CONSTRUCCIÓN DE UN ESPECTRÓGRAFO
|
|
|
- Ana Montoya López
- hace 9 años
- Vistas:
Transcripción
1 ASTROPALMA OBSERVATORIO DE TACANDE, LA PALMA Joan Genebriera CONSTRUCCIÓN DE UN ESPECTRÓGRAFO Descripción: Un espectroscopio es un instrumento analizador de la luz, en el cual, el ojo del observador es el detector. Un espectrógrafo es también un instrumento analizador pero, en este caso, el detector es una cámara CCD. Con un espectrógrafo es posible conocer las condiciones de temperatura, campos eléctricos y magnéticos, composición química y velocidad relativa de un objeto que se encuentra a millones de kilómetros. El espectrógrafo se encuentra formado por los siguientes componentes: Rendija: La rendija es la entrada de luz del espectrógrafo. La imagen focal debe formarse justo sobre su superfície. Físicamente consiste en una delgada abertura metálica que suele tener un ancho de unas decenas de micras con el fin de seleccionar con precision un solo objeto. Las líneas que observamos en los espectros no son más que imágenes de la rendija, focalizadas por el instrumento. El instrumento esta provisto de dos rendijas, una de 62 micras y otra de 26. Esta última es la más empleada. Sólo cuando se trate de obtener un espectro de un objeto extenso y muy débil (galaxias, nebulosas, etc.) se empleará la de 62 micras. Las rendijas pueden intercambiarse en 2 minutos. nota: Pueden obtenerse en Melles Griot. USA. El colimador: Se trata de un simple doblete acromático de 120 mm. de focal que focaliza la imagen de la rendija sobre la red de difracción ( ilumina con una luz uniforme y paralela la red ). nota: Puede obtenerse en Edmundt Scientific Co. USA. La red de difracción: Una red de difracción es un analizador óptico, muy superior a un prisma, que emplea la difracción para descomponer la luz en sus componentes básicos.
2 Una red de difracción a reflexión consiste en una superficie de vidrio de precisión en donde se han grabado por un procedimiento de replicación sobre una resina, un gran número de líneas muy juntas (pueden adquirirse comercialmente hasta de L/mm). Sobre esta superficie se deposita una capa reflectante de aluminio. El aspecto de la red es parecido al de un disco de CDROM. En nuestro caso se emplea una de 1800 Líneas /mm. La red descompone la luz y la refleja con un ángulo distinto para cada longitud de onda. Una lente objetivo de alta calidad focaliza el espectro sobre una cámara CCD. nota: Puede obtenerse en Edmundt Scientific Co.USA. Lente objetivo: La luz que envía la red debe ser focalizada sobre la superficie del detector CCD con la óptica de un objetivo muy luminoso para fotografía (24x36). En este caso se empleo un objetivo 1,2/55 de la fírma Zuiko (Olympus) nota: Puede obtenerse en las tiendas Arpi y/o Casanovas, Barcelona de fotografia. Fig.1. Diagrama de componentes ópticos del espectrógrafo. El detector CCD: Se recomienda emplear un CCD aunque también puede emplearse película fotográfica de alta sensibilidad. En nuestro caso la cámara es una Starlight Xpress MX716 de 752 x 580 píxels de 8,6 micrones. nota: Puede obtenerse en Valkanik, Barcelona.
3 Mecánica: El espectrógrafo puede acoplarse directamente a cualquier telescopio Celestron o Meade. Todas las piezas que forman el instrumento están hechas con plancha de aluminio anodizado de 12 mm. Debemos tener en cuenta que a causa de la alta dispersión que posee, no es posible incluir en una sola imagen todo el espectro visible (necesitamos 7 imágenes). Por lo que es necesario seleccionar la parte del espectro que nos interesa girando un micrómetro centesimal (Mitutoyo), que manualmente inclina en fracciones de grado la red de difracción. Por consiguiente, la indicación del nónio en el micrómetro se corresponde con una relación simple con la longitud de onda lambda de la siguiente manera: 5,65 mm = Å. Fig. 2. Imagen del interior del Espectrógrafo Especificaciones finales del espectrógrafo: Dispersión: 0,79 A/pixel (a 6562 A) Resolución (R): 4900 Red de difracción: 1800 lp/mm Espectro útil: de 3702 A (UV) a 7936 A (IR) en 7 pasos Ancho de banda medio de una imagen: 613 A Guía automática: Si (ST4 u otros) Peso: 1200 g. (sin cámaras CCD, ni lampara de referencia)
4 Nota* Las longitudes de onda están expresadas en Ángstrom ( 1 Ángstrom= 10e-10 m) Sectores que componen la banda pasante útil del Espectrógrafo A B C D E F G 00,00 mm 02,00 mm 04,00 mm 06,00 mm 08,00 mm 10,00 mm 12,00 mm A A A A A A A 0,837A/pix 0,835A/pix 0,810A/pix 0,796/pix 0,763A/pix Tenemos las siguientes relaciones de S/N (señal/ruido) empleando un telescopio de 400 mm. de diámetro, 300 seg. de exposición y un detector CCD MX716, sobre las siguientes magnitudes: estrella de mag. 6: 606 9: : 29 Fig.- 3, 4 Aspecto final del Espectrógrafo
5 Espectro de referencia: Si deseamos medir velocidades por efecto Doppler, se necesita crear lo que se llama un espectro de referencia con el fin de calibrar la imagen espectro del objeto en longitudes de onda. Lo normal es que luz del espectro de referencia se introduzca en el espectrógrafo a través de una fibra óptica o una ventanita en cuya cercanía debe situarse una lámpara externa de neón o de vapor de mercurio. Para crear un espectro de referencia generalmente se emplea una lamparilla amarilla de neón (puede comprarse en tiendas de componentes electrónicos) alimentada a 220 voltios de la red. La ionización del gas neón produce una serie de líneas de emisión en la zona amarillo-roja del espectro, desde los Å hasta el IR. En nuestro caso se emplea un pequeño tubo fluorescente alimentado con pilas, la linterna Dulux de Philips. nota: Puede obtenerse en RS Amidata Testing: A la espera de disponer de un telescopio para las pruebas finales, se ha empleado la abundancia de líneas de absorción del espectro solar como fuente conocida para determinar el rendimiento del nuevo instrumento.
6 Fig. 3. Espectro Solar en la zona del Hidrogeno H-beta y triplete del Magnesio (Mg). Fig. 4. Perfil del espectro anterior. Fig. 5. Espectro solar en la zona del Hidrogeno H-alfa y bandas del Oxigeno (O2) atmosférico.
7 Fig. 6. Perfil del espectro anterior nota: Todas las imágenes y gráficos son del autor. Se ruega citar el origen para su reproducción parcial o total. Gracias. Joan Genebriera, Observatorio de Tacande, AAP
DIAGRAMA HR DEL CÚMULO M15 (NGC 7078) Y DETECCIÓN DE VARIABLES
ASTROPALMA OBSERVATORIO DE TACANDE, LA PALMA Joan Genebriera DIAGRAMA HR DEL CÚMULO M15 (NGC 7078) Y DETECCIÓN DE VARIABLES La importancia de este diagrama deriva del hecho de que sobre el mismo puede
Dr. Lorenzo Olguín Ruiz Área de Astronomía Universidad de Sonora
Dr. Lorenzo Olguín Ruiz Área de Astronomía Universidad de Sonora Conceptos Básicos Espectro: resultado de dividir la luz de un objeto en sus colores fundamentales. En general, en lugar de colores, hablamos
Primeras luces de un espectroscopio impreso en 3D
Primeras luces de un espectroscopio impreso en 3D Juan Carbajo y Sergio Retuerto Grupo Universitario de Astronomía. Uva (Artículo adaptado de una ponencia del XXII Congreso Estatal de Astronomía) La espectroscopía
=0,23 =13,3. Si las longitudes de onda están muy cercanas entre sí podemos escribir y como y, respectivamente. Luego:
Ejercicios de Difracción. 1.- Una red de difracción tiene 10 4 líneas uniformemente distribuidas en 0,0254 [m]. Se ilumina normalmente con luz amarilla de una lámpara de sodio. Esta luz está formada por
TRABAJO PRÁCTICO N 14 ESPECTROMETRÍA REDES DE DIFRACCIÓN
TRABAJO PRÁCTICO N 14 Introducción La luz blanca ordinaria (luz del sol, luz de lámparas incandescentes, etc.) es una superposición de ondas cuyas longitudes de onda cubren, en forma continua, todo el
OBSERVATORIO DE TACANDE
OBSERVATORIO DE TACANDE VARIABLES EN M3 Joan Genebriera Cúmulo globular M3 en la constelación de Canes Venatici. Observatorio de Tacande Descripción: Un cúmulo globular es un tipo de cúmulo estelar que
Radiación. La radiación electromagnética
Radiación Curso Introducción a las Ciencias de la Tierra y el Espacio II La radiación electromagnética Es el portador de la información de los objetos astronómicos. Es la forma en que la energía electromagnética
Espectroscopia: Ejemplos. Imágenes de banda angosta
Espectroscopia: Ejemplos Meaburn, J. et al. 1984, MNRAS, 210, 463 Schroeder, D. J. 1970, PASP, 82, 1253 Walker, G. 1987, Astronomical Observations, Cambridge U. Press (Cambridge: UK) https://jdgrunert.files.wordpress.com/2013/10/newton-prism-experiment-
OBSERVATORIO DE TACANDE, LA PALMA. LA ESPECTROSCOPIA A SU ALCANCE o el Star Analyzer. notas de empleo, calculo y montaje versión 1.
ASTROPALMA OBSERVATORIO DE TACANDE, LA PALMA Joan Genebriera LA ESPECTROSCOPIA A SU ALCANCE o el Star Analyzer. notas de empleo, calculo y montaje versión 1.7 Atención: No apuntar jamás directamente al
Tema 10: espectroscopía. Instrumentación Astronómica Curso 2011/2012 (material compilado por J. Zamorano, J. Gallego, P.G.
Tema 10: espectroscopía 1 Introducción El objetivo de la espectroscopía es obtener las distribuciones espectrales de energía (SEDs): flujo de energía recibido de los objetos celestes respecto a la longitud
OBSERVATORIO DE TACANDE
OBSERVATORIO DE TACANDE TRANSITO DEL EXOPLANETA XO-2b Joan Genebriera Descripción: Se denomina planeta extrasolar o exoplaneta a un planeta que orbita una estrella diferente al Sol y que, por tanto, no
Práctica Nº8. REFLEXIÓN Y REFRACCIÓN DE LA LUZ. Aplicación: índice de refracción del prisma.
Práctica Nº8 REFLEXIÓN Y REFRACCIÓN DE LA LUZ. Aplicación: índice de refracción del prisma. 1 Introducción. En esta práctica estudiaremos un elemento óptico: el prisma, que nos permitirá analizar los fenómenos
INTRODUCCION A LA ASTRONOMIA INFRARROJA CCD
INTRODUCCION A LA ASTRONOMIA INFRARROJA CCD INFRARROJO CERCANO Entre 700 y 1.100 micrómetros metros podemos usar los mismos métodos m que en las observaciones ópticas. La luz infrarroja que observamos
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO SEGUNDA EVALUACIÓN DE FÍSICA D.
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO 2011-2012 SEGUNDA EVALUACIÓN DE FÍSICA D Nombre: Paralelo: PRIMERA PARTE: Ejercicios de opción múltiple (2 puntos c/u)
FORMACIÓN DE IMÁGENES EN ESPEJOS
FORMACIÓN DE IMÁGENES EN ESPEJOS La reflexión que producen los objetos depende de las características de los cuerpos, de esta forma existen dos tipos de reflexiones a saber: 1.- Reflexión especular o regular.
Ejercicio 1. Ejercicio 2. Ejercicio 3.
Ejercicio 1. Suponiendo que la antena de una espacio de radio de 10 [kw] radia ondas electromagnéticas esféricas. Calcular el campo eléctrico máximo a 5 [km] de la antena. Ejercicio 2. La gente realiza
FUNDAMENTOS. REFRACTOMETRÍA/ Versión 3.0/ MODULO 4/ CÁTEDRA DE FÍSICA/ FFYB/ UBA/
FUNDAMENTOS. REFRACTOMETRÍA/ Versión 3.0/ MODULO 4/ CÁTEDRA DE FÍSICA/ FFYB/ UBA/ REFRACTOMETRÍA El índice de refracción es una constante física de interés teórico y práctico tanto en el campo bioquímico
ESTRELLA DE BARNARD, RESULTADOS ASTROMÉTRICOS
OBSERVATORIO DE TACANDE, LA PALMA Joan Genebriera ESTRELLA DE BARNARD, RESULTADOS ASTROMÉTRICOS Descripción: Aunque numerosos estudios parecen indicar que esta estrella no tiene otros objetos cercanos,
Astrofotografía con cámara DSLR.
Astrofotografía con cámara DSLR. José Ramón Rossell 12 de Noviembre 2018 El triangulo de la exposición SENSIBILIDAD (ISO) TIEMPO SENSIBILIDAD (ISO) 100 6400 MAS TIEMPO MENOS TIEMPO RECOMENDACIÓN MAXIMA
RED DE DIFRACCIÓN. Objetivos: Introducción teórica. Laboratorio 3 de Física 47
Laboratorio 3 de Física 47 RED DE DIFRACCIÓN Objetivos: Caracterización de diferentes redes de difracción Estudio e identificación de diferentes fuentes espectrales por su espectro de emisión. Introducción
FIA Astronomía. Ayudantías desde mañana. Todos los viernes módulos 4 y 5 (pueden elegir), sala N8. Ayudantes:
Noticias: Marzo 13: R. Tamayo, S. Gaete Marzo 15: T. Barros, F. Valenzuela Marzo 20: P. Sandoval, J. Rivera, J. Huerta Marzo 22: V. Ortiz, G. Bisso, F. Cameron Marzo 27: M. Lyon, B. Escobar, C. Castillo
Requerimientos y Especificaciones de Alto Nivel
Espectrógrafo óptico de mediana y baja dispersión para el Observatorio de San Pedro Mártir Fecha: 15/02/2007 No. de páginas: 9 Versión: 1 Código: ESOPO-CI-A-REAN1 Título Requerimientos y Especificaciones
ESPECTROSCOPIO. Principios de funcionamiento (1) Las ondas electromagnéticas tienen distinta frecuencia dependiendo de la energía que tengan.
Principios de funcionamiento (1) Ultravioleta (780nm)
ONDAS. Clasificación y magnitudes que las caracterizan. Ecuación de las ondas armónicas. Energía e intensidad
IES JIMENA MENÉNDEZ PIDAL DEPARTAMENTO DE FÍSICA Y QUÍMICA MATERIA: FÍSICA 2º bachillerato SEGUNDO TRIMESTRE CONTENIDOS, CRITERIOS DE EVALUACIÓN, ESTÁNDARES DE APRENDIZAJE, INSTRUMENTOS DE CALIFICACIÓN
ONDAS. Clasificación y magnitudes que las caracterizan. Ecuación de las ondas armónicas. Energía e intensidad. Ondas transversales en
IES JIMENA MENÉNDEZ PIDAL DEPARTAMENTO DE FÍSICA Y QUÍMICA MATERIA: FÍSICA 2º bachillerato SEGUNDO TRIMESTRE CONTENIDOS, CRITERIOS DE EVALUACIÓN, ESTÁNDARES DE APRENDIZAJE, INSTRUMENTOS DE CALIFICACIÓN
Este trabajo esta dividido en tres partes:
ASTROPALMA OBSERVATORIO DE TACANDE, LA PALMA Joan Genebriera CONTROL ÓPTICO DE UN OBJETIVO REFRACTOR DE 20 cm Objetivo 20 cm. f/15 Este trabajo esta dividido en tres partes: - Examen del Objetivo - Métodos
Experimento: Espectro de gases
FACULTAD DE CIENCIAS FÍSICO - MATEMÁTICAS Experimento: Espectro de gases Equipo α-pulpo Alma Elena Piceno Martínez Luke Goodman Ernesto Benítez Rodríguez 2012 F Í S I C A M O D E R N A C O N L A B O R
EQUIPOS Y ACCESORIOS FORETECH CATALOGO 2006
EQUIPOS Y ACCESORIOS FORETECH CATALOGO 2006 ESTACION TOTAL NTS-352 FORETECH Especificaciones Técnicas NTS-352 TELESCOPIO Imagen Directa Aumento 30 X Diámetro Objetivo 45 mm Poder Resolución 4" Visual de
Qué hay entre las estrellas? MEDIO INTERESTELAR.
Qué hay entre las estrellas? Nuestra galaxia contiene unos 100.000 millones de estrellas en las que está contenida el 90% de su masa. Sin embargo las estrellas solo ocupan una pequeña parte del volumen
Tema 11: espectroscopía multi-objeto, IFUs
Tema 11: espectroscopía multi-objeto, IFUs 1 Espectrógrafos de grismas Se emplean como cámaras directas para obtener imágenes del campo al que apunta el telescopio o como espectrógrafos de resolución baja.
ÓPTICA FÍSICA. (luz) Física 2º bachillerato Óptica física (luz) 1
ÓPTICA FÍSICA (luz) 1. Ondas electromagnéticas. 2. Espectro electromagnético 3. Naturaleza de la luz. 4. Propagación de la luz. 5. Fenómenos ondulatorios. 6. Fenómenos corpusculares. Física 2º bachillerato
LOS ESPECTROS DE ONDAS
LOS ESPECTROS DE ONDAS Introducción Nos detenemos para explicar dos innovaciones, introducidas en la física del siglo XIX, que han tenido una importancia trascendental en el desarrollo de la Cosmología
ESPECTROSCOPIA Q.F. ALEX SILVA ARAUJO
Q.F. ALEX SILVA ARAUJO INSTRUMENTOS PARA ESPECTROSCOPIA OPTICA Los primeros instrumentos espectroscópicos se desarrollaron para ser utilizados en la región del visible (instrumentos ópticos). En la actualidad
I.E.S. MARTÍNEZ MONTAÑÉS DEPARTAMENTO DE FÍSICA Y QUÍMICA ÓPTICA
Cuestiones ÓPTICA 1. a) Qué se entiende por interferencia de la luz? b) Por qué no observamos la interferencia de la luz producida por los dos faros de un automóvil? 2. a) Qué es una onda electromagnética?
Física II. Dr. Mario Enrique Álvarez Ramos (Responsable)
Física II Dr. Mario Enrique Álvarez Ramos (Responsable) Dr. Roberto Pedro Duarte Zamorano (Colaborador) Dr. Ezequiel Rodríguez Jáuregui (Colaborador) Webpage: http://paginas.fisica.uson.mx/qb 2015 Departamento
INSTRUMENTACIÓN ASTRONÓMICA ESPECTROSCOPIO Y ESPECTROGRAFO
INSTRUMENTACIÓN ASTRONÓMICA ESPECTROSCOPIO Y ESPECTROGRAFO Roberto Bartali 2007 En esta presentación se describen los tipos de espectroscopios y espectrógrafos que se utilizan en la actualidad y se ofrece
Espectrometría de luminiscencia molecular Cap.15
Espectrometría de luminiscencia molecular Cap.15 Luz cuyo origen no radica exclusivamente en las altas temperaturas Se da en sustancias que pueden absorber energía, excitándose a niveles mayores y emitirla
07/05/2017. ÓPTICA FÍSICA: difracción. Introducción a los patrones de difracción
ÓPTICA FÍSICA: difracción Dispositivo Delfina Fernandez y Damián Pontet, 2015 Introducción a los patrones de difracción Difracción es la desviación que sufren las ondas alrededor de los bordes y esquinas
Ejercicios de Óptica
Ejercicios de Óptica 1. a) Los rayos X, la luz visible y los rayos infrarrojos son radiaciones electromagnéticas. Ordénalas en orden creciente de sus frecuencias e indica algunas diferencias entre ellas.
Espectroscopía de Absorción Atómica
Espectroscopía de Absorción Atómica Comparación entre Técnicas Espectroscópicas Moleculares y Atómicas Clasificación de las Técnicas Espectroscópicas Atómicas Espectroscopía Atómica Absorción Emisión Fluorescencia
1. a) Explique los fenómenos de reflexión y refracción de la luz. siempre refracción?
ÓPTICA 2001 1. a) Indique qué se entiende por foco y por distancia focal de un espejo. Qué es una imagen virtual? b) Con ayuda de un diagrama de rayos, describa la imagen formada por un espejo convexo
Preguntas del capítulo Ondas electromagnéticas
Preguntas del capítulo Ondas electromagnéticas 1. Isaac Newton fue uno de los primeros físicos en estudiar la luz. Qué propiedades de la luz explicó usando el modelo de partícula? 2. Quién fue la primer
LA IMAGEN FOTOGRÁFICA
TEMA 2 LA IMAGEN FOTOGRÁFICA 2.1- Películas Se considera películas como un conjunto inseparable de base o soporte con un estrato sensible a la luz o emulsión. Emulsiones son un sustrato sensible en el
Física II. Dr. Mario Enrique Álvarez Ramos (Responsable)
Física II Dr. Mario Enrique Álvarez Ramos (Responsable) Dr. Roberto Pedro Duarte Zamorano (Colaborador) Dr. Ezequiel Rodríguez Jáuregui (Colaborador) Webpage: http://paginas.fisica.uson.mx/qb 2015 Departamento
CURSO: INSPECCION VISUAL NIVEL II DIRECTO
CURSO: INSPECCION VISUAL NIVEL II DIRECTO OBJETIVOS: El objetivo del curso de Inspección Visual nivel II DIRECTO es capacitar en forma general al participante en: los principios del método y sus técnicas
Óptica física Resp.: a) v = 2,05 108m/s; nv =1,46. b) 2. (Valencia, 2007). Resp.: 23,58º. (Madrid, 2003). Resp.: a).. b) = 2,1º. (Galicia, 2004).
Óptica física 1. Un haz de luz que viaja por el aire incide sobre un bloque de vidrio. Los ángulos reflejado y refractado forman ángulos de 30º y 20º, respectivamente con la normal a la superficie del
Física II (Biólogos y Geólogos) SERIE 3. Difracción
Física II (Biólogos y Geólogos) SERIE 3 Difracción 1. Partiendo de la expresión de la intensidad observada sobre una pantalla, explique el significado de cada uno de los términos que aparece en dicha expresión
Departamento de Ciencia y Tecnología QUIMICA 1. Comisión B. Dra. Silvia Alonso Lic. Evelina Maranzana
Departamento de Ciencia y Tecnología QUIMICA 1 Comisión B Dra. Silvia Alonso ([email protected]) Lic. Evelina Maranzana ([email protected]) Espectroscopía estelar con webcam Posible uso de una webcam
Técnicas Observacionales
Técnicas Observacionales 1 Técnicas Observacionales 1. Técnicas generales y particulares 2. Instrumentos 2 1. Técnicas generales y particulares 1.1. Técnicas generales Análisis de la Posición Análisis
Sección A Completar la casilla con V o F (Verdadero o Falso) según corresponda.
Docente/Tutor: Establecimiento Educativo: _ SEGUNDO NIVEL: Examen para alumnos de 4 to año y años superiores. Sección A Completar la casilla con V o F (Verdadero o Falso) según corresponda. A.1) El eje
2- Describa y deduzca las expresiones matemáticas correspondientes al experimento de la doble rendija de Young.
ASIGNATURA FISICA II AÑO 2012 GUIA NRO. 14 INTERFERENCIA, DIFRACCION Y POLARIZACION Bibliografía Obligatoria (mínima) Capítulos 37 y 38 Física de Serway Tomo II PREGUNTAS SOBRE LA TEORIA Las preguntas
ESPECTRÓMETRO. El instrumento tiene un colimador, telescopio y una plataforma óptica montada en un centro común.
ESPECTRÓMETRO DESCRIPCION Un espectrómetro es un instrumento usado para medir muchos parámetros relacionados con los prismas, rejillas y espectroscopia general. Es particularmente usado para medir ángulo
Problemas de Óptica Física
Problemas de Óptica Física Cte. de Planck: h= 6.6x10-34 J.s= 4.1x10-15 ev.s Velocidad de la luz en el vacío: c = 3x10 8 m/s Problema 1 Si se observa en una pantalla alejada el patrón de difracción al hacer
Práctica 3. Polarización
Práctica 3. Polarización 1. OBJETIVOS Estudiar las características de la luz polarizada, comprobar experimentalmente las leyes de Brewster y Malus. Como aplicación, comprobar la ley de Biot. 2. MATERIAL
SUPERNOVA! Jane Arthur. Centro de Radioastronomía y Astrofísica UNAM, Morelia
SUPERNOVA! Jane Arthur Centro de Radioastronomía y Astrofísica UNAM, Morelia El Cielo de Noche Hemisferio norte de la Tierra: Oso Mayor Jane Arthur (CRyA-UNAM) SUPERNOVA! 19 febrero 2010 2 / 53 El Cielo
Leyes de Kirchhoff. Radiación y Espectros. Pasaje de la radiación electromagnética a través de la atmósfera. Transiciones atómicas y moleculares
Radiación y Espectros Pasaje de la radiación electromagnética a través de la atmósfera Andrea Sánchez y Gonzalo Tancredi Curso CTE II Generación n de líneas: l Leyes de Kirchhoff Transiciones atómicas
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO FÍSICA SEGUNDA EVALUACIÓN DE FÍSICA D
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO FÍSICA SEGUNDA EVALUACIÓN DE FÍSICA D 28 DE ENERO DE 2013 Nombre:........................................................
UNIVERSIDAD CATOLICA ANDRES BELLO FACULTAD DE INGENIERIA DEPARTAMENTO DE FÍSICA LABORATORIO DE FÍSICA II TELECOMUNICACIONES OPTICA GEOMÉTRICA
UNIVERSIDAD CATOLICA ANDRES BELLO FACULTAD DE INGENIERIA DEPARTAMENTO DE FÍSICA LABORATORIO DE FÍSICA II TELECOMUNICACIONES OPTICA GEOMÉTRICA En la práctica anterior se trabajó con una onda de naturaleza
EJERCICIOS DE SELECTIVIDAD LA LUZ Y LAS ONDAS ELECTROMAGNÉTICAS
EJERCICIOS DE SELECTIVIDAD LA LUZ Y LAS ONDAS ELECTROMAGNÉTICAS 1. Un foco luminoso puntual está situado bajo la superficie de un estanque de agua. a) Un rayo de luz pasa del agua al aire con un ángulo
El brillo de los cuerpos celestes: Flujos, magnitudes y colores. Dr. Lorenzo Olguín R. Universidad de Sonora
El brillo de los cuerpos celestes: Flujos, magnitudes y colores Dr. Lorenzo Olguín R. Universidad de Sonora Luminosidad y Flujo La luminosidad L de un objeto, es la cantidad de energía que emite por unidad
Slide 1 / 52. Las Ondas Electromagnéticas Problemas de Práctica
Slide 1 / 52 Las Ondas Electromagnéticas Problemas de Práctica Slide 2 / 52 Multiopcion Slide 3 / 52 1 Cuál de las siguientes teorías puede explicar la curvatura de las ondas detrás de los obstáculos en
COMPROMISO DE HONOR. Yo,.. al firmar este compromiso, reconozco que el
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FISICA I TERMINO ACADEMICO 2013-2014 TERCERA EVALUACIÓN DE FISICA D 9 DE SEPTIEMBRE DEL 2013 COMPROMISO
Magnetismo y Óptica Departamento de Física Universidad de Sonora. Leyes de la reflexión y refracción
Magnetismo y Óptica 2006 Departamento de Física Universidad de Sonora 1 Leyes de la reflexión y refracción 2 1 Temas Naturaleza de la luz Óptica geométrica y óptica física Reflexión Refacción Reflexión
RADIACIÓN SOLAR PRÁCTICA 3 COMPRENSIÓN DEL ESPECTRO ELECTROMAGNÉTICO EN LA REGIÓN DEL ESPECTRO SOLAR
PRÁCTICA 3 RADIACIÓN SOLAR COMPRENSIÓN DEL ESPECTRO ELECTROMAGNÉTICO EN LA REGIÓN DEL ESPECTRO SOLAR Esta práctica fue elaborada con recursos del Fondo CONACyT-SENER, a través del proyecto 260155 Laboratorio
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO TERCERA EVALUACIÓN DE FÍSICA D SOLUCIÓN
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO 2011-2012 TERCERA EVALUACIÓN DE FÍSICA D SOLUCIÓN PREGUNTA 1 (20 PUNTOS) Dos lentes delgadas cuya distancia focal tienen
Filtros sintonizables: La baza de OSIRIS
Filtros sintonizables: La baza de OSIRIS La investigación astrofísica y la tecnología afín son disciplinas tan estrechamente asociadas, que no podrían subsistir sin el avance mutuo. Actualmente, varios
ESPECTROS ATÓMICOS. a) Obtener las curvas características para los espectros de emisión del sodio, helio, hidrógeno y mercurio.
ESPECTROS ATÓMICOS OBJETIVOS a) Obtener las curvas características para los espectros de emisión del sodio, helio, hidrógeno y mercurio. b) Mediante las curvas características obtenidas, determinar las
Determinación de la constante de Rydberg
Determinación de la constante de Rydberg Gustav Robert Kirchhoff (1824-1887) En termodinámica, la ley de Kirchhoff de la radiación térmica, es un teorema de carácter general que equipara la emisión y absorción
Comunicacions I sistemes audiovisuals Un segle de so i imatges
1 Comunicacions I sistemes audiovisuals Un segle de so i imatges ESO3 EL TELÈFON UN SEGLE DE SO i IMATGES LA TELEVISIÓ EL FONÒGRAF EL CINE LA RÀDIO 2 Características de las ondas CARACTERÍSTICAS DE LAS
Tubo de protección antiroturas para fluorescentes TL-D
03 0303 Iluminación 0303060 Otros lámparas LONGITUD (MM) ESPESOR (MM) Tubo de protección antiroturas para fluorescentes TL-D 0922AKO8T 0922AKO36T 0922AKO58T Tubo protector transparente + tapón 28,7 mm
Figura 1. Montaje para la determinació de la constante de difracción
VR No 5 LABORATORIO DE OSCILACIONES Y ONDAS DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Determinación de las longitudes de onda del hidrogeno utilizando
L m u i m n i o n t o ec e n c i n a
LUMINOTECNIA LA LUZ Y LA VISIÓN LUMINOTECNIA La Luminotecnia es la ciencia que estudia las distintas formas de producción de luz, así como su control y aplicación. LUMINOTECNIA La luz natural y artificial
Astrofísica " Extragaláctica! INTRODUCCIÓN!
Astrofísica " Extragaláctica! INTRODUCCIÓN! INTRODUCCIÓN Un sistema estelar es un grupo de estrellas ligadas gravitacionalmente. Varian en ~14 ordenes de magnitud en tamaños y masas: desde estrellas binarias
TRABAJO PRÁCTICO 1 Cámara e Iluminación Mauro Berteri
TRABAJO PRÁCTICO 1 Cámara e Iluminación Mauro Berteri 1) Qué es la luz? La luz es forma de energía que nos permite ver lo que nos rodea. La Luz es invisible a los ojos humanos, solo la podemos percibir
Física II (Biólogos y Geólogos)
Física II (Biólogos y Geólogos) SERIE 4. Difracción 1. Para un haz de luz de longitud de onda que incide en forma normal sobre una placa con una rendija de ancho b, la intensidad observada sobre una pantalla
Código FS-14. Guía Cursos Anuales. Física Luz. Plan COMÚN
Código FS-14 Guía Cursos Anuales Física 2005 Luz Plan COMÚN Ciencias Plan Común Introducción A través de la ejecución de la presente guía el alumno deberá desarrollar y aplicar los siguientes aprendizajes
FICHAS DE PRÁCTICAS 1ºBACHILLERATO FÍSICA
FICHAS DE PRÁCTICAS 1ºBACHILLERATO FÍSICA UNIDAD DIDÁCTICA : MOVIMIENTO 01.- Movimiento rectilíneo uniforme Duración Estimada: 1 h Capacidad Terminal Conocer las características de un movimiento rectilíneo
Mediendo las estrellas: distancias, luminosidades, temperaturas, tamaños, espectros
Mediendo las estrellas: distancias, luminosidades, temperaturas, tamaños, espectros estrellas con luminosidades diferentes se pueden aparecer iguales! > distancia es necesaria para saber los parametros
PRÁCTICA 3 CTE I 2018
PRÁCTICA 3 CTE I 2018 ESPECTROSCOPÍA I) OBJETIVOS Obtener experimentalmente espectros en el visible de átomos y moléculas, y estudiar sus líneas de emisión más prominentes. Identificar especies desconocidas
Existen tres formas de transferencia metálica: 1. Transferencia Spray o de Rocío. 2. Transferencia Globular. 3. Transferencia por Corto-Circuito.
SISTEMA MIG SÓLIDO Descripción del proceso El sistema MIG fue introducido a fines del año 1940. El proceso es definido por la AWS como un proceso de soldadura al arco, donde la fusión se produce por calentamiento
