Satelitales. Expositor : Ing. Carlos A. Heredia F. Comunicaciones Satelitales Expositor : Ing. Carlos A. Heredia F. Qué es un satélite de comunicaciones? Un retransmisor radioeléctrico en el espacio Recibe, amplifica y reorienta señales hacia la tierra

Más detalles

RECOMENDACIÓN UIT-R S * Términos y definiciones relativos a radiocomunicaciones espaciales

RECOMENDACIÓN UIT-R S * Términos y definiciones relativos a radiocomunicaciones espaciales Rec. UIT-R S.673-1 1 RECOMENDACIÓN UIT-R S.673-1 * Términos y definiciones relativos a radiocomunicaciones espaciales La Asamblea de Radiocomunicaciones de la UIT, (Cuestión UIT-R 209/4) (1990-2001) considerando

Más detalles

FA FCP m k d d T d T d

FA FCP m k d d T d T d Concepto de campo: Se define un campo como una zona del espacio en la que se deja sentir una magnitud; a cada punto del espacio se le puede dar un valor de esa magnitud en un instante determinado. Los

Más detalles

resolución Dpto. de Ingeniería Cartográfica Carlos Pinilla Ruiz resolución Ingeniería Técnica en Topografía lección 7 Teledetección

resolución Dpto. de Ingeniería Cartográfica Carlos Pinilla Ruiz resolución Ingeniería Técnica en Topografía lección 7 Teledetección lección 7 1 sumario 2 Introducción. Tipos de. Resolución espacial. Resolución espectral. Resolución radiométrica. Resolución temporal. Relación entre las distintas resoluciones. introducción 3 Resolución

Más detalles

Última modificación: 10 de mayo de 2010. www.coimbraweb.com

Última modificación: 10 de mayo de 2010. www.coimbraweb.com ORBITAS SATELITALES Contenido 1.- Propiedades de las órbitas. 2.- Tipos de órbitas. 3.- Órbita geoestacionaria GEO. 4.- Órbitas de media altura MEO. 5.- Órbitas de baja altura LEO. Última modificación:

Más detalles

Más ejercicios y soluciones en fisicaymat.wordpress.com

Más ejercicios y soluciones en fisicaymat.wordpress.com GRAVITACIÓN 1- a) Escriba y comente la Ley de Gravitación Universal. b) El satélite Jasón-2 realiza medidas de la superficie del mar con una precisión de pocos centímetros para estudios oceanográficos.

Más detalles

Seguimiento orbital de satélites

Seguimiento orbital de satélites Seguimiento orbital de satélites Título: Seguimiento orbital de satélites. Target: Bachillerato de Ciencias y Tecnología. Asignatura: Tecnología, Informática y Física. Autor: Cristian Fernández Torrecillas,

Más detalles

MOVIMIENTOS DE LA TIERRA

MOVIMIENTOS DE LA TIERRA MOVIMIENTOS DE LA TIERRA Está sujeta a más m s de 10 movimientos Movimiento de rotación Movimiento de traslación 930 millones de km Distancia media al sol 1 U.A. (150 millones km) 30 km por segundo Órbita

Más detalles

Medios de transmisión

Medios de transmisión Medios de transmisión MODOS DE TRANSMISIÓN MEDIOS FÍSICOS GUIADOS PAR TRENZADO COAXIAL FIBRA ÓPTICA NO GUIADOS RADIO MICROONDAS SATÉLITE Espectro electromagnético PAR TRENZADO PAR TRENZADO Consiste en

Más detalles

Perturbaciones orbitales

Perturbaciones orbitales Comunicaciones por Satélite Curso 8-9 9 Perturbaciones orbitales Ramón Martínez Rodríguez-Osorio Miguel Calvo Ramón Comunicaciones por Satélite. Curso 8-9. Ramón Martínez, Miguel Calvo CSAT 1 Perturbaciones.

Más detalles

Perturbaciones orbitales

Perturbaciones orbitales Comunicaciones por Satélite Curso 9/1 Perturbaciones orbitales Ramón Martínez Rodríguez-Osorio Miguel Calvo Ramón CSAT 1 Perturbaciones. Clasificación Atendiendo a la naturaleza de la fuerza que las origina:

Más detalles

C o o n n tte e n n iid d o o d d e e ll c c u u r r s s o E n n e e s s tte e c c a a p p ííttu u llo

C o o n n tte e n n iid d o o d d e e ll c c u u r r s s o E n n e e s s tte e c c a a p p ííttu u llo ! Propagación de ondas electromagnéticas! Modulación! Métodos de corrección de errores! Aspectos regulatorios en radioenlaces! Estructura del radio digital! Diseño de un radioenlace! Nuevas aplicaciones

Más detalles

GRAVITACIÓN (parte 1)

GRAVITACIÓN (parte 1) IES LOPE DE VEGA 2º de BACHILLERATO (a distancia) CUESTIONES, PROBLEMAS Y EJERCICIOS DE FÍSICA GRAVITACIÓN (parte 1) NIVEL BÁSICO 01 Halle las velocidades lineal, angular y areolar con que la Tierra gira

Más detalles

Escuela de Agrimensura

Escuela de Agrimensura Escuela de Agrimensura Coordenadas Geográficas Meridianos y paralelos Ecuador Meridiano de Greenwich Coordenada ascendente Longitud: ángulo entre el meridiano de Greenwich y el meridiano del lugar. Coordenada

Más detalles

Material didáctico de apoyo para Geografía Realización: Mtra. Ligia Kamss Paniagua

Material didáctico de apoyo para Geografía Realización: Mtra. Ligia Kamss Paniagua Material didáctico de apoyo para Geografía Realización: Mtra. Ligia Kamss Paniagua La forma de la Tierra: GEOIDE DE REVOLUCIÓN, es un elipsoide de forma irregular, aplastado por los polos y deformado por

Más detalles

Campo gravitatorio. 1. A partir de los siguientes datos del Sistema Solar: Periodo orbital (años)

Campo gravitatorio. 1. A partir de los siguientes datos del Sistema Solar: Periodo orbital (años) Campo gravitatorio 1 Campo gravitatorio Planeta 1. A partir de los siguientes datos del Sistema Solar: Distancia al Sol (U.A.) Periodo orbital (años) R Planeta /R T M Planeta /M T Venus 0,723 0,6152 0,949

Más detalles

Medios de transmisión

Medios de transmisión Medios de transmisión El medio de transmisión es el camino físico entre el transmisor y el receptor. En los medios guiados las ondas electromagnéticas se transmiten a través de un medio sólido, como por

Más detalles

RECOMENDACIÓN UIT-R S Caracterización de los sistemas de tipo de órbitas muy elípticas en el servicio fijo por satélite

RECOMENDACIÓN UIT-R S Caracterización de los sistemas de tipo de órbitas muy elípticas en el servicio fijo por satélite Rec. UIT-R S.1758 1 RECOMENDACIÓN UIT-R S.1758 Caracterización de los sistemas de tipo de órbitas muy elípticas en el servicio fijo por satélite (2006) Cometido En esta Recomendación se describen sistemas

Más detalles

Capítulo 6. Requerimientos de apuntamiento satelital en órbita baja para equipos de comunicaciones Introducción

Capítulo 6. Requerimientos de apuntamiento satelital en órbita baja para equipos de comunicaciones Introducción Capítulo 6 Requerimientos de apuntamiento satelital en órbita baja para equipos de 6.1. Introducción Actualmente la simulación es una herramienta importante para el desarrollo y predicción del comportamiento

Más detalles

LABORATORIO DE SISTEMAS DE TELECOMUNICACIONES EXPERIENCIA: RECEPCIÓN SATELITAL 1. OBJETIVOS 2. INTRODUCCIÓN

LABORATORIO DE SISTEMAS DE TELECOMUNICACIONES EXPERIENCIA: RECEPCIÓN SATELITAL 1. OBJETIVOS 2. INTRODUCCIÓN LABORATORIO DE SISTEMAS DE TELECOMUNICACIONES EXPERIENCIA: RECEPCIÓN SATELITAL 1. OBJETIVOS Los objetivos de esta experiencia son conocer las características generales más relevantes de los sistemas satelitales

Más detalles

Astronomía Planetaria

Astronomía Planetaria Astronomía Planetaria Clase 4 El tiempo Mauricio Suárez Durán Escuela de Física Grupo Halley de Astronomía y Ciencias Aeroespaciales Universidad Industrial de Santander Bucaramanga, II semestre de 2013

Más detalles

COMUNICACIONES SATELITALES

COMUNICACIONES SATELITALES º COMUNICACIONES SATELITALES Un satélite de comunicaciones es un satélite artificial que gira en el espacio con el propósito de servir como repetidor a servicios de telecomunicaciones usando frecuencias

Más detalles

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS SATÉLITES 1. El período de rotación de la Tierra alrededor del Sol es un año y el radio de la órbita es 1,5 10 11 m. Si Júpiter tiene un período de aproximadamente

Más detalles

estaciones el pasaje del sol por los solsticios y los equinoccios determina el comienzo de las estaciones

estaciones el pasaje del sol por los solsticios y los equinoccios determina el comienzo de las estaciones estaciones el pasaje del sol por los solsticios y los equinoccios determina el comienzo de las estaciones 20-21 de marzo comienza el otoño en el hemisferio sur y la primavera en el hemisferio norte 20-21

Más detalles

Aeronaves y Vehículos Espaciales

Aeronaves y Vehículos Espaciales Aeronaves y Vehículos Espaciales Tema 8 Mecánica Orbital Sergio Esteban Roncero Francisco Gavilán Jiménez Departamento de Ingeniería Aeroespacial y Mecánica de Fluidos Escuela Superior de Ingenieros Universidad

Más detalles

UNIVERSIDAD ESTATAL DE BOLIVAR

UNIVERSIDAD ESTATAL DE BOLIVAR SERVICIOS 44 - CIENCIAS FISICAS UNIVERSIDAD ESTATAL DE BOLIVAR INSTRUCCIÓN: ELIJA LA RESPUESTA CORRECTA 1. Cuál de las siguientes opciones se ajusta a la definición de fotointerpretación? A. Estudio de

Más detalles

FA FCP m k d d T d T d

FA FCP m k d d T d T d Concepto de campo: Se define un campo como una zona del espacio en la que se deja sentir una magnitud; a cada punto del espacio se le puede dar un valor de esa magnitud en un instante determinado. Los

Más detalles

ADRIAN ALVAREZ FUENTESAUCO 1 BACH A. Instrumentos de observación:

ADRIAN ALVAREZ FUENTESAUCO 1 BACH A. Instrumentos de observación: ADRIAN ALVAREZ FUENTESAUCO 1 BACH A Instrumentos de observación: introduccion Antes de comenzar a hablar de los instrumentos de observación astronómica es necesario definir que es la astronomía: La astronomia

Más detalles

Satélites artificiales

Satélites artificiales Satélites artificiales Cátedra José Celestino Mutis Universidad Nacional de Colombia J. Gregorio Portilla Observatorio Astronómico Nacional Antes del 4 de octubre de 1957 384000 km Mecánica celeste Isaac

Más detalles

Curso Taller Recepción de Señales Satelitales. M en C José Moctezuma Hernández

Curso Taller Recepción de Señales Satelitales. M en C José Moctezuma Hernández Curso Taller Recepción de Señales Satelitales M en C José Moctezuma Hernández Elementos que componen el sistema de comunicaciones por satélite 1.) Satélite 2.) Centro de control 3.) Estación terrena

Más detalles

Arq. Pilar Veizaga Ponce de León

Arq. Pilar Veizaga Ponce de León Está formado por el Sol y una serie de cuerpos que están ligados con esta estrella por la gravedad: ocho grandes planetas Sistema solar EL SISTEMA SOLAR ES UN CONJUNTO FORMADO POR EL SOL Y LOS CUERPOS

Más detalles

Coordenadas de la traza

Coordenadas de la traza El punto subsatélite (ground track) Es la intersección sobre la superficie terrestre de la línea que une la posición del satélite en órbita con el centro de la Tierra La traza del satélite es la proyección

Más detalles

En esta unidad vamos a hablar sobre comunicaciones por satélite. Los satélites son útiles para conectar áreas remotas o cuando se quiere retransmitir

En esta unidad vamos a hablar sobre comunicaciones por satélite. Los satélites son útiles para conectar áreas remotas o cuando se quiere retransmitir En esta unidad vamos a hablar sobre comunicaciones por satélite. Los satélites son útiles para conectar áreas remotas o cuando se quiere retransmitir datos o videos con una mínima infraestructura. Un satélite

Más detalles

LEY DE GRAVITACIÓN UNIVERSAL Y TERCERA LEY DE KEPLER

LEY DE GRAVITACIÓN UNIVERSAL Y TERCERA LEY DE KEPLER LEY DE GRAVITACIÓN UNIVERSAL Y TERCERA LEY DE KEPLER Ejercicio 1. Septiembre 2.011 a. Exprese la aceleración de la gravedad en la superficie de un planeta en función de la masa del pianeta, de su radio

Más detalles

Comunicaciones Satelitales

Comunicaciones Satelitales Comunicaciones Satelitales Un satélite de comunicaciones es un satélite artificial que gira en el espacio con el propósito de servir como repetidor a servicios de telecomunicaciones usando frecuencias

Más detalles

SEMINARIO INTERACCIÓN GRAVITATORIA

SEMINARIO INTERACCIÓN GRAVITATORIA Capítulo 1 SEMINARIO INTERACCIÓN GRAVITATORIA 1. La masa de la Luna es 0,012 veces la masa de la Tierra, el radio lunar es 0,27 veces el radio de la Tierra y la distancia media entre sus centros es 60,3

Más detalles

CAMPO GRAVITATORIO º bachillerato FÍSICA

CAMPO GRAVITATORIO º bachillerato FÍSICA Ejercicio 1. Modelo 2.014 La masa del Sol es 333183 veces mayor que la de la Tierra y la distancia que separa sus centros es de 1,5 10 8 km. Determine si existe algún punto a lo largo de la línea que los

Más detalles

Algo de Cultura General: Satélites

Algo de Cultura General: Satélites Algo de Cultura General: Satélites A menudo nos preguntan dónde está y cómo ha llegado hasta allí el satélite que transmite la señal que deseamos captar. Nuestro satélite artificial es un objeto que gira

Más detalles

Técnicas de Análisis Espacial

Técnicas de Análisis Espacial Técnicas de Análisis Espacial Geodesia Es la ciencia que estudia la forma y dimensiones de la Tierra integrando conceptos: Unidad 2 Conceptos de Geodesia Topográficos (distribución del relieve), Geofísicos

Más detalles

Profesorado CONSUDEC

Profesorado CONSUDEC Profesorado CONSUDEC Astronomía (Año 2011) UNIDAD 1 La esfera celeste: El concepto de esfera celeste fue introducido en las épocas de la astronomía antigua y puede comprenderse perfectamente cuando uno

Más detalles

FÍSICA de 2º de BACHILLERATO MECÁNICA E INTERACCIÓN GRAVITATORIA

FÍSICA de 2º de BACHILLERATO MECÁNICA E INTERACCIÓN GRAVITATORIA FÍSICA de 2º de BACHILLERATO MECÁNICA E INTERACCIÓN GRAVITATORIA EJERCICIOS RESUELTOS QUE HAN SIDO PROPUESTOS EN LOS EXÁMENES DE LAS PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS EN LA COMUNIDAD DE MADRID

Más detalles

1. Historia de las Comunicaciones Vía satélite. 2. Fundamentos de los sistemas de comunicaciones vía satélite.

1. Historia de las Comunicaciones Vía satélite. 2. Fundamentos de los sistemas de comunicaciones vía satélite. Índice. 1. Historia de las Comunicaciones Vía satélite. 2. Fundamentos de los sistemas de comunicaciones vía satélite. 3. Arquitectura t de los satélites de comunicaciones. i 4. Tecnología de los sistemas

Más detalles

EJERCICIOS DE SELECTIVIDAD CAMPO GRAVITACIONAL

EJERCICIOS DE SELECTIVIDAD CAMPO GRAVITACIONAL EJERCICIOS DE SELECTIVIDAD CAMPO GRAVITACIONAL P1- JUNIO 2010 A) Deduzca la expresión de la energía cinética de un satélite en órbita circular alrededor de un planeta en función del radio de la órbita

Más detalles

TEMA 2. CAMPO GRAVITATORIO. (SELECTIVIDAD 2014, 2013, 2012)

TEMA 2. CAMPO GRAVITATORIO. (SELECTIVIDAD 2014, 2013, 2012) TEMA 2. CAMPO GRAVITATORIO. (SELECTIVIDAD 2014, 2013, 2012) CUESTIONES 1.- a.- Explique las características del campo gravitatorio de una masa puntual. b.- Dos partículas de masas m y 2m están separadas

Más detalles

Olimpíada Argentina de Astronomía Examen de Preselección 7 de Septiembre de 2015

Olimpíada Argentina de Astronomía Examen de Preselección 7 de Septiembre de 2015 Docente/Tutor: Establecimiento Educativo: _ SEGUNDO NIVEL: Examen para alumnos de 4 to año y años superiores. Sección A Completar la casilla con V o F (Verdadero o Falso) según corresponda. A.1) Debido

Más detalles

AST #astro0111-1

AST #astro0111-1 AST 011 www.astro.puc.cl/~npadilla/docencia #astro0111-1 Escala de distancias El salto puede ser tanto como 500.000.000.000.000.000.000. 000 = 5x10 23 Comparación aproximada de tamaños Sobre la comparación

Más detalles

ENERGÉTICA SOLAR Y TRANSMISIÓN DE LA ENERGÍA

ENERGÉTICA SOLAR Y TRANSMISIÓN DE LA ENERGÍA ENERGÉTICA SOLAR Y TRANSMISIÓN DE LA ENERGÍA CONCEPTOS ELEMENTALES DE ASTRONOMÍA EN CUANTO A LA POSICIÓN SOLAR. La cantidad de radiación solar que llega a la tierra es inversamente proporcional al cuadrado

Más detalles

1. Suponiendo que los planetas Venus y la Tierra describen órbitas circulares alrededor del Sol, calcula: =365 (1,08. 1, m

1. Suponiendo que los planetas Venus y la Tierra describen órbitas circulares alrededor del Sol, calcula: =365 (1,08. 1, m Física º Bachillerato Ejercicios resueltos 1. ASRONOMÍA 1.1. Introducción 1.. Astronomía pre-newtoniana 1. Suponiendo que los planetas Venus y la ierra describen órbitas circulares alrededor del Sol, calcula:

Más detalles

v m 2 d 4 m d 4 FA FCP m k m m m m m r

v m 2 d 4 m d 4 FA FCP m k m m m m m r Concepto de campo: Se define un campo como una zona del espacio en la que se deja sentir una magnitud; a cada punto del espacio se le puede dar un valor de esa magnitud en un instante determinado. Los

Más detalles

Física 2º Bachillerato Curso

Física 2º Bachillerato Curso 1 Cuestión (2 puntos) Madrid Junio 1996 Cuando una partícula se mueve en un campo de fuerzas conservativo sometida a la acción de la fuerza del campo, existe una relación entre las energías potencial y

Más detalles

Dinámica de la rotación Momento de un vector con respecto a un punto: vectores r y F y el sentido viene dado por la regla

Dinámica de la rotación Momento de un vector con respecto a un punto: vectores r y F y el sentido viene dado por la regla 00-0 Dinámica de la rotación Momento de un vector con respecto a un punto: M El momento del vector con respecto al punto O se define como el producto vectorial M r O Es un vector perpendicular al plano

Más detalles

Capítulo 1 Satélites Geoestacionarios

Capítulo 1 Satélites Geoestacionarios Capítulo 1 Satélites Geoestacionarios Los satélites artificiales nacieron a partir de la carrera tecnológica realizada entre Estados Unidos y la extinta Unión Soviética a mediados del siglo XX, siendo

Más detalles

El rango de las longitudes de honda de la radiacion solar va de 250 a 5000 nm. (o su equivalencia a un rango de.25 a 5 micrometros).

El rango de las longitudes de honda de la radiacion solar va de 250 a 5000 nm. (o su equivalencia a un rango de.25 a 5 micrometros). UNAM ESPECIALIZACION EN HELIDISEÑO DR. MULIA ARQ. FRANCISCO AMANTE VILLASEÑOR. RADIACION El sol es el producto de una reacción de fusión nuclear en la cual 4 protones de hidrogeno se combinan para formar

Más detalles

Movimientos de la Tierra. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo,

Movimientos de la Tierra. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo, Movimientos de la Tierra. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo, 2007. 81 Indice. 1. Movimiento de Rotación de la Tierra. 2. Movimiento Aparente de la Bóveda Celeste. 3. Orto y Ocaso.

Más detalles

La Esfera Celeste. Constelaciones: 88 regiones. Cuadrante y Sextante. Ángulos. Las 13 constelaciones del zodíaco:

La Esfera Celeste. Constelaciones: 88 regiones. Cuadrante y Sextante. Ángulos. Las 13 constelaciones del zodíaco: La Esfera Celeste Las 13 constelaciones del zodíaco: Constelaciones: 88 regiones Recorrido del Sol durante el año semi-rectangulares en el cielo Las constelaciones del hemisferio norte llevan nombres de

Más detalles

Ingeniería de Sistemas Espaciales

Ingeniería de Sistemas Espaciales Ingeniería de Sistemas Espaciales Aplicado a una misión CanSat Ejercicio: introducción a la mecánica orbital. Instrucciones: Revise cuidadosamente el material que a continuación se presenta y resuelva

Más detalles

El tema que vamos a ver en esta unidad, el sistema de posicionamiento global, no está directamente relacionada con las redes informáticas que usamos

El tema que vamos a ver en esta unidad, el sistema de posicionamiento global, no está directamente relacionada con las redes informáticas que usamos El tema que vamos a ver en esta unidad, el sistema de posicionamiento global, no está directamente relacionada con las redes informáticas que usamos todos los días, pero es de hecho una especie de red

Más detalles

Seguimiento de satélites y Software asociado

Seguimiento de satélites y Software asociado Cursos verano 2014/2015 Seguimiento satélites y Software asociado Ana Arboleya Arboleya Departamento Ingeniería Eléctrica Campus Universitario 33204 Gijón, Asturias, Spain e-mail: aarboleya@tsc.uniovi.es

Más detalles

Mecánica Orbital y Vehículos Espaciales

Mecánica Orbital y Vehículos Espaciales Mecánica Orbital y Vehículos Espaciales Tema 6: Misiones geocéntricas órbitas de aplicación. Rafael Vázquez Valenzuela Departmento de Ingeniería Aeroespacial Escuela Superior de Ingenieros, Universidad

Más detalles

Olimpíada Argentina de Astronomía Examen Final 7 de Noviembre de Sección A Completar la casilla con V o F (Verdadero o Falso) según corresponda.

Olimpíada Argentina de Astronomía Examen Final 7 de Noviembre de Sección A Completar la casilla con V o F (Verdadero o Falso) según corresponda. Docente/Tutor: Establecimiento Educativo: _ SEGUNDO NIVEL: Examen para alumnos de 4 to año y años superiores. Sección A Completar la casilla con V o F (Verdadero o Falso) según corresponda. A.1) Entre

Más detalles

EL UNIVERSO Y EL SISTEMA SOLAR. El Universo es toda la materia y toda la energía que existen, así como el espacio que las contiene.

EL UNIVERSO Y EL SISTEMA SOLAR. El Universo es toda la materia y toda la energía que existen, así como el espacio que las contiene. EL UNIVERSO Y EL SISTEMA SOLAR Qué es el Universo? El Universo es toda la materia y toda la energía que existen, así como el espacio que las contiene. Las Galaxias. Las Galaxias son los conjuntos inmensos

Más detalles

Física A.B.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física A.B.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física A.B.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS 1. La luz del Sol tarda 5 10² s en llegar a la Tierra y 2,6 10³ s en llegar a Júpiter. Calcula: a) El período de Júpiter orbitando alrededor del Sol.

Más detalles

5) Un satélite artificial orbita a Km. sobre la superficie terrestre. Calcula el período de rotación. (Rt = 6370 Km. g = 9,81 N/Kg.

5) Un satélite artificial orbita a Km. sobre la superficie terrestre. Calcula el período de rotación. (Rt = 6370 Km. g = 9,81 N/Kg. Problemas PAU Campo Gravitatorio 1) El valor promedio del radio terrestre es 6370 Km. Calcular la intensidad del campo gravitatorio: a) En un punto situado a una altura doble del radio de la Tierra b)

Más detalles

Problemas y cuestiones del Tema 3

Problemas y cuestiones del Tema 3 Problemas y cuestiones del Tema 3 (problemas o partes de problema marcados con *: para ampliar, con :problema teórico complementario a teoría) Parte 1 1. (*) Demostrar las fórmulas de la trigonometría

Más detalles

Sistema de Posicionamiento Global (GPS)

Sistema de Posicionamiento Global (GPS) Sistema de Posicionamiento Global (GPS) Introducción Para llevar a cabo levantamientos de alta precisión geodésico-topográficos es necesario utilizar equipos de medición de la tecnología más avanzada,

Más detalles

Energía potencial gravitatoria (largo alcance) Comparo con el caso general. Se acostumbra tomar nula a la energía potencial gravitatoria cuando r

Energía potencial gravitatoria (largo alcance) Comparo con el caso general. Se acostumbra tomar nula a la energía potencial gravitatoria cuando r Energía potencial gravitatoria (largo alcance) Comparo con el caso general Se acostumbra tomar nula a la energía potencial gravitatoria cuando r 1 Propiedades de los campos de fuerzas conservativos independiente

Más detalles

LEYES DE KEPLER (Johannes Kepler )

LEYES DE KEPLER (Johannes Kepler ) LEYES DE KEPLER (Johannes Kepler 1571-1630) ü Matemático y astrónomo alemán ü Fue colaborador de Tycho Brahe, de quien obtuvo las mediciones que le permitieron plantear sus leyes del movimiento planetario

Más detalles

UD3.4.- SISTEMAS GPS

UD3.4.- SISTEMAS GPS UD3.4.- SISTEMAS GPS GPS UN SISTEMA GLOBAL DE POSICIONAMIENTO El sistema GPS fue puesto en marcha por el departamento de defensa de EEUU en 1973 Los satelites del sistema GPS proporcionan señales que permiten

Más detalles

Astrofísica - I Introducción. 2 - La Esfera Celeste

Astrofísica - I Introducción. 2 - La Esfera Celeste Astrofísica - I Introducción 2 - La Esfera Celeste Astrofísica - I Introducción 2 - La Esfera Celeste Astronomía de posición Sistema de coordenadas horizontales Movimiento diurno de las estrellas Sistema

Más detalles

FÍSICA 2º Bachillerato Ejercicios: Interacción gravitatoria

FÍSICA 2º Bachillerato Ejercicios: Interacción gravitatoria 1(9) Ejercicio 1 Un bloque de 50 Kg de masa asciende una distancia de 6 m por un plano inclinado 37 º y que presenta un coeficiente de rozamiento de 0 2, aplicándole una fuerza constante de 490 N paralela

Más detalles

FÍSICA. 2º BCN CONTROL BLOQUE I Examen 1

FÍSICA. 2º BCN CONTROL BLOQUE I Examen 1 Examen 1 1. La ley de la gravitación universal de Newton. 2. Dibuja la órbita de un planeta alrededor del Sol y las fuerzas que intervienen en el movimiento de aquél, así como la velocidad del planeta

Más detalles

4º E.S.O. FÍSICA Y QUÍMICA 9. FUERZAS GRAVITATORIAS. Dpto. de Física y Química. R. Artacho

4º E.S.O. FÍSICA Y QUÍMICA 9. FUERZAS GRAVITATORIAS. Dpto. de Física y Química. R. Artacho 4º E.S.O. FÍSICA Y QUÍMICA 9. FUERZAS GRAVITATORIAS R. Artacho Dpto. de Física y Química Índice CONTENIDOS 1. Revisión de conceptos 2. La fuerza gravitatoria 3. El peso y la aceleración de la gravedad

Más detalles

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS LEYES DE KEPLER 1. El período de rotación de la Tierra alrededor del Sol es un año y el radio de la órbita es 1,5 10¹¹ m. Si Júpiter tiene un período de

Más detalles

La Tierra, un planeta singular

La Tierra, un planeta singular La Tierra, un planeta singular UNIDAD 1 En esta unidad 1.- El universo Conceptos fundamentales La Tierra, el planeta de la vida 2.- Movimientos de la Tierra Rotación Definición Consecuencias Traslación

Más detalles

Junio Pregunta 1A.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita

Junio Pregunta 1A.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita Junio 2012. Pregunta 1A.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita 4 circular a una altura de 2 10 km sobre su superficie. a) Calcule la velocidad orbital del satélite

Más detalles

EL CAMPO GRAVITATORIO

EL CAMPO GRAVITATORIO EL CAMPO GRAVITATORIO 1. A qué altura el valor de la gravedad se reduce a la mitad del valor que tiene en la superficie terrestre? S: h = 0,41 R T 2. Si la densidad de la Tierra fuese tres veces mayor,

Más detalles

Figura 2.1: La esfera celeste con el observador en su centro.

Figura 2.1: La esfera celeste con el observador en su centro. Capítulo 2 LA ESFERA CELESTE 2.1. Significado Cuando observamos el cielo, tenemos la sensación de que es una enorme esfera poblada de astros que nos rodea. A simple vista no podemos saber cuáles astros

Más detalles

( 2d. j Actividades. j Ciencias, tecnología y sociedad

( 2d. j Actividades. j Ciencias, tecnología y sociedad 6 0 EL CAMPO GRAVIAORIO j Actividades 1. Por qué introduce la Física el concepto de campo? Qué otros campos de fuerzas utiliza la Física además del campo gravitatorio? La Física introduce el concepto de

Más detalles

Pruebas del movimiento de rotación de la tierra 1) péndulo de Foucault

Pruebas del movimiento de rotación de la tierra 1) péndulo de Foucault Pruebas del movimiento de rotación de la tierra 1) péndulo de Foucault plano de oscilación de un péndulo simple: plano que contiene a las fuerzas no varía con el tiempo! que actúan sobre él tensión en

Más detalles

1.- LA ESFERA CELESTE

1.- LA ESFERA CELESTE INDICE PROLOGO 1.- LA ESFERA CELESTE 1.1 Movimiento diurno de la esfera celeste 1.2 Coordenadas horizontales y horarias 1.2.1 Coordenadas horizontales 1.2.2 Coordenadas horarias 1.2.3 Paso de coordenadas

Más detalles

Tercer ciclo de primaria

Tercer ciclo de primaria Pe g fo a a to q g r uí af tu ía Tercer ciclo de primaria Galileo Galilei Johannes Kepler Primero personaliza la portada de tu cuaderno. Pega una fotografía y escribe tu nombre. Contesta las preguntas

Más detalles

Teoría de la Navegación para Patrones de Yate

Teoría de la Navegación para Patrones de Yate Teoría de la Navegación para Patrones de Yate Jordi Vilà www.patrondeyate.net Conocimientos básicos.. Eje Es el eje que atraviesa el mundo del Pn. al Ps. Polos Son los extremos superior en inferior de

Más detalles

LOS MOVIMIENTOS DE LA TIERRA

LOS MOVIMIENTOS DE LA TIERRA 1/5 LOS MOVIMIENTOS DE LA TIERRA La Tierra en su desplazamiento por la órbita solar realiza dos movimientos principales, el de rotación sobre su propio eje y el de traslación alrededor del Sol, que determinan

Más detalles

Gravitación. Área Física. Planeta. Foco. Perihelio semi-eje mayor de la elipse. excentricidad de la elipse. Afelio

Gravitación. Área Física. Planeta. Foco. Perihelio semi-eje mayor de la elipse. excentricidad de la elipse. Afelio Gravitación Área Física Resultados de aprendizaje Comprender las leyes de Kepler y la ley de gravitación universal, para su aplicación en problemas de órbitas planetarias. Contenidos Debo saber Antes de

Más detalles

Junio Pregunta 1A.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita

Junio Pregunta 1A.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita Modelo 2014. Pregunta 1B.- Los satélites Meteosat son satélites geoestacionarios, situados sobre el ecuador terrestre y con un periodo orbital de 1 día. a) Suponiendo que la órbita que describen es circular

Más detalles

ESPECIALIDAD DE ASTRONOMÍA EN 002. Club de Conquistadores ALFA & OMEGA. Misión Chilena del Pacífico

ESPECIALIDAD DE ASTRONOMÍA EN 002. Club de Conquistadores ALFA & OMEGA. Misión Chilena del Pacífico ESPECIALIDAD DE ASTRONOMÍA EN 002 Club de Conquistadores ALFA & OMEGA Misión Chilena del Pacífico Especialidad de Astronomía Requisitos 1. Responder las siguientes preguntas: a. Qué causa un eclipse? El

Más detalles

FUNDAMENTOS FÍSICOS DE LA RADIOASTRONOMÍA. CAPÍTULO 5. Orientándose en el Universo

FUNDAMENTOS FÍSICOS DE LA RADIOASTRONOMÍA. CAPÍTULO 5. Orientándose en el Universo Página principal El proyecto y sus objetivos Cómo participar Cursos de radioastronomía Material Novedades FUNDAMENTOS FÍSICOS DE LA RADIOASTRONOMÍA Índice Introducción Capítulo 1 Capítulo 2 Capítulo 3

Más detalles

FÍSICA - 2º BACHILLERATO INTERACCIÓN GRAVITATORIA - HOJA 1

FÍSICA - 2º BACHILLERATO INTERACCIÓN GRAVITATORIA - HOJA 1 FÍSICA - 2º BACHILLERATO INTERACCIÓN GRAVITATORIA - HOJA 1 1. Describe el modelo planetario de Ptolomeo. a) Ptolomeo utiliza epiciclos y deferentes. Qué son? Por qué hace uso de este artificio? b) El modelo

Más detalles

RECOMENDACIÓN UIT-R S.1593

RECOMENDACIÓN UIT-R S.1593 Rec. UIT-R S.1593 1 RECOMENDACIÓN UIT-R S.1593 Metodología para la compartición de frecuencias entre ciertos tipos de sistemas homogéneos del servicio fijo por satélite no geoestacionario en órbitas elípticas

Más detalles

Constante de gravitación universal G = 6, N m 2 /kg 2 Masa de la Tierra. R T = 6, m gravedad en la superficie terrestre g = 9,8 m/s 2

Constante de gravitación universal G = 6, N m 2 /kg 2 Masa de la Tierra. R T = 6, m gravedad en la superficie terrestre g = 9,8 m/s 2 AND 01. Un meteorito de 1000 kg colisiona con otro, a una altura sobre la superficie terrestre de 6 veces el radio de la Tierra, y pierde toda su energía cinética. a) Cuánto pesa el meteorito en ese punto

Más detalles

PROBLEMAS DE GRAVITACIÓN

PROBLEMAS DE GRAVITACIÓN PROBLEMAS DE GRAVITACIÓN 1) La masa de Marte es 6,4 10 23 kg y su radio 3400 km. a) Haciendo un balance energético, calcule la velocidad de escape desde la superficie de Marte. b) Fobos, satélite de Marte,

Más detalles