Práctica 3. Polarización
|
|
|
- Jesús Franco Jiménez
- hace 7 años
- Vistas:
Transcripción
1 Práctica 3. Polarización 1. OBJETIVOS Estudiar las características de la luz polarizada, comprobar experimentalmente las leyes de Brewster y Malus. Como aplicación, comprobar la ley de Biot. 2. MATERIAL Filtros polarizador y analizador con soporte. Cubeta de vidrio con soporte. Espejo, vidrio. Láser. Fuente de luz blanca. Pantalla. 3. FUNDAMENTO TEÓRICO La luz es una onda electromagnética transversal, es decir, la vibración (los campos eléctrico y magnético) es perpendicular a la dirección de propagación de la onda. Consideraremos en lo sucesivo el campo eléctrico. Si una onda luminosa que se propaga en la dirección z no está polarizada, el campo eléctrico puede tener cualquier dirección contenida en el plano perpendicular al eje z. Pero si la dirección del vector campo es siempre paralela a una línea fija del espacio, se dice que la onda está polarizada linealmente (ver figura 1, E siempre tiene dirección y).
2 Figura 1 Se puede obtener luz polarizada a partir de una luz no polarizada debido a alguno de estos cuatro fenómenos: absorción, dispersión, reflexión o birrefringencia. En este contexto nos interesa aclarar el fundamento de dos de ellos. a) Polarización por absorción Existen materiales denominados polarizadores (algunos cristales, las láminas Polaroid...) que no absorben la energía luminosa cuando el vector campo eléctrico incide sobre ellos en una determinada dirección, pero que si la absorben para otras direcciones. La dirección para la que el material no absorbe luz se denomina eje de transmisión del polarizador. En la práctica se estudia la polarización haciendo pasar la luz a través de dos polarizadores (el segundo se denomina analizador) cuyos ejes de transmisión forman entre sí un ángulo θ, según el montaje de la figura 2. La intensidad I de la luz transmitida (proporcional al cuadrado de la amplitud del campo eléctrico) obedece la ley de Malus: I=I 0 cos 2 θ
3 θ ACTIVIDAD ÓPTICA Figura 2 (1) Se denominan sustancias ópticamente activas a aquellas que producen un giro en el plano de polarización de la luz polarizada linealmente que pasa a su través. Serán dextrógiras si, mirando hacia la fuente luminosa, el giro se produce en el sentido de las agujas del reloj, y levógiras en caso contrario. El ángulo girado por el plano de vibración es proporcional al espesor de sustancia atravesado y depende de la longitud de onda de la luz. En general se considera como referencia la raya amarilla D del sodio. Un ejemplo de sustancia ópticamente activa es una disolución de sacarosa (C 12 H 22 O 11, constituyente principal del azúcar). Cuando la sustancia ópticamente activa es una disolución, el ángulo α girado por el plano de vibración es proporcional al espesor atravesado l (en dm) y a la concentración c (en gr/cm 3 ) de la disolución, obedeciendo la ley de Biot: α = [α ] l c (3) donde [α] depende de la sustancia empleada y de la longitud de onda de la luz que la atraviesa (depende muy poco de la temperatura y la concentración) y se denomina rotación
4 específica o poder rotatorio. Para una disolución de sacarosa y la raya D del sodio, [α] = 66'4º dm 1 g 1 cm 3. La ley de Biot permite calcular a partir de medidas experimentales la concentración de una disolución. Constituye un importante procedimiento para determinar, por ejemplo, la cantidad de azúcar contenido en la orina. 4. PROCEDIMIENTO EXPERIMENTAL En esta experiencia se estudiará el comportamiento de la luz a partir de una luz polarizada. La luz blanca, o el láser utilizado en el laboratorio no están polarizados. Un polarizador (P) realizará esta operación. Con un analizador (A) se puede determinar la dirección de polarización. I. Comprobación de la ley de Malus. La intensidad luminosa que llega a la pantalla al girar el analizador varía con el ángulo θ que forman las direcciones de polarización del polarizador y el analizador (ver figura 2) según la ley de Malus (1). Para verificar esta ley se dispone de una fotodido que permite detectar los cambios en intensidad. La intensidad que medimos es directamente proporcional a la intensidad luminosa que llaga al detector. Una vez localizada la luz en la pantalla, sustituir ésta por el fotodiodo, de manera que reciba toda la luz (puede ser necesario colocar una lente de distancia focal corta que abra el haz). Girar el analizador, comprobando que existe un máximo y un mínimo en la intensidad de luz detectada. Anotar los valores de R para distintos valores de θ, girando el analizador de 10 en 10 grados. Resultados: 1) Tabular las medidas de este apartado. 2) Representar gráficamente Intensidad eléctrica frente a θ. Nota: normalmente el ángulo que indica el analizador no es el ángulo que forman los ejes de transmisión de los dos polarizadores, por lo que la gráfica I vs θ será de la forma
5 I cos 2 (θ + ϕ) II. Polarización rotatoria de un jarabe de azúcar (sacarosa). En primer lugar se prepara una disolución de sacarosa cuya concentración ha de ser conocida (del orden de 0.4 g/ml). Para ello pesar una cantidad de azúcar y disolverla en agua destilada. Teniendo en cuenta la cantidad de soluto pesada y el volumen total de la disolución, calcular la concentración en gr/ml. Disponer de un tubo vertical, como el indicado en la figura 6, y llenarlo de disolución a diferentes alturas. Medir para cada altura la rotación del plano de polarización. Resultados: 3) Representar gráficamente α frente a l. Realizar el ajuste lineal y obtener a partir de la pendiente el valor de la rotación específica para la longitud de onda utilizada.
6
Práctica 5. Polarización de ondas electromagnéticas planas
Polarización de ondas electromagnéticas planas 1 Práctica 5. Polarización de ondas electromagnéticas planas 1.- OBJETIVOS - Estudiar las características de la luz polarizada, comprobar experimentalmente
PRÁCTICA DE LABORATORIO N 2 Unidad 3 Óptica Leyes de la Reflexión
PRÁCTICA DE LABORATORIO N 2 Unidad 3 Óptica Leyes de la Reflexión Comprobación experimental de la Ley de la Reflexión de la luz en espejos planos y cilíndricos Objetivos Estudiar las leyes de la óptica
Laboratorio 4: Polarización
Laboratorio 4: Polarización Este laboratorio tiene por finalidad que los estudiantes logren visualizar, y caracterizar la luz polarizada, además de conocer algunas propiedades de éstas. NOTA: Antes de
Luz polarizada y el microscopio de polarización. Prof. Martin Reich
Luz polarizada y el microscopio de polarización Prof. Martin Reich Componentes de la radiación electromagnética Ondas transversales direcciones de vibración Vector de Poynting (flujo de energía) Longitudes
POLARIMETRO. Esquema de un polarímetro
XI POLARIMETRO XI.1 Esquema de un polarímetro Un prisma de Nicol, al cual se hace incidir un haz de luz natural (no polarizada) produce un haz polarizado linealmente en un plano, o sea actuará como prisma
Física P.A.U. ÓPTICA 1 ÓPTICA
Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un rayo de luz de frecuencia 5 10¹⁴ Hz incide con un ángulo de incidencia de 30 sobre una lámina de vidrio de caras plano-paralelas de espesor
ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: ACÚSTICA Y ÓPTICA GUÍA: 1203 ESTUDIANTE: FECHA:
ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: ACÚSTICA Y ÓPTICA GUÍA: 1203 ESTUDIANTE: E-MAIL: FECHA: ACÚSTICA Resuelva cada uno de los siguientes problemas haciendo el proceso completo. 1. Un estudiante golpea
Problemario de Ondas Electromagnéticas, Luz y Óptica
Universidad Central de Venezuela Facultad de Ciencias Escuela de Física Problemario de Ondas Electromagnéticas, Luz y Óptica Física General III Prof. Anamaría Font Marzo 2009 Índice 1. Ondas Electromagnéticas
COMPROMISO DE HONOR. Yo,.. al firmar este compromiso, reconozco que el
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FISICA I TERMINO ACADEMICO 2013-2014 PRIMERA EVALUACIÓN DE FISICA D 01 DE JULIO DEL 2013 COMPROMISO
Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas.
Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. 1.- Determine la velocidad con que se propagación de una onda a través de una cuerda sometida ala tensión F, como muestra la figura. Para ello considere
FUNDAMENTOS. POLARIMETRÍA/ Versión 4.0/ MODULO 4/ CÁTEDRA DE FÍSICA/ FFYB/ UBA/
FUNDAMENTOS. POLARIMETRÍA/ Versión 4.0/ MODULO 4/ CÁTEDRA DE FÍSICA/ FFYB/ UBA/ POLARIMETRIA Los contenidos teóricos necesarios para abordar los Fundamentos de Polarimetría se discutirán en el Teórico
IV - ÓPTICA PAU.98 PAU.98
1.- Dónde debe colocarse un objeto para que un espejo cóncavo forme imágenes virtuales?. Qué tamaño tienen estas imágenes?. Realiza las construcciones geométricas necesarias para su explicación PAU.94
Práctica 4. Interferómetro de Michelson
. Interferómetro de Michelson 1. OBJETIVOS Estudiar una de las propiedades ondulatorias de la luz, la interferencia. Aplicar los conocimientos para la medida (interferometría) de longitudes de onda o distancias.
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA GENERAL II SOLUCIÓN
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO 2011-2012 PRIMERA EVALUACIÓN DE FÍSICA GENERAL II SOLUCIÓN PRIMERA PARTE: Ejercicios de opción múltiple (2 puntos c/u)
ÓPTICA GEOMÉTRICA: REFLEXIÓN Y REFRACCIÓN DE LA LUZ
1 ÓPTICA GEOMÉTRICA: REFLEXIÓN Y REFRACCIÓN DE LA LUZ INTRODUCCIÓN TEÓRICA: La característica fundamental de una onda propagándose por un medio es su velocidad (v), y naturalmente, cuando la onda cambia
CUESTIONARIO DE ÓPTICA.
CUESTIONARIO DE ÓPTICA. 1.- Qué es la luz, onda o partícula? 2.- Menciona la aportación que realizaron los personajes siguientes, acerca de la naturaleza de la luz: Arquimedes: Huygens: Young: Newton:
ÓPTICA GEOMÉTRICA. Teniendo en cuenta que se trata de ángulos paraxiales, la expresión se puede simplificar a: En el triángulo APC:
ÓPTICA GEOMÉTRICA Conceptos generales: Imágenes reales. No se ven a simple vista, pero pueden recogerse sobre una pantalla. Se forman por la intersección de rayos convergentes. Imágenes virtuales. No existen
Campo Magnético en un alambre recto.
Campo Magnético en un alambre recto. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se hizo pasar
F2 Bach. Movimiento ondulatorio
1. Introducción. Noción de onda. Tipos de ondas 2. Magnitudes características de una onda 3. Ecuación de las ondas armónicas unidimensionales 4. Propiedad importante de la ecuación de ondas armónica 5.
LA RIOJA / JUNIO 04. LOGSE / FÍSICA / EXAMEN COMPLETO
LA RIOJA / JUNIO 0. LOGSE / FÍSICA / EXAMEN COMPLEO EXAMEN COMPLEO El alumno elegirá una sola de las opciones de problemas, así como cuatro de las cinco Cuestiones propuestas. No deben resolverse problemas
Polarización por reflexión (ángulo de Brewster) Fundamento
Polarización por reflexión (ángulo de rewster) Fundamento El modelo ondulatorio para la luz considera a ésta como una onda electromagnética, constituida por un campo eléctrico E y uno magnético, propagándose
ANÁLISIS DEL ESTADO DE POLARIACIÓN
SESIÓN 5: ANÁLISIS DEL ESTADO DE POLARIACIÓN TRABAJO PREVIO CONCEPTOS FUNDAMENTALES Luz natural Luz con el vector eléctrico vibrando en todas las direcciones del plano perpendicular a la dirección de propagación.
SESIÓN Nº 12: ANALIZADOR DE PENUMBRA.
Sesión nº 12: Analizador de penumbra. SESIÓN Nº 12: ANALIZADOR DE PENUMBRA. TRABAJO PREVIO 1. Conceptos fundamentales 2. Cuestiones 1. Conceptos fundamentales Luz natural: vector eléctrico vibrando en
13. Por qué no se observa dispersión cuando la luz blanca atraviesa una lámina de vidrio de caras planas y paralelas? 14. Sobre una lámina de vidrio,
PROBLEMAS ÓPTICA 1. Una de las frecuencias utilizadas en telefonía móvil (sistema GSM) es de 900 MHz. Cuántos fotones GSM necesitamos para obtener la misma energía que con un solo fotón de luz violeta,
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA D.
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO 2011-2012 PRIMERA EVALUACIÓN DE FÍSICA D Nombre: Paralelo: PRIMERA PARTE: Ejercicios de opción múltiple (2 puntos c/u)
CAPITULO I: La Luz CAPITULO I: LA LUZ 1
CAPITULO I: La Luz CAPITULO I: LA LUZ 1 1.- La luz 1.1.- El nanómetro 1.2.- El espectro visible 1.3.- Naturaleza de la luz 1.4.- Fuentes de luz 2.- La Materia y la luz 2.1.- Fórmula R.A.T. 22-2.2. Absorción
EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com
INDUCCIÓN ELECTROMAGNÉTICA 1- a) Explique en qué consiste el fenómeno de inducción electromagnética y escriba la ley de Lenz-Faraday. b) Una espira, contenida en el plano horizontal XY y moviéndose en
Docente: Carla De Angelis Curso: T.I.A. 5º
POLARIMETRIA La polarimetría es una técnica que se basa en la medición de la rotación óptica producida sobre un haz de luz linealmente polarizada al pasar por una sustancia ópticamente activa. La actividad
MOVIMIENTO ONDULATORIO
MOVIMIENTO ONDULATORIO 2001 1.- Un objeto de 0,2 kg, unido al extremo de un resorte, efectúa oscilaciones armónicas de 0,1 π s de período y su energía cinética máxima es de 0,5 J. a) Escriba la ecuación
Optica PAU 18,3 10. La potencia de la lente es P 54,6 dp
01. Ya que estamos en el Año Internacional de la Cristalografía, vamos a considerar un cristal muy preciado: el diamante. a) Calcula la velocidad de la luz en el diamante. b) Si un rayo de luz incide sobre
LIGHT SCATTERING MEASUREMENTS FROM SMALL DIELECTRIC PARTICLES
LIGHT SCATTERING MEASUREMENTS FROM SMALL DIELECTRIC PARTICLES M.Sc. Abner Velazco Dr. Abel Gutarra [email protected] Laboratorio de Materiales Nanoestructurados Facultad de ciencias Universidad Nacional
PRÁCTICA Nº3 REFLEXIÓN Y REFRACCIÓN
PRÁCTICA Nº3 REFLEXIÓN Y REFRACCIÓN 1.- Equipamiento y montaje Componentes del equipo Los accesorios necesarios para la realización de la presente práctica se enumeran a continuación: 1. Caja de Almacenamiento
FUNDAMENTOS FÍSICOS DE LA INGENIERÍA PROPAGACIÓN DE ONDAS DE AGUA
UNIVERSIDAD DE LA LAGUNA FACULTAD DE MATEMÁTICAS INGENIERÍA TÉCNICA DE OBRAS HIDRÁULICAS FUNDAMENTOS FÍSICOS DE LA INGENIERÍA PROPAGACIÓN DE ONDAS DE AGUA OBJETIVO GENERAL: ESTUDIO DE LAS ONDAS - Emplear
Laboratorio de Fundamentos Físicos de la Ingeniería LEY DE OHM
Departamento de Física Aplicada E.T.S. Ingeniería Industrial U.C.L.M. Laboratorio de Fundamentos Físicos de la Ingeniería LEY DE OHM El objetivo fundamental de esta práctica es el conocimiento experimental
ÓPTICA GEOMÉTRICA. Es el fenómeno que se observa cuando un rayo de luz incide sobre una superficie y se refleja. Su estudio se basa en dos leyes:
ONDAS LUMINOSAS La luz que nos llega del sol (luz blanca), está compuesta por rayos de luz de diferentes colores. Este conjunto de rayos constituye lo que se llama espectro visible, el cual, es una zona
Práctica de Óptica Geométrica
Práctica de Determinación de la distancia focal de lentes delgadas convergentes y divergentes 2 Pre - requisitos para realizar la práctica.. 2 Bibliografía recomendada en referencia al modelo teórico 2
ÓPTICA GEOMÉTRICA 1. Conceptos básicos. 2. Espejos planos. 3. Espejos esféricos. 4. Dioptrios. 5. Lentes delgadas. 6. La visión.
ÓPTICA GEOMÉTRICA 1. Conceptos básicos. 2. Espejos planos. 3. Espejos esféricos. 4. Dioptrios. 5. Lentes delgadas. 6. La visión. Física 2º bachillerato Óptica geométrica 1 ÓPTICA GEOMÉTRICA La óptica geométrica
Examen Final Fisi 3162/3172 Nombre: lunes, 18 de mayo de 2009
Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de ísica Examen inal isi 3162/3172 Nombre: lunes, 18 de mayo de 2009 Sección: Prof. Lea cuidadosamente las instrucciones. Seleccione
Problemas de Óptica. PAU (PAEG)
1. (Junio 09 ) Observamos una pequeña piedra que esta incrustada bajo una plancha de hielo, razona si su profundidad aparente es mayor o menor que su profundidad real. Traza un diagrama de rayos para justificar
Red de difracción (medida de λ del láser) Fundamento
Red de difracción (medida de λ del láser) Fundamento Si sobre una superficie transparente marcamos en un gran número de rayas paralelas y equidistantes tendremos una red de difracción. El número de rayas
Reflexión de la luz MATERIALES MONTAJE
Reflexión de la luz Espejos planos Estamos acostumbrados a usar los espejos sin plantearnos que ocurre con los rayos de luz que inciden sobre ellos. Vamos a estudiar el comportamiento de la luz primero
I.E.S. Sierra de Mijas Curso 2014-15 PROBLEMAS DE SELECTIVIDAD DEL TEMA 4: ÓPTICA
PROBLEMAS DE SELECTIVIDAD DEL TEMA 4: ÓPTICA Selectividad Andalucía 2001: 1. a) Indique qué se entiende por foco y por distancia focal de un espejo. Qué es una imagen virtual? b) Con ayuda de un diagrama
PRÁCTICA 14. Reflexión y refracción
PRÁCTICA 14 Reflexión y refracción Laboratorio de Física General Objetivos Generales 1. Determinar la ley que rige la reflexión de la luz. 2. Estudiar la ley de la refracción de la luz. Equipo y materiales
Introducción a la teoría del COLOR
Introducción a la teoría del COLOR Qué es la LUZ? La luz es una corriente de partículas infinitamente pequeñas llamadas fotones que se irradia desde cualquier fuente luminosa a la fantástica velocidad
Parte 4: La Luz. Telescopio óptico espacial Hubble. Telescopio de Galileo. J.M. Maxwell
Parte 4: La Luz 1 Parte 4: La Luz J.M. Maxwell 1831-1879 Telescopio de Galileo Es imposible pensar en vida sin luz. Los vegetales, base de la cadena alimenticia, a través de la fotosíntesis extraen de
Ley de Ohm y dependencia de la resistencia con las dimensiones del conductor
ey de Ohm y dependencia de la resistencia con las dimensiones del conductor Ana María Gervasi y Viviana Seino Escuela Normal Superior N 5, Buenos Aires, [email protected] Instituto Privado Argentino
PRÁCTICA Nº.- LENTES.
PRÁCTICA Nº.- LENTES. Objetivo: Estudiar la ormación de imágenes de lentes delgadas y determinar la distancia ocal y la potencia de una lente convergente y de una lente divergente. undamento teórico: La
Colegio Madre Carmen Educar con Amor y Sabiduría para Formar Auténticos Ciudadanos OPTICA REFLEXIÓN DE LA LUZ
Área/Asignatura: Física Grado: 11 Docente: Luis Alfredo Pulido Morales Fecha: Eje Temático: óptica Periodo: 01 02 03 REFLEXIÓN DE LA LUZ Rayos de luz Para explicar los fenómenos de interferencia, difracción
I. Objetivos. II. Introducción.
Universidad de Sonora División de Ciencias Exactas y Naturales Departamento de Física Laboratorio de Mecánica II Práctica #: Dinámica rotacional: Cálculo del Momento de Inercia I. Objetivos. Medir el momento
QUÉ ES LA TEMPERATURA?
1 QUÉ ES LA TEMPERATURA? Nosotros experimentamos la temperatura todos los días. Cuando estamos en verano, generalmente decimos Hace calor! y en invierno Hace mucho frío!. Los términos que frecuentemente
VIBRACIÓN Y ONDAS. Se denomina rayo a la línea perpendicular a los frentes de onda, como se muestra en la figura.
VIBRACIÓN Y ONDAS DEFINICIÓN DE ONDA Una partícula realiza un movimiento vibratorio cuando realiza una oscilación alrededor del punto de equilibrio. Un ejemplo de movimiento vibratorio lo constituye la
PROF: Jesús Macho Martínez
DIBUJO TÉCNICO ELEMENTAL PROF: Jesús Macho Martínez 1º.- Trazar la perpendicular a r por el punto P. 2º.- Trazar la bisectriz del ángulo que forman r y s. P * r r s 3º.- Trazar las tangentes interiores
Física 2 Químicos - Cuatrimestre Verano Segunda parte 1/11. Guía 7: Ondas
Física 2 Químicos - Cuatrimestre Verano - 2011 - Segunda parte 1/11 Guía 7: Ondas Problema 1: Determinar cuáles de las siguientes expresiones matemáticas pueden representar ondas viajeras unidimensionales,
Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r
Junio 2013. Pregunta 2A.- Una bobina circular de 20 cm de radio y 10 espiras se encuentra, en el instante inicial, en el interior de un campo magnético uniforme de 0,04 T, que es perpendicular al plano
La Luz y las ondas electromagnéticas. La luz y las ondas electromagnéticas Cuestiones
La luz y las ondas electromagnéticas Cuestiones (96-E) a) Qué se entiende por interferencia de la luz? b) Por qué no observamos la interferencia de la luz producida por los dos faros de un automóvil? (96-E)
1 Universidad de Castilla La Mancha Septiembre 2015 SEPTIEMRE 2015 Opción A Problema 1.- Tenemos tres partículas cargadas q 1 = -20 C, q 2 = +40 C y q 3 = -15 C, situadas en los puntos de coordenadas A
UNIVERSIDAD CATOLICA ANDRES BELLO FACULTAD DE INGENIERIA DEPARTAMENTO DE FÍSICA LABORATORIO DE FÍSICA II TELECOMUNICACIONES OPTICA FISICA
UNIVERSIDAD CATOICA ANDRES BEO FACUTAD DE INGENIERIA DEPARTAMENTO DE FÍSICA ABORATORIO DE FÍSICA II TEECOMUNICACIONES OPTICA FISICA Una onda es una perturbación física de algún tipo que se propaga en el
Propagación de las ondas Fenómenos ondulatorios
Propagación de las ondas Fenómenos ondulatorios IES La Magdalena. Avilés. Asturias Cuando se trata de visualizar la propagación de las ondas en un papel se recurre a pintar los llamados frentes de onda.
PROBLEMAS LUZ Y ÓPTICA SELECTIVIDAD
PROBLEMAS LUZ Y ÓPTICA SELECTIVIDAD 1.- Un objeto luminoso de 2mm de altura está situado a 4m de distancia de una pantalla. Entre el objeto y la pantalla se coloca una lente esférica delgada L, de distancia
La luz. Según los datos del problema se puede esbozar el siguiente dibujo:
La luz 1. Se hace incidir sobre un prisma de 60º e índice de refracció un rayo luminoso que forma un ángulo de 45º con la normal. Determinar: a) El ángulo de refracción en el interior del prisma. b) El
ELECTRODINAMICA. Nombre: Curso:
1 ELECTRODINAMICA Nombre: Curso: Introducción: En esta sesión se estudiara los efectos de las cargas eléctricas en movimiento en diferentes tipos de conductores, dando origen al concepto de resistencia
Practica nº n 5: Fenómenos de Difracción.
Facultad de Farmacia Universidad de Granada Departamento de Química Física Practica nº n 5: Fenómenos de Difracción. OBJETIVOS 1.Observar los fenómenos de difracción Rendija simple Rendija doble 2.Calcular
Distancia focal de una lente convergente (método del desplazamiento) Fundamento
Distancia focal de una lente convergente (método del desplazamiento) Fundamento En una lente convergente delgada se considera el eje principal como la recta perpendicular a la lente y que pasa por su centro.
Colisiones. Objetivo. Material. Fundamento teórico. Laboratori de. Estudiar las colisiones elásticas e inelásticas entre dos cuerpos.
Laboratori de Física I Colisiones Objetivo Estudiar las colisiones elásticas e inelásticas entre dos cuerpos. Material Soporte vertical, puerta fotoeléctrica, 4 cuerdas, 2 bolas de acero de 25 mm de diámetro,
FÍSICA de 2º de BACHILLERATO ÓPTICA -GEOMÉTRICA-
FÍSICA de 2º de BACHILLERATO ÓPTICA -GEOMÉTRICA- EJERCICIOS RESUELTOS QUE HAN SIDO PROPUESTOS EN LOS EXÁMENES DE LAS PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS EN LA COMUNIDAD DE MADRID (1996 2013) DOMINGO
Pr.B Boletín de problemas de la Unidad Temática B.III: Detección y generación de señales luminosas
Pr.B Boletín de problemas de la Unidad Temática B.III: Detección y generación de señales luminosas Pr.B.4. Detección de luz e imágenes 1. Un detector de Ge debe ser usado en un sistema de comunicaciones
COMPORTAMIENTO DE LOS MATERIALES ANTE LA LUZ. abril 2012
COMPORTAMIENTO DE LOS MATERIALES ANTE LA LUZ abril 2012 LUZ La luz es una radiación que hace posible la visión en la medida que se refleja en las diferentes superficies LUZ Y MATERIALES (τ) (α) (ρ) E
ÓPTICA GEOMÉTRICA MODELO 2016
ÓPTICA GEOMÉTRICA MODELO 2016 1- Se desea obtener una imagen virtual de doble tamaño que un objeto. Si se utiliza: a) Un espejo cóncavo de 40 cm de distancia focal, determine las posiciones del objeto
COMPORTAMIENTO DE LOS MATERIALES ANTE LA LUZ
COMPORTAMIENTO DE LOS MATERIALES ANTE LA LUZ LUZ La luz es una radiación que hace posible la visión en la medida que se refleja en las diferentes superficies LUZ Y MATERIALES (τ) (α) (ρ) E incidente
ANEXO 1. CALIBRADO DE LOS SENSORES.
ANEXO 1. CALIBRADO DE LOS SENSORES. Las resistencias dependientes de la luz (LDR) varían su resistencia en función de la luz que reciben. Un incremento de la luz que reciben produce una disminución de
COMPLEMENTOS BLOQUE 5: ÓPTICA
COMPLEMENTOS BLOQUE 5: ÓPTICA 1. ESPEJISMOS Otro fenómeno relacionado con la reflexión total es el de los espejismos. Se deben al hecho de que durante el verano o en aquellos lugares donde la temperatura
6.- Cuál es la velocidad de una onda transversal en una cuerda de 2 m de longitud y masa 0,06 kg sometida a una tensión de 500 N?
FÍSICA 2º DE BACHILLERATO PROBLEMAS DE ONDAS 1.- De las funciones que se presentan a continuación (en las que todas las magnitudes están expresadas en el S.I.), sólo dos pueden representar ecuaciones de
Bolilla 12: Óptica Geométrica
Bolilla 12: Óptica Geométrica 1 Bolilla 12: Óptica Geométrica Los contenidos de esta bolilla están relacionados con los principios primarios que rigen el comportamiento de los instrumentos ópticos. La
Ecuación de estado del gas ideal
Prácticas de laboratorio de Física I Ecuación de estado del gas ideal Curso 2010/11 1 Objetivos Comprobación de la ecuación de estado del gas ideal experimentalmente Construcción de curvas a presión, temperatura
R=mv/qBvmax=AAAωF=kxB=µoI/2πd; ;ertyuied3rgfghjklzxc;e=mc 2
E=hf;p=mv;F=dp/dt;I=Q/t;Ec=mv 2 /2; TEMA 6: ÓPTICA F=KQq/r 2 ;L=rxp;x=Asen(ωt+φo);v=λf c 2 =1/εoµo;A=πr 2 ;T 2 =4π 2 /GMr 3 ;F=ma; L=dM/dtiopasdfghjklzxcvbvv=dr/dt; M=rxF;sspmoqqqqqqqqqqqp=h/λ; Ejercicios
FICHAS COMPLEMENTARIAS. REFLEXIÓN
FICHAS COMPLEMENTARIAS. REFLEXIÓN I.- DESCRIPCIÓN DE LOS COMPONENTES Para realizar las prácticas de óptica vas a usar: 1.- Banco óptico: es una base metálica sobre la que colocar los diferentes montajes.
CORRIENTE DE DESPLAZAMIENTO DE MAXWELL. LEY DE AMPÈRE GENERALIZADA
CORRIENTE DE DESPLAZAMIENTO DE MAXWELL. LEY DE AMPÈRE GENERALIZADA Las superficies S1 y S2 están limitadas por la misma trayectoria S. La corriente de conducción en el cable pasa únicamente a través de
EJERCICIOS MÓDULO 6. 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes cartesianos:
Seminario Universitario Matemática EJERCICIOS MÓDULO 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes cartesianos: a) 5 b ) 170 c ) 0 d ) 75 e) 10 f ) 50 g ) 0 h ) 87 i ) 08 j ) 700 k
Cálculo aproximado de la carga específica del electrón Fundamento
Cálculo aproximado de la carga específica del electrón Fundamento La medida de la carga específica del electrón, esto es, la relación entre su carga y su masa, se realizó por vez primera en los años ochenta
Ondas : Características de las ondas
Ondas : Características de las ondas CONTENIDOS Características de las Ondas Qué tienen en común las imágenes que vemos en televisión, el sonido emitido por una orquesta y una llamada realizada desde un
Volumen de Sólidos de Revolución
60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido
FÍSICA Y QUÍMICA Cuaderno de ejercicios ONDAS
FÍSICA Y QUÍMICA Cuaderno de ejercicios ONDAS 1.* Cuál es el periodo de la onda si la frecuencia es de 65,4 Hz? 2.** Relacionen los conceptos con sus definiciones correspondientes. a) Amplitud b) Longitud
REFRACTOMETRÍA. Introducción
REFRACTOMETRÍA Introducción QUÉ ES LA REFRACCIÓN? Cuando se pone un lápiz en el agua, la punta del lápiz aparece inclinada. Luego, si se hace lo mismo pero colocando el lápiz en una solución de agua azucarada,
Trigonometría y Análisis Vectorial
Unidad Educativa enezuela Trigonometría nálisis ectorial Prof. Ronn J. ltuve Unidad Educativa enezuela Trigonometría nálisis ectorial 1. Teorema de Pitágoras: establece que en un triángulo rectángulo el
Práctica 6. Variación de la intensidad de la luz: I) Atenuación de. I) Atenuación de la iluminancia con la distancia
Práctica 6. Variación de la intensidad de la luz: I) Atenuación de la iluminancia con la distancia; II) Absorción en disoluciones I) Atenuación de la iluminancia con la distancia 1. OBJETIVO Estudio de
INDUCCIÓN MAGNÉTICA. b N v u e l t a s. a B
INDUCCIÓN MAGNÉTICA 1) Un solenoide posee n vueltas por unidad de longitud, radio 1 y transporta una corriente I. (a) Una bobina circular grande de radio 2 > 1y N vueltas rodea el solenoide en un punto
Laboratorio de Electricidad PRACTICA - 3 LEY DE OHM. PROPIEDADES DE LOS CIRCUITOS DE RESISTENCIAS SERIE Y PARALELO
Laboratorio de lectricidad PCIC - 3 LY D OHM. POPIDDS D LOS CICUIOS D SISNCIS SI Y PLLO I - Finalidades 1.- Comprobar experimentalmente la ley de Ohm. 2.- Comprobar experimentalmente que en un circuito
3B SCIENTIFIC PHYSICS
3B SCIENTIFIC PHYSICS Equipo de óptica ondulatoria con Láser U17303 Instrucciones de uso 10/08 Alf 1. Advertencias de seguridad El Láser emite una radiación visible de una longitud de onda de 635 nm con
Ondas. Prof. Jesús Hernández Trujillo Facultad de Química, UNAM. Ondas/J. Hdez. T p. 1
Ondas Prof. Jesús Hernández Trujillo Facultad de Química, UNAM Ondas/J. Hdez. T p. 1 Introducción Definición: Una onda es una perturbación que se propaga en el tiempo y el espacio Ejemplos: Ondas en una
SESIÓN Nº 8: REDES DE DIFRACCIÓN. ANALIZADOR DE PENUMBRA.
SESIÓN Nº 8: REDES DE DIFRACCIÓN. ANALIZADOR DE PENUMBRA. TRABAJO PREVIO 1. Conceptos fundamentales 2. Cuestiones 1. Conceptos fundamentales. A) Difracción. La difracción es un fenómeno óptico que se produce
a) Si la intensidad de corriente circula en el mismo sentido en ambas. b) Si la intensidad de corriente circula en sentidos contrarios.
PROBLEMAS DE CAMPO MAGNÉTICO 1. Las líneas de campo gravitatorio y eléctrico pueden empezar o acabar en masas o cargas, sin embargo, no ocurre lo mismo con las líneas de campo magnético que son líneas
Magnetismo e inducción electromagnética. Ejercicios PAEG
1.- Por un hilo vertical indefinido circula una corriente eléctrica de intensidad I. Si dos espiras se mueven, una con velocidad paralela al hilo y otra con velocidad perpendicular respectivamente, se
Práctica 4. Interferencias por división de amplitud
Interferencias por división de amplitud 1 Práctica 4. Interferencias por división de amplitud 1.- OBJETIVOS - Estudiar una de las propiedades ondulatorias de la luz, la interferencia. - Aplicar los conocimientos
FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA
A) CAMPO MAGNÉTICO El Campo Magnético es la perturbación que un imán o una corriente eléctrica producen en el espacio que los rodea. Esta perturbación del espacio se manifiesta en la fuerza magnética que
PROPIEDADES CARACTERÍSTICAS.
1.2.2. PROPIEDADES CARACTERÍSTICAS. Las propiedades características de la materia son aquellas que nos permiten distinguir una sustancia de otra. Gracias a las propiedades características se puede distinguir
DEPARTAMENTO DE INGENIERIA QUÍMICA CÁTEDRA DE FISICOQUÍMICA TRABAJO PRÁCTICO DE LABORATORIO Nº 4
Universidad Tecnológica Nacional Facultad Regional La Plata DEPARTAMENTO DE INGENIERIA QUÍMICA CÁTEDRA DE FISICOQUÍMICA TRABAJO PRÁCTICO DE LABORATORIO Nº 4 Descenso crioscópico Objeto de la experiencia:
1.- Qué es una onda?
Ondas y Sonido. 1.- Qué es una onda? Perturbación de un medio, que se propaga a través del espacio transportando energía. El medio perturbado puede ser de naturaleza diversa como aire, agua, un trozo de
