Conceptos Básicos de Máquinas de corriente continua

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Conceptos Básicos de Máquinas de corriente continua"

Transcripción

1 Universidad Nacional Experimental del Táchira Departamento de Ingeniería Electrónica Núcleo de Electricidad Unidad Curricular Conceptos Básicos de Máquinas de corriente continua Profesor Marino A. Pernía San Cristóbal septiembre 2011

2 Máquinas de corriente continua (DC) INTRODUCCIÓN: La primera máquina eléctrica que se empleó en aplicaciones de potencia fue la máquina de corriente continua (C.C.) en la segunda mitad del siglo XIX. La razón de ello fue que, en un principio, no se pensó que la corriente alterna tuviera las ventajas que hoy se le conocen, especialmente en la transmisión de energía eléctrica a grandes distancias. De hecho los primeros sistemas de potencia fueron sistemas de C.C. La máquina de C.C. fue ideada por el belga Gramme alrededor de 1860 y empleaba un enrollado de rotor especial (anillo de Gramme) para lograr la conmutación o rectificación del voltaje alterno generado. Posteriormente, el físico W. Siemens y otros, contribuyeron al desarrollo de estas máquinas realizando mejoras en su construcción, hasta llegar a la máquina de CC que se conoce hoy. Pese a las mejoras que han sido desarrolladas en su diseño, la máquina de corriente continua es constructivamente más compleja que las máquinas de corriente alterna, el empleo de escobillas, colector, etc., la hace comparativamente menos robusta, requiere mayor mantenimiento y tiene un mayor volumen y peso por kilo-watt de potencia. No obstante lo anterior, la máquina de C.C. tiene múltiples aplicaciones, especialmente como motor, debido principalmente a: Amplio rango de velocidades, ajustables de modo continuo y controlables con alta precisión, Característica de torque-velocidad variable, Rápida aceleración, desaceleración y cambio de sentido de giro, y Posibilidad de frenado regenerativo. Máquina DC o de corriente continua Tanto los motores como los generadores tienen dos unidades básicas: el campo magnético, que es el electroimán con sus bobinas, y la armadura, que es la estructura que sostiene los conductores que cortan el campo magnético y transporta la corriente inducida en un generador, o la corriente de excitación en el caso del motor. La armadura es por lo general un núcleo de hierro dulce laminado, alrededor del cual se enrollan en bobinas los cables conductores. Una dinamo o generador dc es una máquina eléctrica que produce energía eléctrica en forma de corriente continua aprovechando el fenómeno de inducción electromagnética. Los motores son máquinas eléctricas rotativas que transforman la energía eléctrica en mecánica. Para ello están dotadas de un armazón fijo (estator) encargado de crear el campo magnético en cuyo interior gira un cilindro (rotor) donde se crearán las fuerzas electromotrices inducidas. Estructura de una Máquina DC o de corriente continua 2/25

3 Despiece de una máquina de corriente continua Estator (Inductor) Consta de un electroimán encargado de crear el campo magnético fijo conocido por el nombre de inductor. Formado por una corona de material ferromagnético denominada culata o yugo en cuyo interior, regularmente distribuidos y en número par, van dispuestos unos salientes radiales con una expansión en su extremo, denominados polos, sujetos por tornillos a la culata. Rodeando los polos, se hallan unas bobinas de hilo, o pletina de cobre aislado, cuya misión es, al ser alimentadas por corriente continua, crear el campo magnético inductor de la máquina, el cual presentará alternativamente polaridades norte y sur. Salvo las máquinas de potencia reducida, en general de menos de 1 kw, encontramos también en el estator, alternando los polos antes citados, otros llamados polos de conmutación, compensación o auxiliares Inductor (estator) y sus partes 3/25

4 Rotor (Inducido) Es un cilindro donde se enrollan bobinas de cobre, que se hace girar a una cierta velocidad cortando el flujo inductor y que se conoce como inducido. Formado por una columna de material ferromagnético, a base de chapas de hierro, aisladas unas de las otras por una capa de barniz o de óxido. La corona de chapa magnética presenta en su superficie externa un ranurado donde se aloja el devanado inducido de la máquina. Este devanado está constituido por bobinas de hilo o de pletina de cobre convenientemente aislados, cerrado sobre si mismo al conectar el final de la última bobina con el principio de la primera. Colector y Escobillas. El inducido suele tener muchas más espiras y el anillo colector está dividido en un mayor número de partes o delgas, aisladas entre sí, el colector esta constituido esencialmente por piezas planas de cobre duro de sección trapezoidal, llamadas delgas, separadas y aisladas unas de otras por delgadas láminas de mica, formando el conjunto un tubo cilíndrico aprisionado fuertemente. El colector tiene tantas delgas como bobinas posee el devanado inducido de la máquina. Las escobillas son de grafito o carbón puro montado sobre porta-escobillas que mediante un resorte aseguran un buen contacto que establecerán el enlace eléctrico entre las delgas y el colector y el circuito de corriente continua exterior. Al aumentar el número de delgas, la tensión obtenida tiene menor ondulación acercándose más a la tensión continua que se desea obtener. Al girar el rotor, las escobillas van rozando con las delgas, conectando la bobina de inducido correspondiente a cada par de delgas con el circuito exterior. Vistas del inducido de una máquina de corriente continua 4/25

5 Fuerza electromotriz de una dinamo Estructura de una Máquina DC o de corriente continua 2 La f.e.m. se obtiene por inducción electromagnética, por lo que dependerá del flujo cortado por los conductores, de su velocidad y del número de ellos: E = f.e.m. (V). ( ) N = nº conductores del inducido. η = velocidad (r.p.m.). = flujo por polo (Wb). p = nº de pares de polos. a = pares de circuitos del inducido. N, p y a son constantes para una cierta máquina: La f.e.m. es directamente proporcional al flujo inductor y a la velocidad de giro 5/25

6 Desempeño de máquinas de c.c. reales En la práctica, existen varios efectos que impactan la eficiencia y el funcionamiento de las máquinas de C.C. Las más relevantes son la característica de saturación del material ferromagnético, la reacción de armadura y las pérdidas eléctricas y mecánicas. Saturación del material ferromagnético Flujo magnético principal en una máquina de C.C. Puesto que las máquinas de corriente continua están constituidas de material ferromagnético con características no ideales, es conveniente analizar el efecto de la saturación del material en las relaciones de voltaje y corriente de armadura y de campo. Para ello, se usa la llamada característica de excitación de la máquina de C.C o curva de saturación en vacío, la cual, es la misma para la máquina actuando como generador o como motor. Para un material ferromagnético, la relación entre la densidad de flujo y la intensidad de campo no es constante debido al alineamiento de los dipolos que conforman el material (curva de magnetización). El mismo efecto se aprecia al observar la curva de flujo vs corriente de campo debido a las relaciones de proporcionalidad involucradas, es decir, e (véase curva de excitación). (~ Zona Zona Curva de Excitación de una máquina DC Desde un punto de vista práctico, las máquinas de C.C se diseñan de modo de lograr una máxima potencia por unidad de peso. Esto se consigue al situar el punto de operación nominal de la máquina cercano al codo de la curva de saturación del material ferromagnético, con lo cual, cualquier aumento del voltaje generado en torno a este punto va a requerir de un aumento importante de la corriente de campo que se está proporcionando a la máquina. Ic(~ 6/25

7 Reacción del inducido o reacción de armadura Una corriente circulando por el estator o campo de una máquina de C.C. produce un flujo magnético que permite la generación de una tensión en el inducido, E, cuya magnitud depende del valor de la corriente de campo y de la velocidad de giro del eje. Si los bornes del rotor (armadura) son conectados a una carga eléctrica (generador), una corriente circulará por la armadura de la máquina (I a = I i ) generando un flujo magnético ( a.= i) Este flujo de armadura se suma al flujo magnético producido por el campo, produciendo un efecto de distorsión denominado reacción de armadura o reacción de inducido. La reacción de armadura afecta el desempeño de la máquina de C.C. tanto en el voltaje inducido como en el proceso de conmutación que ocurre en el colector. Por una parte, la reacción de armadura cambia la distribución del flujo magnético en el entrehierro, existiendo zonas en que la resultante total de flujo ( Total = c + a ) es de mayor magnitud que la componente de flujo de campo ( c ) y otras en que la magnitud es notoriamente menor. La figura (a) muestra la distribución del flujo magnético en el entrehierro cuando la corriente por la armadura es nula. En este caso, la forma de la distribución se explica por la geometría de las cabezas o caras polares. La figura (b) muestra el flujo producido por la corriente de armadura cuando la máquina está sometida a carga y la figura (c) muestra el resultado de la distribución del flujo magnético por efecto de la reacción de armadura. a) b) c) Distribución del flujo magnético en el inducido o armadura En general el plano neutro se desplaza en la dirección del movimiento en un generador y en sentido contrario a la dirección del movimiento en un motor. Además, la magnitud del desplazamiento depende de la cantidad de corriente en el rotor y por tanto de la carga que tenga la máquina. El resultado final es la formación de un arco de chispas en las escobillas. Este es un problema delicado, puesto que conduce a la disminución de la vida útil de las escobillas, picadura de los segmentos del colector (delgas) e incremento de los costos de mantenimiento. El problema que se origina con la Reacción de Armadura es el debilitamiento del flujo del campo magnético del estator. Con los generadores, para cualquier carga dada, el efecto de debilitar el flujo reduce el voltaje entregado por el generador. En los motores, el efecto puede ser más serio, cuando el flujo en un motor disminuye, su velocidad aumenta. 7/25

8 Pero aumentar la velocidad de un motor se puede aumentar la carga, lo que se traduce en un mayor debilitamiento del flujo. Por otro lado, para que el proceso de conmutación sea óptimo, el paso de las escobillas de una delga a otra debe realizarse en el momento en que la diferencia de tensión entre las delgas vecinas sea nula. Esto debido a que existe un instante en que cada escobilla está en contacto con ambas delgas vecinas y si existiese una diferencia de potencial entre ellas habría un cortocircuito y se producirían arcos eléctricos en el colector. El momento óptimo de conmutación ocurre cuando las escobillas se sitúan en la llamada línea de neutro magnético o línea neutra, cuando no existe corriente en la armadura, la línea de neutro magnético se sitúa en el plano perpendicular al flujo originado por el campo, coincidiendo con la posición física de las escobillas, por lo cual, la conmutación se lleva a cabo sin problemas. Desplazamiento de la línea de neutro magnético causada por la reacción del inducido El desplazamiento de las escobillas produce un adelanto suplementario (en el sentido de la rotación) al correspondiente a la linea neutra en carga, tal que, produzca en la sección en conmutación una fem de sentido opuesto. A consecuencia de la reacción del inducido la línea neutra (línea que une los conductores que no producen fem) en carga, adelanta respecto del sentido de giro un ángulo, tomada como referencia la línea neutra en vacío. Antiguamente se trataba de ajustar físicamente la posición de las escobillas de modo de hacerlas coincidir con la línea neutra, sin embargo, la línea neutra se desplaza con la variación de carga, lo cual obliga a estar ajustando constantemente la posición de las escobillas. Actualmente, este sistema sólo se utiliza en motores muy pequeños donde se sabe que la carga no varía y donde otras soluciones son económicamente inviables. Para evitar los efectos perjudiciales de la reacción de inducido también se puede disponer polos de compensación (polos auxiliares o interpolos) en la culata del generador haciendo circular por ellos la corriente de inducido (bobinas en serie), de tal forma que se produzca un campo transversal del mismo valor y sentido contrario al de la reacción de inducido. Al situarlos a 90º grados eléctricos de las caras polares, coincidiendo con el eje del flujo de armadura, producen un flujo que anula el efecto de la reacción de armadura. Polos principales Polos auxiliares Polos de compensación o interpolos en una máquina C.C 8/25

9 Interpolos I a Dev. Interpolos ra E C = T Polos principales Dev polos princ. Interpolos Disposición física de los interpolos Esquema de conexión Diagrama fasorial de los flujos En la figura se muestra la disposición física de los interpolos en una máquina de C.C.; un esquema de la conexión de los interpolos donde se aprecia que son recorridos por la corriente de armadura. Finalmente, un esquema de cómo se cancela la reacción de armadura al ser sumada con los flujos de los interpolos Los polos de conmutación o auxiliares anulan el flujo transversal sobre la línea neutra teórica y además producen en la sección de conmutación una fem de sentido opuesto a E ra (fem por reacción de armadura). La ventaja de usar interpolos radica principalmente en que no es necesario ningún ajuste con la variación de carga, puesto que la corriente de armadura crece o decrece consecuentemente y lo mismo ocurre con los flujos generados en los polos de compensación. Para máquinas de más de 1[kW], se prefiere utilizar los llamados polos de conmutación o interpolos. En la práctica, el efecto del flujo de los interpolos es suficiente para evitar los problemas en la conmutación de las escobillas; sin embargo, para máquinas de altas potencias y ciclos de trabajo pesados, es necesario mejorar el efecto del debilitamiento del flujo y menor voltaje inducido. Esquema de conexión de los devanados de compensación y de polos auxiliares en una máquina CC En este último caso, la estrategia consiste en colocar los llamados enrollados de compensación, los cuales son devanados que se encuentran colocados en ranuras talladas en las cabezas polares (en forma paralela a las bobinas del rotor) y conectadas en serie con la armadura. Al estar en las cabezas polares, los enrollados de compensación producen un flujo de magnitud mayor al de los interpolos, que permite anular los efectos de debilitamiento de campo producido por la reacción de armadura. Este método, al igual que los interpolos, se adapta automáticamente al tipo de operación (motor o generador) y a las diferentes condiciones de carga, sin embargo, su uso se encuentra limitado a grandes máquinas de C.C., principalmente debido al alto costo que suponen los enrollados de compensación. 9/25

10 Pérdidas y Eficiencia en máquinas de c.c. Las máquinas de C.C. son conversores de energía eléctrica a mecánica y viceversa muy eficientes, sin embargo su rendimiento no alcanza el 100% debido a la no-idealidad de los elementos que la constituyen. Esto implica que, en la práctica, es necesario definir un parámetro de eficiencia a partir de la siguiente relación: ( ) ( ) Los objetivos de diseño se encuentran orientados a maximizar la eficiencia de cada máquina para las características nominales a las cuales ha sido diseñada, sin embargo, existen pérdidas que no son factibles de eliminar: pérdidas eléctricas, pérdidas mecánicas y pérdidas magnéticas. Pérdidas eléctricas. Las pérdidas eléctricas son aquellas producto de las resistencias de los enrollados (pérdidas en el cobre) y pérdidas en los contactos eléctricos (pérdidas en las escobillas). Las pérdidas en el cobre se producen tanto en el campo como en el inducido y se pueden calcular como: Donde: P campo, P inducido : son las pérdidas en el campo e inducido respectivamente. I c, I a : son las corrientes de campo e inducido respectivamente. R c, R a : son las resistencias de campo e inducido respectivamente Por su parte, las pérdidas en las escobillas se calcula como: Dónde: P esc : es la potencia perdida en las escobillas. I a : es la corriente de armadura. V esc : es el voltaje que cae en las escobillas, el cual es, en general, constante para un amplio rango de operación (se asume en un valor de 2 volt.) Pérdidas mecánicas. Las pérdidas mecánicas están asociadas a las pérdidas por concepto de roce entre las partes móviles de la máquina (rodamientos, etc.) y entre la máquina y el aire. Las pérdidas mecánicas son una función cúbica de la velocidad de rotación de la máquina. Pérdidas magnéticas. Las pérdidas en el núcleo (estudiadas en capítulos anteriores) se manifiestan principalmente en las pérdidas por el ciclo de histéresis del material ferromagnético y por corrientes parásitas de Focault. Adicionalmente a las pérdidas anteriores, existen otros tipos de pérdidas cuyos orígenes no se explican necesariamente por los efectos ya mencionados. En general estas pérdidas se agrupan como pérdidas adicionales o perdidas misceláneas y se les asigna un valor cercano al 1% de la potencia nominal de la máquina. Balance Energético de un motor de CC POTENCIA ABSORBIDA Los motores absorben de la red una potencia que es el producto de la tensión por la intensidad absorbida. PERDIDAS JOULE De la potencia absorbida por el motor de la red, una parte se pierde por efecto Joule en cada uno de los bobinados de la máquina. 10/25

11 POTENCIA INTERNA Descontadas estas pérdidas queda la llamada potencia interna que es aquella potencia eléctrica que es transformada en potencia mecánica. PERDIDAS DEL NUCLEO PERDIDAS MECANICAS POTENCIA UTIL Potencia perdida por pequeñas variaciones del flujo magnético: a) por histéresis (desprendimiento de calor al imantarse los materiales férricos del motor) o b) por corrientes parásitas o de Foucault (producidas en el núcleo de hierro sobre el que se arrollan las bobinas del inducido). De la potencia mecánica interna desarrollada una parte se pierde como pérdidas mecánicas, por rozamientos, ventilación, etc. Normalmente varían con el cubo de la velocidad. ( ) La potencia restante es la potencia útil, transmitida por el eje a la carga, cuya relación con la potencia absorbida nos da el rendimiento o eficiencia ε de la máquina. Potencia y rendimiento I Ri E V ( ) Un esquema de lo expuesto sería: ( ) ( ) ( ) P ab P i P u P Cu(i) P Cu(ex) P Fe P mec Flujograma de potencias de una máquina de corriente continua En el vacío (sin carga) la potencia útil del motor es 0 (Pu= 0) y por tanto: La potencia absorbida en vacío será: Luego podemos conocer las pérdidas en el hierro y las pérdidas mecánicas si tenemos el dato de la potencia absorbida en vacío o sin carga (P abo ) y en su caso, las pérdidas por efecto Joule en vacío (P Cuo ). 11/25

12 Motores de CC Son máquinas eléctricas rotativas que transforman la energía eléctrica en mecánica. Los motores de corriente continua presentan el inconveniente de ser más complejos que los de CA y de que sólo pueden ser alimentados a través de equipos rectificadores. En contrapartida, poseen un par de arranque elevado, y su velocidad se puede regular con facilidad entre amplios límites, lo que los hace ideales para aplicaciones donde sea importante el control y la regulación. Principio de funcionamiento Cuando un conductor de longitud l está inmerso en el seno de un campo magnético B y hacemos circular por él una corriente eléctrica i, aparecen unas fuerzas de carácter electromagnético F que tienden a desplazarlo. o Fuerza producida en una espira inmersa dentro de un campo magnético Haciendo circular una corriente por una espira situada en un campo magnético, cada conductor se verá sometido a una fuerza de direcciones contrarias, por serlo el sentido de la corriente. El par de fuerzas generado hará girar la espira que, al disponer de un colector de delgas, hará que la corriente circule siempre en el mismo sentido manteniendo el sentido del par y por tanto del giro. Se obtendrá el valor máximo de fuerza cuando el campo magnético sea perpendicular al conductor y se tendrá una fuerza nula cuando el campo sea paralelo al flujo de corriente eléctrica donde 'l' es la longitud del conductor. El par motor o torque M=T=C que se origina tiene un valor. Que para el caso de la espira de la figura Donde w es el ancho de la espira, α es el ángulo que forma la espira con respecto al campo B 12/25

13 Par, torque o momento producido en una espira que conduce corriente dentro de un campo magnético Esa fuente de campo magnético proviene del devanado inductor. Este es recibido por el devanado inductor, este inductor hace girar el rotor, el cual recibe la corriente eléctrica de la fuente mediante un colector y sistema de escobillas. El colector es básicamente un conmutador sincronizado con el rotor, que conmuta sus bobinas provocando que el ángulo relativo entre el campo del rotor y el del estator se mantenga, al margen de si el rotor gira o no, permitiendo de esta forma que el par motor sea independiente de la velocidad de giro de la máquina. Al recibir la corriente eléctrica e iniciar el giro comienza a producirse una variación en el tiempo del flujo magnético por los devanados, produciendo una Fem inducida E B que va en sentido contrario a la Fem introducida por la fuente, ej, una batería. Esto nos da como resultado un valor de intensidad resultante: Cuando el motor inicia su trabajo, este inicialmente está detenido, existiendo un valor de E B nulo, y teniéndose así un valor de intensidad rotórica muy elevada que puede afectar el rotor y producir arcos eléctricos en las escobillas. Para ello se conecta una resistencia en serie en el rotor durante el arranque, excepto en los motores pequeños. Esta resistencia se calcula para que el motor del par nominal en el arranque. Si se invierte el sentido de la corriente cambiando la polaridad de la alimentación, se conseguirá cambiar el sentido de giro. Reacción de inducido en el motor Al circular corriente por el inducido, da lugar a un flujo magnético transversal que, al igual que ocurría en las dinamos, modifica el flujo principal. Para evitar los efectos perjudiciales que esto produce, también se utilizan polos de conmutación, devanados amortiguadores o se decalan las escobillas. Si se opta por desviar las escobillas habrá que hacerlo en sentido contrario al giro del motor. Devanados de compensación Para neutralizar la fuerza magnetomotriz (f.m.m.) del inducido, en máquinas que están sujetas a grandes sobrecargas, cargas que varían con rapidez, o funcionamiento con campo principal débil, se recurre a oponerle otra f.m.m. que debe ser igual en magnitud y de sentido opuesto a la de la armadura. Esto se consigue con la ubicación del devanado de compensación que va alojado en ranuras de la cara polar, de modo tal que por él circula la corriente de armadura, se logra así que el efecto de la Reacción de Armadura (R.A.) sea compensado, anulándose en la cara polar la f.m.m. de la armadura. 13/25

14 Fuerza contra-electromotriz Cuando el motor gira, los conductores del inducido cortan las líneas del campo magnético del inductor, lo que hace que se induzca en ellos una f.e.m. El sentido de dicha tensión es tal que, según la ley de Lenz, se opone a la causa que la produce. Es decir, a la corriente del inducido. A Esta f.e.m. llamada contraelectromotriz tiene un valor: En las escobillas tiene lugar una caída de tensión que se opone a la intensidad del inducido. Su valor aproximado es de unos 2V. Así mismo, se debe tener en cuenta la resistencia óhmica de cada devanado (del inducido y de los inductores). Corriente en el arranque En el momento del arranque el motor parte de una posición de reposo. Al estar parado el rotor, los conductores no se mueven respecto al campo inductor y la fuerza contraelectromotriz es cero. En esta circunstancia la intensidad del inducido sólo se ve limitada por la pequeña caída de tensión en las escobillas y por las resistencias de los devanados que suelen ser muy pequeñas. Esto hace que la intensidad absorbida en el arranque pueda ser muy alta, aunque disminuya a medida que el rotor gana velocidad y crece la f.c.e.m. inducida. El arranque directo sólo está permitido para potencias inferiores a 5,5 kw. Para limitar la corriente de arranque se pueden colocar resistencias en serie con el inducido, disminuyendo su valor a medida que el motor aumenta su velocidad. Designación de terminales Estos terminales de conexión se encuentran identificados de acuerdo con distintas normas, tal como muestra la tabla 5.1. De acuerdo con las normas VDE tanto para generadores como para motores la primera letra indica el extremo por el que entra la intensidad (+) y la segunda letra el extremo por el que sale (-), con la única salvedad del inducido de una dinamo o generador de corriente continua que hace salir la corriente por el extremo A, ya que éste se comporta como un generador Tabla 5.1: Designación de terminales de conexión de acuerdo a la norma. Elemento Terminales de conexión según Norma VDE ASA BS IEC Armadura A-B A 1 -A 2 AA-A A 1 -A 2 Campo shunt C-D F 1 -F 2 Z-ZZ E 1 -E 2 Campo serie E-F S 1 -S 2 Y-YY D 1 -D 2 Interpolos G-H - HH-H B 1 -B 2 Interpolo simétricamente distribuido en el lado A GA-HA - - 1B 1-1B 2 Interpolo simétricamente distribuido en el lado B GB-HB - - 2B 1-2B 2 Campo de excitación separada (7) I-K F 1 -F 2 X-XX F 1 -F 2 14/25

15 Par Motor (C, T o M) Nw-m El par motor desarrollado en el eje es la relación entre la potencia útil y la velocidad angular. Si expresamos la potencia en vatios y la velocidad en rad/s obtenemos el par en N m. El par motor que desarrollan los conductores del rotor al ser recorridos por una corriente depende, según la ley de Laplace, del valor de dicha corriente y del flujo desarrollado por el campo inductor. Como los términos N, p y a son constantes: El par motor es proporcional a la corriente del inducido y al flujo del campo magnético inductor. Velocidad de giro (rpm) La velocidad de giro de un motor de corriente continua se puede determinar combinando las ecuaciones de f.e.m. y de intensidad de corriente: la velocidad de giro de un motor de CC aumenta con la tensión aplicada, al disminuir la corriente de inducido y al disminuir el campo inductor. El método más empleado, por su sencillez, es el de regular el flujo inductor mediante un reóstato en serie con el devanado inductor. Inversión del sentido de giro Existen dos formas de cambiar el sentido de giro de los motores de CC: Cambiando la polaridad del inducido. Cambiando la polaridad de la excitación. Se suele elegir el primer método por los problemas que plantea la alta inductancia de la excitación y por el magnetismo remanente de las piezas polares. 15/25

16 Motor con excitación independiente Son aquellos que obtienen la alimentación del rotor y del estator de dos fuentes de tensión independientes o sea el devanado de excitación se conecta a una fuente de tensión diferente a la aplicada al inducido Con ello, el campo del estator es constante al no depender de la carga del motor, y el par de fuerza es entonces prácticamente constante. Las variaciones de velocidad al aumentar la carga se deberán sólo a la disminución de la fuerza electromotriz por aumentar la caída de tensión en el rotor.. Sus características de funcionamiento son parecidas a las del motor derivación pero, la separación de la excitación, aporta mayores ventajas para la regulación de velocidad. Los motores de excitación independiente tienen como aplicaciones industriales el torneado y taladrado de materiales, trefilación, extrusión de materiales plásticos y goma, ventilación de horno, retroceso rápido en vacío de ganchos de grúas, desenrollado de bobinas y retroceso de útiles para serrar. El motor de excitación independiente es el más adecuado para cualquier tipo de regulación, por la independencia entre el control por el inductor y el control por el inducido. El sistema de excitación más fácil de entender es el que supone una fuente exterior de alimentación para el arrollamiento inductor. En general, en las máquinas autoexcitadas debe existir magnetismo remanente en el campo. En las máquinas de excitación separada, el devanado de campo es usualmente de un gran número de espiras y conductor delgado, por lo que se precisa una pequeña corriente de excitación para su operación. Una corriente pequeña controla una mucho mayor. Sus curvas características tienen similar comportamiento a las del motor shunt. 16/25

17 Motor de excitación derivación shunt o paralelo La excitación se conecta en paralelo con el inducido. Si existen devanados de polos auxiliares, se colocan en serie con el inducido. La intensidad total absorbida de la red por el motor se divide en dos, una que alimenta la excitación y otra que pasa por el inducido En el devanado del inducido se tiene: ( ) En el dev ddel inductor Los devanados: inducido e inductor están conectados en paralelo y alimentados por una fuente común. También se denominan máquinas shunt, y en ellas un aumento de la tensión en el inducido hace aumentar la velocidad de la máquina. Luego: ( ) ( ) ( ) Característica de velocidad del motor shunt o derivación Según la ecuación de velocidad, manteniendo constante el campo magnético y la tensión en bornes, al aumentar la intensidad de carga la velocidad tiende a disminuir un poco debido al término Ri Ii (curva c). Por otro lado, al aumentar la intensidad de inducido, lo hace también la reacción de inducido, disminuyendo el flujo total y con ello la velocidad (curva a). El resultado es que la velocidad de un motor de excitación en derivación se mantiene prácticamente constante para cualquier régimen de carga (curva b). Característica del par y mecánica de un motor shunt La regulación de velocidad entre amplios límites se consigue mediante un reóstato en serie con la excitación. Son motores con velocidad casi constante (la velocidad apenas disminuye al aumentar la carga). Son motores estables y de precisión, muy utilizados en máquinas herramientas: fresadoras, tornos, taladradoras, etc. La característica de par relaciona el par motor con la corriente de inducido. Para un determinado flujo constante el par motor es directamente proporcional a la corriente de inducido e inversamente proporcional a la velocidad: La característica mecánica relaciona el par motor con la velocidad. Es importante porque nos indica la velocidad a la que girará el motor al aplicar un determinado par resistente. Considerando el flujo constante la velocidad también lo es para cualquier par resistente. El par aumentará incrementando la intensidad de inducido para conseguir igualar el par resistente. 17/25

18 ( ) En resumen para un motor shunt se tiene: Velocidad aproximadas constante, del orden de 5% de variación entre vacío y plena carga. Cp y Cmáx, limitados por Ia. Fácil control de velocidad, mediante la inserción de un reóstato en el circuito de campo, obteniéndose un gran margen de variación de velocidad (5:1). También es posible variar la velocidad, variando Vt. Motor con excitación en serie La excitación está en serie con el inducido. La particularidad más importante es que la corriente de excitación y de inducido es la misma. Los devanados de inducido y el inductor están colocados en serie y alimentados por una misma fuente de tensión. En este tipo de motores existe dependencia entre el par y la velocidad; son motores en los que, al aumentar la corriente de excitación, se hace disminuir la velocidad, con un aumento del par. ( ) Motor con excitación serie En este tipo de máquina los devanados son de pocas espiras y gruesas, por lo que la resistencia de los mismos es muy pequeña y la caída de tensión en los mismos se puede despreciar. 18/25

19 Característica de velocidad del motor serie Como el flujo del campo magnético inductor es proporcional a la corriente de excitación, este depende directamente de la intensidad de carga del inducido. En este caso la velocidad viene dada por la expresión: ( ) La característica de velocidad tiene forma de hipérbola. Según aumenta la intensidad del motor, este va perdiendo velocidad, a la vez que aumenta su par. Para corrientes muy pequeñas el motor tiende a alcanzar velocidades muy elevadas que pueden llegar a ser peligrosas (enbalamiento), por lo que no conviene hacer funcionar estos motores en vacío o sin carga conectada al eje. Característica de par motor del motor serie En esta máquina el flujo es directamente proporcional a la corriente del inducido (Al menos hasta que el metal se satura). Entonces, el flujo puede estar dado por: Donde c es una constante de proporcionalidad. En esta máquina en par inducido está dado por: En otras palabras el Par del motor es proporcional al cuadrado de la corriente del inducido. Esta ecuación representa una parábola. El par crece con el cuadrado de la intensidad. Como resultado de esta relación, es fácil observar que un motor DC serie produce más par por amperios que cualquier otro. El motor serie tiene un elevado par de arranque debido al alto valor de la intensidad de arranque El motor serie se utiliza en aplicaciones que requieren pares muy altos. Ejemplo de tales aplicaciones son los motores de arranque de los vehículos automotores, motores de elevadores, grúas y motores de tracción en locomotoras. Característica mecánica del motor serie: Torque vs velocidad Al aumentar el par resistente el motor reduce su velocidad a la vez que consume más intensidad generando el par suficiente. Si el par resistente es excesivo, el motor no puede con la carga y tiende a pararse. Si el par resistente disminuye mucho el motor se embala ( ). Para controlar la velocidad de los motores serie se coloca un reóstato en paralelo con la excitación. Se consigue así un control sobre el flujo inductor y, con él, sobre la velocidad. Estos motores se caracterizan, por tanto, por tener un elevado par de arranque, lo que les permite iniciar el movimiento con carga, pero su velocidad no se mantiene constante, sino que disminuye al aumentar la carga o aumenta al disminuir ésta. Se utilizan en ferrocarriles, funiculares,. ( ) 19/25

20 ( ) ( ) ( ) [ ( )] Con las ecuaciones anteriores en posible calcular el torque de partida para este motor, además, es posible determinar que la curva tiene un par de asíntotas que corresponden a ( ) y al eje T = 0. Esto significa que el motor serie no tiene transición de motor a generador y si el motor se hace operar en vacío (sin carga mecánica) se embala. ( ) i) Debido a su alto torque de partida, se emplea en equipos que deben partir con carga nominal. Puede ser sometido a grandes sobrecargas de torque, pues responde bajando su velocidad. Motor de excitación compuesta o compound En este caso el devanado de excitación tiene una parte de él en serie con el inducido y otra parte en paralelo. Estos motores presentan características intermedias entre el motor serie y derivación, de forma que mejoran la precisión del primero y el par de arranque del segundo El arrollamiento en serie con el inducido está constituido por pocas espiras de gran sección, mientras que el otro está formado por un gran número de espiras de pequeña sección. Permite obtener por tanto un motor con las ventajas del motor serie, pero sin sus inconvenientes. Sus curvas características serán intermedias entre las que se obtienen con excitación serie y con excitación en derivación. Existen dos tipos de excitación compuesta. En la llamada compuesta adicional o acumulativa, el sentido de la corriente que recorre los arrollamientos serie y paralelo es el mismo, por lo que sus efectos se suman, a diferencia de la compuesta diferencial, donde el sentido de la corriente que recorre los arrollamientos tiene sentido contrario y por lo tanto los efectos de ambos devanados se restan. Se caracteriza por tener un elevado par de arranque, pero no corre el peligro de ser inestable cuando trabaja en vacío, como ocurre con el motor serie, aunque puede llegar a alcanzar un número de revoluciones muy alto. Motor dc con excitación compuesta y derivación CORTA 20/25

21 Motor dc con excitación compuesta y derivación LARGA Con el devanado en derivación se consigue evitar el peligro de enbalamiento del motor por reducción de flujo, por lo que estos motores se comportan en vacío como los motores en derivación. En carga, el devanado en serie hace que el flujo aumente, por lo que la velocidad tiende a disminuir, aunque no en la misma medida que lo hace un motor serie. Los motores compuestos se utilizan en aquellos casos en los que el par de arranque de los motores con excitación derivación no son capaces de mover la carga, como, por ejemplo, en dispositivos de elevación. Características de los motores con excitación compuesta Características externas de comportamiento de velocidad vs torque de motores de c.c. Estas curvas, que representan la velocidad en función del torque, se expresan en porcentaje o en por unidad (pu) de las características nominales de la máquina. 21/25

22 Motor con imán permanente Existen motores de imán permanente (PM, permanent magnet), en tamaños de fracciones de caballo y de números pequeños enteros de caballos. Tienen varias ventajas respecto a los del tipo de campo devanado. No se necesitan las alimentaciones de energía eléctrica para excitación ni el devanado asociado. Se mejora la confiabilidad, ya que no existen bobinas excitadoras del campo que fallen y no hay probabilidad de que se presente una sobre-velocidad debida a pérdida del campo. Se mejoran la eficiencia y el enfriamiento por la eliminación de pérdida de potencia en un campo excitador. Así mismo, la característica par contra corriente se aproxima más a lo lineal. Un motor de imán permanente (PM) se puede usar en donde se requiere un motor por completo encerrado para un ciclo de servicio de excitación continua. Del motor de iman permanente se puede decir: motor de imán permanente El campo está hecho con imán permanente. Para conseguir la densidad de flujo deseada se utilizan materiales como: o o o Tierras raras: Samariun cobalt, Boron iron Cerámica Alnico Ventajas de los motores DC de iman permanente Como estos motores no requieren un circuito de campo externo, no tienen las pérdidas de cobre del circuito de campo que corresponden a los motores de c.c. en derivación. Puesto que no requieren embobinados de campo, pueden ser más pequeños que los correspondientes motores de c.c. en derivación. Se utilizan en caballajes pequeños donde es necesario un ahorro de espacio. La mayor ventaja de este tipo de motor, con respecto a los motores de inducción y sincrónicos convencionales, es la ausencia de pérdidas de deslizamiento y la natural habilidad de suministrar corriente reactiva, dependiendo de las condiciones de excitación tanto del imán como de la armadura, Presenta un aumento general de la eficiencia de conversión de energía como también de la disminución de los costos de mantenimiento, y pérdidas asociadas a la refrigeración del motor. Entre las desventajas se encuentran: o Los imanes permanentes no pueden producir una densidad de flujo tan alta como un campo en derivación suministrando externamente. 22/25

23 o o o o Tendrán un menor momento inducido por amperio de corriente inducida que un motor en derivación del mismo tamaño e iguales características. Los CCIP presentan riesgos de desmagnetización. La corriente de inducido Ia de una máquina de c.c. produce su propio campo magnético inducido. La fuerza magnetomotriz de inducido se sustrae de la fuerza magnetomotriz de los polos bajo porciones de las superficies polares, reduciendo el flujo neto total de la máquina. (efecto reacción de inducido) Aplicaciones y ventajas de los motores de corriente continua. Aunque el precio de un motor de corriente continua es considerablemente mayor que el de un motor de inducción de igual potencia, existe una tendencia creciente a emplear motores de corriente continua en aplicaciones especiales. La gran variedad de la velocidad, junto con su fácil control y la gran flexibilidad de las características par-velocidad del motor de corriente continua, han hecho que en los últimos años se emplee éste cada vez más con máquinas de velocidad variable en las que se necesite amplio margen de velocidad y control fino de las mismas. Existe un creciente número de procesos industriales que requieren una exactitud en su control o una gama de velocidades que no se puede conseguir con motores de corriente alterna. El motor de corriente continua mantiene un rendimiento alto en un amplio margen de velocidades, lo que junto con su alta capacidad de sobrecarga lo hace más apropiado que el de corriente alterna para muchas aplicaciones. Los motores de corriente continua empleados en juguetes, suelen ser del tipo de imán permanente, proporcionan potencias desde algunos vatios a cientos de vatios. Los empleados en giradiscos, unidades lectoras de CD, y muchos discos de almacenamiento magnético son motores en los que el rotor es de imán fijo y sin escobillas. En estos casos el inductor, esta formado por un juego de bobinas fijas, y un circuito electrónico que cambia el sentido de la corriente a cada una de las bobinas para adecuarse al giro del rotor. Este tipo de motores proporciona un buen par de arranque y un eficiente control de la velocidad. Una última ventaja es la facilidad de inversión de marcha de los motores grandes con cargas de gran inercia, al mismo tiempo que devuelven energía a la línea actuando como generador, lo que ocasiona el frenado y la reducción de velocidad. Las principales aplicaciones del motor de corriente continua son: Trenes de laminación reversibles. Los motores deben de soportar una alta carga. Normalmente se utilizan varios motores que se acoplan en grupos de dos o tres. Trenes Konti. Son trenes de laminación en caliente con varios bastidores. En cada uno se va reduciendo más la sección y la velocidad es cada vez mayor. Cizallas en trenes de laminación en caliente. Se utilizan motores en derivación. Industria del papel. Además de una multitud de máquinas que trabajan a velocidad constante y por lo tanto se equipan con motores de corriente continua, existen accionamientos que exigen par constante en un amplio margen de velocidades. Otras aplicaciones son las máquinas herramientas, máquinas extractoras, elevadores, ferrocarriles. Los motores desmontables para papeleras, trefiladoras, control de tensión en máquinas bobinadoras, velocidad constante de corte en tornos grandes El motor de corriente continua se usa en grúas que requieran precisión de movimiento con carga variable (cosa casi imposible de conseguir con motores de corriente alterna). Debido a su versatilidad en las aplicaciones, el motor de Corriente Continua posee una grande parcela del mercado de motores eléctricos, destacándose: Máquinas operatrices en general; Bombas de pistón, Pares de fricción, Herramientas de avance, Tornos, bobinadoras, Mandriladoras, Trituradoras, Máquinas textiles, Gañidos y grúas, Pórticos, Vehículos de tracción Prensas, Máquinas de papel, Industria química y petroquímica, Industrias siderúrgicas, Hornos, exhaustores, separadores y cintas transportadoras para industria de cemento. 23/25

24 Esquemas de conexión de los distintos tipos de motores de corriente continua. Representación esquemática y simbólica de un motor de corriente continua excitación serie Representación esquemática y simbólica de un motor de corriente continua excitación shunt Representación esquemática y simbólica de un motor de corriente continua excitación 24/25

25 25/25

TEMA 5: Motores de Corriente Continua.

TEMA 5: Motores de Corriente Continua. Esquema: TEMA 5: Motores de Corriente Continua. TEMA 5: Motores de Corriente Continua....1 1.- Introducción...1 2.- Ley de Faraday...2 3.- Constitución de una Máquina Eléctrica...2 4.- Principio de un

Más detalles

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo FUNDAMENTOS DE INGENIERÍA ELÉCTRICA José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo Tema 10: Máquinas de corriente continua PUNTOS OBJETO

Más detalles

Generadores de corriente continua

Generadores de corriente continua Generadores de corriente continua Concepto Los generadores de corriente continua son maquinas que producen tensión su funcionamiento se reduce siempre al principio de la bobina giratorio dentro de un campo

Más detalles

GENERADORES DE CORRIENTE CONTINUA (C.C) INTRODUCCIÓN

GENERADORES DE CORRIENTE CONTINUA (C.C) INTRODUCCIÓN GENERADORES DE CORRIENTE CONTINUA (C.C) INTRODUCCIÓN La máquina de c-c es una maquina de polos, salientes con los polos salientes en el estator. En estos polos van colocadas diversas bobinas de campo que

Más detalles

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA A) CAMPO MAGNÉTICO El Campo Magnético es la perturbación que un imán o una corriente eléctrica producen en el espacio que los rodea. Esta perturbación del espacio se manifiesta en la fuerza magnética que

Más detalles

5.1.1)Principio de funcionamiento.

5.1.1)Principio de funcionamiento. CAPÍTULO 5 MÁQUINAS DE CORRIENTE CONTINUA 5.1)ASPECTOS CONSTRUCTIVOS Y PRINCI- PIO DE FUNCIONAMIENTO. 5.1.1)Principio de funcionamiento. Devanado de Estator (campo): - Objetivo: producir el campo que posibilita

Más detalles

1. Concepto de amplificación de señales en los circuitos de control Amplificadores estáticos Amplificadores magnéticos...

1. Concepto de amplificación de señales en los circuitos de control Amplificadores estáticos Amplificadores magnéticos... Contenido 1. Concepto de amplificación de señales en los circuitos de control.... 2 2. Amplificadores estáticos.... 2 2.1. Amplificadores magnéticos... 2 2.2. Amplificadores electrónicos.... 3 3. Amplificadores

Más detalles

INTRODUCCION. Generadores de CC. Dinamos

INTRODUCCION. Generadores de CC. Dinamos INTRODUCCION Los Motores y generadores eléctricos, son un grupo de aparatos que se utilizan para convertir la energía mecánica en eléctrica, o a la inversa, con medios electromagnéticos. A una máquina

Más detalles

INDICE Capítulo 1. Conversión de Energía Capítulo 2. Inductancia Capítulo 3. Transformador

INDICE Capítulo 1. Conversión de Energía Capítulo 2. Inductancia Capítulo 3. Transformador INDICE Capítulo 1. Conversión de Energía 1 1.1. Fuerza en un capacitor 2 1.2. El Toroide 5 1.3. Circuitos magnéticos en serie y paralelo 7 1.4. Otros sistemas comunes de unidades magnéticas 8 1.5. Materiales

Más detalles

3. TRANSFORMADORES. Su misión es aumentar o reducir el voltaje de la corriente manteniendo la potencia. n 2 V 1. n 1 V 2

3. TRANSFORMADORES. Su misión es aumentar o reducir el voltaje de la corriente manteniendo la potencia. n 2 V 1. n 1 V 2 3. TRANSFORMADORES Un transformador son dos arrollamientos (bobina) de hilo conductor, magnéticamente acoplados a través de un núcleo de hierro común (dulce). Un arrollamiento (primario) está unido a una

Más detalles

a las pruebas de circuito abierto y cortocircuito a los generadores sincrónicos,

a las pruebas de circuito abierto y cortocircuito a los generadores sincrónicos, Electricidad avanzada ENTREGA 1 Pruebas de circuito abierto y cortocircuito en los generadores sincrónicos La máquina sincrónica es hoy por hoy, la más ampliamente utilizada para convertir grandes cantidades

Más detalles

Tema 7. MOTORES ELÉCTRICOS DE CORRIENTE CONTINUA

Tema 7. MOTORES ELÉCTRICOS DE CORRIENTE CONTINUA Tema 7. MOTORES ELÉCTRICOS DE CORRIENTE CONTINUA 1. MAGNETISMO Y ELECTRICIDAD...2 Fuerza electromotriz inducida (Ley de inducción de Faraday)...2 Fuerza electromagnética (2ª Ley de Laplace)...2 2. LAS

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 2002-2003 CONVOCATORIA SEPTIEMBRE ELECTROTÉCNIA EL ALUMNO ELEGIRÁ UNO DE LOS DOS MODELOS Criterios de calificación.- Expresión clara y precisa dentro

Más detalles

VARIADORES DE FRECUENCIA]

VARIADORES DE FRECUENCIA] VARIADORES DE FRECUENCIA] Variador De Frecuencia Micromaster Siemens Cuando los motores Eléctricos no eran capaces de alcanzar un elevado potencial Eléctrico a reducidas y a grandes velocidades a la vez,

Más detalles

DEP.TECNOLOGÍA / PROF. MARÍA JOSÉ GONZÁLEZ

DEP.TECNOLOGÍA / PROF. MARÍA JOSÉ GONZÁLEZ REPASAMOS CONCEPTOS MAGNETISMO Imanes naturales : atraen al hierro. Características de los imanes: -La atracción magnética es más intensa en los extremos de la barra magnética. -Un imán se parte en varios

Más detalles

ELEL10. Generadores de CC. Dinamos

ELEL10. Generadores de CC. Dinamos . Dinamos los generadores de corriente continua son maquinas que producen tensión su funcionamiento se reduce siempre al principio de la bobina giratorio dentro de un campo magnético. Si una armadura gira

Más detalles

MÁQUINAS ELÉCTRICAS: MOTORES

MÁQUINAS ELÉCTRICAS: MOTORES MÁQNAS ELÉCTRCAS: MOTORES Se denomina máquina eléctrica a todo dispositivo capaz de generar, transformar o aprovechar la energía eléctrica. Según esto podemos clasificar las máquinas eléctricas en tres

Más detalles

CRONOGRAMA DE MATERIA PROFESOR: TEL: E. MAIL: PRE-REQUISITOS COMPETENCIAS

CRONOGRAMA DE MATERIA PROFESOR: TEL: E. MAIL: PRE-REQUISITOS COMPETENCIAS 1 CENTRO UNIVERSITARIO DE CIENCIAS EXACTAS E INGENIERIAS DIVISIÓN DE INGENIERIAS DEPARTAMENTO DE INGENIERIA MECANICA ELECTRICA CRONOGRAMA DE MATERIA CARRERA: ING. COM. Y ELECT. HORAS SEM: T: 60 hrs. P:

Más detalles

Máquinas eléctricas de corriente alterna. Capítulo 3 Máquina Síncrona

Máquinas eléctricas de corriente alterna. Capítulo 3 Máquina Síncrona Universidad Carlos III de Madrid Dept. Ingenería eléctrica Máquinas eléctricas de corriente alterna Capítulo 3 Máquina Síncrona David Santos Martín CAPÍTULO 3 Máquina Síncrona 3.1.- Introducción 3.2.-

Más detalles

LA DINAMO TACOMETRICA: COMO ESCOGER EL SENSOR DE VELOCIDAD

LA DINAMO TACOMETRICA: COMO ESCOGER EL SENSOR DE VELOCIDAD 1 Introducción LA DINAMO TACOMETRICA: COMO ESCOGER EL SENSOR DE VELOCIDAD Desde hace unos años, el proceso de control de las máquinas rotativas eléctricas ha experimentado un gran número de cambios, a

Más detalles

FÍSICA 3 TEMA 2 Resumen teórico. Electricidad y magnetismo

FÍSICA 3 TEMA 2 Resumen teórico. Electricidad y magnetismo Electricidad y magnetismo CORRIENTE ELÉCTRICA Diferencia de potencial, resistencia e intensidad La palabra corriente se utiliza para expresar movimiento de. La corriente de un río, por ejemplo, nos expresa

Más detalles

MAQUINAS ELECTRICAS MODULO DE AUTOAPRENDIZAJE V

MAQUINAS ELECTRICAS MODULO DE AUTOAPRENDIZAJE V SESION 1: INTRODUCCION DE A LOS PRINCIPIOS DE LAS MAQUINAS ELECTRICAS 1. DEFINICION DE MAQUINAS ELECTRICAS Las Máquinas Eléctrica son dispositivos empleados en la conversión de la energía mecánica a energía

Más detalles

Motor eléctrico: Sistema que convierte la energía Eléctrica en Mecánica.

Motor eléctrico: Sistema que convierte la energía Eléctrica en Mecánica. Motor eléctrico: Sistema que convierte la energía Eléctrica en Mecánica. Motor eléctrico: Lo más común es la máquina rotatoria Motor eléctrico: Pero existen otros sistemas que también son Motores. Motor

Más detalles

MÁQUINAS ASÍNCRONAS O DE INDUCCIÓN

MÁQUINAS ASÍNCRONAS O DE INDUCCIÓN DOCUMENTACIÓN DE LA PRÁCTICA DE LABORATORIO: MÁQUINAS ASÍNCRONAS O DE INDUCCIÓN 1.- CONEXIONADO DE LOS MOTORES TRIFÁSICOS DE INDUCCIÓN a) b) c) Fig. 1: Caja de bornes de un motor asíncrono trifásico: a)

Más detalles

DISEÑO Y FABRICACIÓN DE UN MOTOR DE CORRIENTE CONTINUA

DISEÑO Y FABRICACIÓN DE UN MOTOR DE CORRIENTE CONTINUA ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIVERSIDAD DE NAVARRA Trabajo de Sistemas Eléctricos - CURSO 2005-2006 DISEÑO Y FABRICACIÓN DE UN MOTOR DE CORRIENTE CONTINUA ÍNDICE 1 Diseño de

Más detalles

ASIGNATURA: DIBUJO ELECTRONICO I NUMERO DE INFORME: N 02 TEMA: ARRANCADORES CON ANILLOS ROZANTES. PRESENTADO POR: LIZANA AGUADO, Fernando

ASIGNATURA: DIBUJO ELECTRONICO I NUMERO DE INFORME: N 02 TEMA: ARRANCADORES CON ANILLOS ROZANTES. PRESENTADO POR: LIZANA AGUADO, Fernando Año de la Integración Nacional y el Reconocimiento de Nuestra Diversidad 1 ASIGNATURA: DIBUJO ELECTRONICO I NUMERO DE INFORME: N 02 TEMA: ARRANCADORES CON ANILLOS ROZANTES PRESENTADO POR: LIZANA AGUADO,

Más detalles

ORIENTACIONES DIDÁCTICAS PARA EL ALUMNADO

ORIENTACIONES DIDÁCTICAS PARA EL ALUMNADO ORIENTACIONES DIDÁCTICAS PARA EL ALUMNADO "Contenido adscrito a la Licéncia "Creative Commons" CC ES en las opciones "Reconocimiento -No Comercial- Compartir Igual". Autor: Ángel Mahiques Benavent ÍNDICE

Más detalles

Máquinas Eléctricas. Sistema Eléctrico. Maquina Eléctrica. Sistema Mecánico. Flujo de energía como MOTOR. Flujo de energía como GENERADOR

Máquinas Eléctricas. Sistema Eléctrico. Maquina Eléctrica. Sistema Mecánico. Flujo de energía como MOTOR. Flujo de energía como GENERADOR Máquinas Eléctricas Las máquinas eléctricas son convertidores electromecánicos capaces de transformar energía desde un sistema eléctrico a un sistema mecánico o viceversa Flujo de energía como MOTOR Sistema

Más detalles

MÁQUINAS ELECTRICAS DE C.C y C.A.. ELECTROMECANICA UNIDAD 4 Generadores de Corriente Continua. Partes de una maquina eléctrica de corriente continua.

MÁQUINAS ELECTRICAS DE C.C y C.A.. ELECTROMECANICA UNIDAD 4 Generadores de Corriente Continua. Partes de una maquina eléctrica de corriente continua. Página19 UNIDAD 4 Generadores de Corriente Continua. Introducción En la actualidad, la generación de C.C. se realiza mediante pilas y acumuladores o se obtiene de la conversión de C.A. a C.C. mediante

Más detalles

6. Máquinas eléctricas.

6. Máquinas eléctricas. 6. Máquinas eléctricas. Definiciones, clasificación y principios básicos. Generadores síncronos. Campos magnéticos giratorios. Motores síncronos. Generadores de corriente continua. Motores de corriente

Más detalles

1. Conceptos básicos sobre motores eléctricos

1. Conceptos básicos sobre motores eléctricos 1. Conceptos básicos sobre motores eléctricos Anibal T. De Almeida ISR-Universidad de Coímbra 1 Temario Sistemas de motores: uso de la energía Definición de sistema de motores Tipos de motores eléctricos

Más detalles

Facultad de Ingeniería. Escuela de Eléctrica. Asignatura CONVERSIÓNDE LA

Facultad de Ingeniería. Escuela de Eléctrica. Asignatura CONVERSIÓNDE LA Tema: PRINCIPIOS DE LAS MAQUINAS DE CORRIENTE CONTINUA. I. OBJETIVOS. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura CONVERSIÓNDE LA ENERGIAELECTROMECÁNICAII. Que el estudiante: Identifique la

Más detalles

E L E C T R I C I D A D. El anillo Saltador. El anillo Saltador

E L E C T R I C I D A D. El anillo Saltador. El anillo Saltador E L E C T R I C I D A D El anillo Saltador El anillo Saltador E L E C T R I C I D A D Los experimentos realizados simultánea pero independientemente por el inglés Michael Faraday y el norteamericano Joseph

Más detalles

3. Motores de corriente continua

3. Motores de corriente continua 3. Motores de corriente continua 1. Principios básicos Tipos de máquinas eléctricas Generador: Transforma cualquier clase de energía, normalmente mecánica, en eléctrica. Transformador: Modifica alguna

Más detalles

CAPITULO 3. Control de velocidad de los motores de

CAPITULO 3. Control de velocidad de los motores de CAPITULO 3. Control de velocidad de los motores de inducción. 3.1 Introducción. Hasta la llegada de los modernos controladores de estado sólido, los motores de inducción no eran las máquinas adecuadas

Más detalles

Tema 8. Inducción electromagnética

Tema 8. Inducción electromagnética Tema 8. Inducción electromagnética Se producirá una corriente eléctrica inducida en un circuito, cuando varíe el flujo magnético que lo atraviesa. Los aparatos se alimentan con energía eléctrica, y necesitan

Más detalles

MODULO 3 FUNDAMENTOS DE ELECTRICIDAD TEMA 12

MODULO 3 FUNDAMENTOS DE ELECTRICIDAD TEMA 12 MODULO 3 FUNDAMENTOS DE ELECTRICIDAD TEMA 12 1 TEMA 12 TEORIA DEL MOTOR/GENERADOR DE CORRIENTE CONTINUA 2 INTRODUCCION El empleo de la energía eléctrica en las aeronaves ha sufrido una evolución muy rápida

Más detalles

Problemas resueltos. Consideramos despreciable la caída de tensión en las escobillas, por lo que podremos escribir:

Problemas resueltos. Consideramos despreciable la caída de tensión en las escobillas, por lo que podremos escribir: Problemas resueltos Problema 1. Un motor de c.c (excitado según el circuito del dibujo) tiene una tensión en bornes de 230 v., si la fuerza contraelectromotriz generada en el inducido es de 224 v. y absorbe

Más detalles

INDICE Capitulo 1. El concepto del circuito magnético Capitulo 2. Excitación de estructuras ferromagnéticas con corriente directa

INDICE Capitulo 1. El concepto del circuito magnético Capitulo 2. Excitación de estructuras ferromagnéticas con corriente directa INDICE Capitulo 1. El concepto del circuito magnético 1-1. introducción 1 1-2. algunas leyes básicas de electrostática 3 1-3. algunas leyes básicas de magnetostática 8 1-4. otras conclusiones útiles en

Más detalles

INVERSORES RESONANTES

INVERSORES RESONANTES 3 INVERSORES RESONANTES 3.1 INTRODUCCIÓN Los convertidores de CD a CA se conocen como inversores. La función de un inversor es cambiar un voltaje de entrada en CD a un voltaje simétrico de salida en CA,

Más detalles

I. RESULTADOS DE APRENDIZAJE. Implementar un circuito de control de arranque con aplicación de los temporizadores.

I. RESULTADOS DE APRENDIZAJE. Implementar un circuito de control de arranque con aplicación de los temporizadores. UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELÉCTRICA Y MECÁNICA CICLO II-15 CONTROL DE MOTORES ELÉCTRICOS GUÍA DE LABORATORIO # 3 NOMBRE DE LA PRÁCTICA: ARRANQUE SECUENCIAL,

Más detalles

CAPITULO XI EL VATIMETRO. El vatímetro es un instrumento capaz de medir la potencia promedio consumida en un circuito

CAPITULO XI EL VATIMETRO. El vatímetro es un instrumento capaz de medir la potencia promedio consumida en un circuito CAPIULO XI EL VAIMERO. INRODUCCION. El vatímetro es un instrumento capaz de medir la potencia promedio consumida en un circuito Según la definición de potencia, un vatímetro debe ser un instrumento que

Más detalles

MOTORES DE CD INTRODUCCIÓN A LOS MOTORES DE CD. Los motores de CD son máquinas utilizadas

MOTORES DE CD INTRODUCCIÓN A LOS MOTORES DE CD. Los motores de CD son máquinas utilizadas INTRODUCCIÓN A LOS MOTORES DE CD Los motores de CD son máquinas utilizadas tanto como motores que como generadores de CD, es decir, físicamente es la misma máquina y únicamente difieren en la forma de

Más detalles

PRINCIPIOS DE MÁQUINAS Y MOTORES DE C.C. Y C.A.

PRINCIPIOS DE MÁQUINAS Y MOTORES DE C.C. Y C.A. PRINCIPIOS DE MÁQUINAS Y MOTORES DE C.C. Y C.A. En la industria se utilizan diversidad de máquinas con la finalidad de transformar o adaptar una energía, no obstante, todas ellas cumplen los siguientes

Más detalles

INDICE: Introducción 2 Motores Hidráulicos..3 Motores Neumáticos.4 Cibergráfica.8 Conclusiones..8

INDICE: Introducción 2 Motores Hidráulicos..3 Motores Neumáticos.4 Cibergráfica.8 Conclusiones..8 INDICE: Introducción 2 Motores Hidráulicos..3 Motores Neumáticos.4 Cibergráfica.8 Conclusiones..8 INTRODUCCION: A continuación se enuncian los motores hidráulicos y neumáticos conocidos así como sus principales

Más detalles

8. Tipos de motores de corriente continua

8. Tipos de motores de corriente continua 8. Tipos de motores de corriente continua Antes de enumerar los diferentes tipos de motores, conviene aclarar un concepto básico que debe conocerse de un motor: el concepto de funcionamiento con carga

Más detalles

CORRIENTE CONTINUA I : RESISTENCIA INTERNA DE UNA FUENTE

CORRIENTE CONTINUA I : RESISTENCIA INTERNA DE UNA FUENTE eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS MATERIA: ELECTROTECNIA OFICIALES DE GRADO (MODELO DE EXAMEN) Curso 2013-2014 INSTRUCCIONES GENERALES Y

Más detalles

Examen de TEORIA DE MAQUINAS Junio 07 Nombre...

Examen de TEORIA DE MAQUINAS Junio 07 Nombre... Examen de TEORIA DE MAQUINAS Junio 07 Nombre... La figura muestra un mecanismo biela-manivela. La manivela posee masa m y longitud L, la biela masa 3 m y longitud 3 L, y el bloque masa 2m. En la posición

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Departamento de Física Aplicada III Escuela Superior de Ingenieros Camino de los Descubrimientos s/n 4109 Sevilla Examen de Campos electromagnéticos. o Curso de Ingeniería Industrial. Septiembre de 011

Más detalles

EJERCICIOS PROPUESTOS DE MAQUINAS ELECTRICAS TEMA-2 (TRANSFORMADORES)

EJERCICIOS PROPUESTOS DE MAQUINAS ELECTRICAS TEMA-2 (TRANSFORMADORES) EJERCICIO Nº1 EJERCICIOS PROPUESTOS DE MAQUINAS ELECTRICAS TEMA-2 (TRANSFORMADORES) Un transformador monofásico de 10KVA, relación 500/100V, tiene las siguientes impedancias de los devanados: Ω y Ω. Al

Más detalles

Accionamientos eléctricos Tema VI

Accionamientos eléctricos Tema VI Dispositivos semiconductores de potencia. ELECTRÓNICA DE POTENCIA - Con el nombre de electrónica de potencia o electrónica industrial, se define aquella rama de la electrónica que se basa en la utilización

Más detalles

ARRANCADOR DE ANILLOS ROZANTES

ARRANCADOR DE ANILLOS ROZANTES 2012 ARRANCADOR DE ANILLOS ROZANTES ALUMNA: Robles Bellido Fanny FACULTAD: ING, MECANICA ELECTRICA. ESCUELA: ING. ELECTRONICA Tabla de contenido indice... 1 Objetivos... 2 Anillos rozantes... 3 Rotor de

Más detalles

2. El conmutador bajo carga

2. El conmutador bajo carga 2. El conmutador bajo carga La función principal de un Conmutador Bajo Carga (OLTC) es modificar la relación de transformación de los transformadores de potencia, en respuesta a un cambio de carga en el

Más detalles

TIPOS DE AE A ROGE G NE N RAD A O D RES

TIPOS DE AE A ROGE G NE N RAD A O D RES TIPOS DE AEROGENERADORES Criterios para la clasificación de los aerogeneradores Por la posición de su Eje Por la Velocidad Específica λ=(ω R)/V w Por su posición respecto a la Torre Por sus diferentes

Más detalles

MAGNETISMO. Martín Carrera Rubín 2ª

MAGNETISMO. Martín Carrera Rubín 2ª MAGNETISMO Martín Carrera Rubín 2ª 1. Introducción 2. Hipótesis 3. Materiales 4. Procedimientos 5. Análisis de los resultados 6. Conclusión Esta práctica de magnetismo podemos distinguir varios puntos

Más detalles

ALUMNO-A: CURSO: 2º ESO

ALUMNO-A: CURSO: 2º ESO UNIDAD: ELECTRICIDAD. CONOCIENDO LA ELECTRICIDAD ALUMNO-A: CURSO: 2º ESO 1.- INTRODUCCIÓN Hoy en día la energía eléctrica es imprescindible, gracias a ella funcionan infinidad de aparatos, máquinas, fábricas,

Más detalles

MOTOR DE INDUCCION MONOFASICO

MOTOR DE INDUCCION MONOFASICO MAQUINAS ELÉCTRICAS ROTATIVAS MOTOR DE INDUCCION MONOFASICO Mg. Amancio R. Rojas Flores 1. Principio de funcionamiento Básicamente, un motor de inducción monofásico está formado por un rotor en jaula de

Más detalles

UD. 4 MAQUINAS ELECTRICAS ELECTROTECNIA APLICADA A LA INGENIERIA MECÁNICA

UD. 4 MAQUINAS ELECTRICAS ELECTROTECNIA APLICADA A LA INGENIERIA MECÁNICA ELECTROTECNIA APLICADA A LA INGENIERIA MECÁNICA UD. 4 MAQUINAS ELECTRICAS Descripción: Principios de electromagnetismo y funcionamiento y aplicaciones de las diferentes máquinas eléctricas. 1 Tema 4.4.

Más detalles

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Ondas I: ondas y sus características

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Ondas I: ondas y sus características SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Ondas I: ondas y sus características SGUICES001CB32-A16V1 Ítem Alternativa Habilidad 1 B Reconocimiento 2 D Reconocimiento 3 E Comprensión 4 C Comprensión 5 A Aplicación

Más detalles

Máquinas eléctricas. Un poco de historia ( ) https://sites.google.com/site/espaciotesla/maquinas-electricas

Máquinas eléctricas. Un poco de historia ( ) https://sites.google.com/site/espaciotesla/maquinas-electricas Máquinas eléctricas https://sites.google.com/site/espaciotesla/maquinas-electricas Un poco de historia (1831-1900) El primer generador electromecánico, basado en el fenómeno de la inducción electromagnética,

Más detalles

1. Introducción. Causas y Efectos de los cortocircuitos. 2. Protecciones contra cortocircuitos. 3. Corriente de Cortocircuito en red trifásica.

1. Introducción. Causas y Efectos de los cortocircuitos. 2. Protecciones contra cortocircuitos. 3. Corriente de Cortocircuito en red trifásica. TEMA 3: CORRIENTES DE CORTOCIRCUITO EN REDES TRIFÁSICAS. INTRODUCCIÓN. CLASIFICACIÓN DE CORTOCIRCUITOS. CONSECUENCIAS DEL CORTOCIRCUITO. CORTOCIRCUITOS SIMÉTRICOS. 1. Introducción. Causas y Efectos de

Más detalles

Módulo: mantenimiento y operación de máquinas y equipos eléctricos. LICEO: VICENTE PERÉZ ROSALES. ESPECIALIDAD: ELECTRICIDAD.

Módulo: mantenimiento y operación de máquinas y equipos eléctricos. LICEO: VICENTE PERÉZ ROSALES. ESPECIALIDAD: ELECTRICIDAD. Módulo: mantenimiento y operación de máquinas y equipos eléctricos. LICEO: VICENTE PERÉZ ROSALES. ESPECIALIDAD: ELECTRICIDAD. NIVEL: 4 MEDIO INDUSTRIAL. PROFESOR: JUAN PLAZA L. RODAMIENTOS ELECTRICIDAD

Más detalles

CAPITULO XII PUENTES DE CORRIENTE ALTERNA

CAPITULO XII PUENTES DE CORRIENTE ALTERNA CAPITULO XII PUENTES DE CORRIENTE ALTERNA 2. INTRODUCCION. En el Capítulo IX estudiamos el puente de Wheatstone como instrumento de medición de resistencias por el método de detección de cero. En este

Más detalles

Máquinas eléctricas de corriente alterna: constitución, funcionamiento y aplicaciones características. CONVERTIDORES ELECTROMECÁNICOS DE ENERGÍA

Máquinas eléctricas de corriente alterna: constitución, funcionamiento y aplicaciones características. CONVERTIDORES ELECTROMECÁNICOS DE ENERGÍA Resumen Máquinas eléctricas de corriente alterna: constitución, funcionamiento y aplicaciones características. José Ángel Laredo García [email protected] CONVERTIDORES ELECTROMECÁNICOS DE ENERGÍA

Más detalles

RODAMIENTOS

RODAMIENTOS RÍGIDOS DE BOLAS Los rodamientos rígidos de bolas son particularmente versátiles. Su diseño es simple, no son desarmables, funcionan a velocidades altas y muy altas, son resistentes y requieren poco mantenimiento.

Más detalles

TEMA PE9. PE.9.2. Tenemos dos espiras planas de la forma y dimensiones que se indican en la Figura, siendo R

TEMA PE9. PE.9.2. Tenemos dos espiras planas de la forma y dimensiones que se indican en la Figura, siendo R TEMA PE9 PE.9.1. Los campos magnéticos de los que estamos rodeados continuamente representan un riesgo potencial para la salud, en Europa se han establecido recomendaciones para limitar la exposición,

Más detalles

7 Resistencias de base hacia el distribuidor de encendido o desde éste (contacto de mando)

7 Resistencias de base hacia el distribuidor de encendido o desde éste (contacto de mando) NORMA DIN 72552 DESIGNACION DE BORNES 1 Baja tensión (bobina de encendido, distribuidor de encendido) Distribuidor de encendido con dos circuitos separados 1a 1b al interruptor de encendido I al interruptor

Más detalles

El motor asincrono trifásico

El motor asincrono trifásico El motor asincrono trifásico Al igual que los motores de C.C., el motor asíncrono trifásico de C.A. funciona gracias a los fenómenos de inducción electromagnética. Son los más utilizados en la industria

Más detalles

RINCON DEL TECNICO FRENADO REGENERATIVO EN LAS CARRETILLAS ELEVADORAS

RINCON DEL TECNICO  FRENADO REGENERATIVO EN LAS CARRETILLAS ELEVADORAS RINCON DEL TECNICO http://www.postventa.webcindario.com FRENADO REGENERATIVO EN LAS CARRETILLAS ELEVADORAS El frenado regenerativo en la carretilla elevadora, cuando reducimos la velocidad de la maquina

Más detalles

Introducción. Flujo Eléctrico.

Introducción. Flujo Eléctrico. Introducción La descripción cualitativa del campo eléctrico mediante las líneas de fuerza, está relacionada con una ecuación matemática llamada Ley de Gauss, que relaciona el campo eléctrico sobre una

Más detalles

Máquinas Eléctricas. Armengol Blanco Benito Facultad Nacional de Ingeniería Ingeniería Eléctrica e Ingeniería Electrónica

Máquinas Eléctricas. Armengol Blanco Benito Facultad Nacional de Ingeniería Ingeniería Eléctrica e Ingeniería Electrónica Máquinas Eléctricas Armengol Blanco Benito Facultad Nacional de Ingeniería Ingeniería Eléctrica e Ingeniería Electrónica 16 de diciembre de 2014 ii Prefacio Este apunte tiene el objeto de proporcionar

Más detalles

POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA

POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA OBJETIVOS: Determinar la potencia activa, aparente y el factor de potencia en circuitos monofásicos. Observe las normas de seguridad al realizar

Más detalles

Campo Magnético en un alambre recto.

Campo Magnético en un alambre recto. Campo Magnético en un alambre recto. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se hizo pasar

Más detalles

Integrantes: Luna Sánchez Omar Daniel Hernández Pérez Morgan Adrián

Integrantes: Luna Sánchez Omar Daniel Hernández Pérez Morgan Adrián Integrantes: Luna Sánchez Omar Daniel Hernández Pérez Morgan Adrián GENERADORES DE CORRIENTE ALTERNA Ley de Faraday La Ley de inducción electromagnética ó Ley Faraday se basa en los experimentos que Michael

Más detalles

EL MOTOR DE INDUCCIÓN

EL MOTOR DE INDUCCIÓN EL MOTOR DE INDUCCIÓN 33 Introducción 34 1 Motor de inducción en la industria Es el de mayor uso en la industria. Es robusto y de poco mantenimiento. El motor de inducción es económico debido a su construcción

Más detalles

Circuitos de Corriente Continua

Circuitos de Corriente Continua Fundamentos Físicos y Tecnológicos de la Informática Circuitos de Corriente Continua -Elementos activos de un circuito: generadores ideales y reales. Equivalencia de generadores. -Potencia y energía. Ley

Más detalles

La Autoexcitación en el Generador DC

La Autoexcitación en el Generador DC La Autoexcitación en el Generador DC Jorge Hans Alayo Gamarra julio de 2008 1. Introducción La invención del proceso de la autoexcitación en las máquinas eléctricas, acreditada a Wener Von Siemens hace

Más detalles

ELECTRODINAMICA. Nombre: Curso:

ELECTRODINAMICA. Nombre: Curso: 1 ELECTRODINAMICA Nombre: Curso: Introducción: En esta sesión se estudiara los efectos de las cargas eléctricas en movimiento en diferentes tipos de conductores, dando origen al concepto de resistencia

Más detalles

MÁQUINAS ELÉCTRICAS. Motores. industrial

MÁQUINAS ELÉCTRICAS. Motores. industrial 1. CLASIFICACIÓN DE LOS MOTORES ELÉCTRICOS Se clasifican en dos grandes grupos, según el tipo de red eléctrica a la que se encuentren conectadas. Así, se tienen: - Motores eléctricos de corriente alterna.

Más detalles

d m φ dt ξ = Por otro lado, por definición, la fem es la integral del campo a lo largo de una trayectoria C, o trayectoria cerrada

d m φ dt ξ = Por otro lado, por definición, la fem es la integral del campo a lo largo de una trayectoria C, o trayectoria cerrada Tema: Inducción magnética. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Teoría Electromagnética. I. Objetivos. Comprender acerca de la relación del voltaje inducido en una bobina, en función

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO FÍSICA C Segunda evaluación SOLUCIÓN

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO FÍSICA C Segunda evaluación SOLUCIÓN ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO 2012-2013 FÍSICA C Segunda evaluación SOLUCIÓN Pregunta 1 (3 puntos) Un globo de caucho tiene en su interior una carga puntual.

Más detalles

Corriente y Circuitos Eléctricos

Corriente y Circuitos Eléctricos Módulo: Medición y Análisis de Circuitos Eléctricos Unidad 1 Unidades y Mediciones Eléctricas Responda en su cuaderno las siguientes preguntas: Cuestionario 1 1.- Defina los siguientes conceptos, indicando

Más detalles

Tema 4. Máquinas rotativas de corriente alterna

Tema 4. Máquinas rotativas de corriente alterna Tema 4. Máquinas rotativas de corriente alterna Ya has visto en temas anteriores el estudio de los motores de corriente continua y la clasificación de las máquinas, pues bien, ahora vas a estudiar las

Más detalles

Práctica de Inducción electromagnética.

Práctica de Inducción electromagnética. Práctica Práctica de Inducción electromagnética. Luis Íñiguez de Onzoño Sanz 1. Introducción Teórica II. Materiales III 3. Descripción de la práctica IV 4. Procedimiento IV 5. Resultados V 6. Errores IX

Más detalles

CONDUCTORES Y AISLANTES CORRIENTE ELÉCTRICA ELEMENTOS BÁSICOS DE UN CIRCUITO SENTIDO DE LA CORRIENTE ELÉCTRICA TECNOLOGÍAS 4ºE.S.O.

CONDUCTORES Y AISLANTES CORRIENTE ELÉCTRICA ELEMENTOS BÁSICOS DE UN CIRCUITO SENTIDO DE LA CORRIENTE ELÉCTRICA TECNOLOGÍAS 4ºE.S.O. CONTENIDOS. Pag 1 de 1 Nombre y Apellidos: Grupo: Nº de lista: CONDUCTORES Y AISLANTES Inicialmente los átomos tienen carga eléctrica neutra, es decir. Nº de protones = Nº de electrones. Si a un átomo

Más detalles

Mantenimiento y reparación de motores asíncronos

Mantenimiento y reparación de motores asíncronos y reparación de motores asíncronos Índice: y reparación de averías 1. Herramientas. 2.. 3. de averías. de motores de inducción. 2 Herramientas y reparación de averías de motores de inducción. 3 y reparación

Más detalles

DINÁMICA DE ROTACIÓN DE UN SÓLIDO

DINÁMICA DE ROTACIÓN DE UN SÓLIDO Laboratorio de Física General Primer Curso (Mecánica) DINÁMICA DE ROTACIÓN DE UN SÓLIDO Fecha: 07/02/05 1. Objetivo de la práctica Estudio de la ley de la dinámica de rotación de un sólido rígido alrededor

Más detalles

ESCALARES Y VECTORES

ESCALARES Y VECTORES ESCALARES Y VECTORES MAGNITUD ESCALAR Un escalar es un tipo de magnitud física que se expresa por un solo número y tiene el mismo valor para todos los observadores. Se dice también que es aquella que solo

Más detalles

10. Controles de motores

10. Controles de motores 10. Controles de motores Anibal T. De Almeida Día 2 Temario Arranque Arrancadores suaves Variadores de velocidad Controles de Motor - Arranque Consumo de energía para un periodo de aceleración: (A) Motor

Más detalles

FORMATO DE SILABO I. DATOS GENERALES

FORMATO DE SILABO I. DATOS GENERALES FORMATO DE SILABO I. DATOS GENERALES 1. Nombre de la Asignatura: MAQUINAS ELÉCTRICAS 2. Carácter : OBLIGATORIO 3. Carrera Profesional : INGENIERIA MECANICA Y ELECTRICA 4. Código : IM0605 5. Semestre Académico

Más detalles

EXAMEN DE AUTOEVALUACION DEL PRIMER BIMESTRE GRADO 1 GRUPO I TECNOLOGIA: ELECTRONICA

EXAMEN DE AUTOEVALUACION DEL PRIMER BIMESTRE GRADO 1 GRUPO I TECNOLOGIA: ELECTRONICA Averigua lo que sabes La corriente eléctrica es: La agitación de los átomos de un objeto. EXAMEN DE AUTOEVALUACION DEL PRIMER BIMESTRE GRADO 1 GRUPO I TECNOLOGIA: ELECTRONICA El movimiento ordenado de

Más detalles

Unidad Didactica. Motores Asíncronos Monofásicos

Unidad Didactica. Motores Asíncronos Monofásicos Unidad Didactica Motores Asíncronos Monofásicos Programa de Formación Abierta y Flexible Obra colectiva de FONDO FORMACION Coordinación Diseño y maquetación Servicio de Producción Didáctica de FONDO FORMACION

Más detalles

JMLC - Chena IES Aguilar y Cano - Estepa. Introducción

JMLC - Chena IES Aguilar y Cano - Estepa. Introducción Introducción En Magnesia existía un mineral que tenía la propiedad de atraer, sin frotar, materiales de hierro, los griegos la llamaron piedra magnesiana. Pierre de Maricourt (1269) da forma esférica a

Más detalles

Máquinas eléctricas: Máquinas rotativas de corriente alterna

Máquinas eléctricas: Máquinas rotativas de corriente alterna Máquinas eléctricas: Máquinas rotativas de corriente alterna Ya has visto en temas anteriores el estudio de los motores de corriente continua y la clasificación de las máquinas, pues bien, ahora vas a

Más detalles

Grado de Óptica y Optometría Asignatura: FÍSICA Curso: Práctica nº 5. MEDIDAS DE RESISTENCIAS, VOLTAJES Y CORRIENTES: MULTÍMETRO

Grado de Óptica y Optometría Asignatura: FÍSICA Curso: Práctica nº 5. MEDIDAS DE RESISTENCIAS, VOLTAJES Y CORRIENTES: MULTÍMETRO FCULTD DE CIENCIS UNIERSIDD DE LICNTE Grado de Óptica y Optometría signatura: FÍSIC Curso: 200- Práctica nº 5. MEDIDS DE RESISTENCIS, OLTJES Y CORRIENTES: MULTÍMETRO Material Fuente de alimentación de

Más detalles

ELEMENTOS DE REGULACIÓN

ELEMENTOS DE REGULACIÓN ELEMENTOS DE REGULACIÓN TRINQUETE Un trinquete es un mecanismo que permite a un engranaje girar hacia un lado, pero le impide hacerlo en sen6do contrario, ya que lo traba con dientes en forma de sierra.

Más detalles

Tema Magnetismo

Tema Magnetismo Tema 21.8 Magnetismo 1 Magnetismo Cualidad que tienen ciertos materiales de atraer al mineral de hierro y todos los derivados que obtenemos de él. Imán natural: magnetita tiene la propiedad de ejercer

Más detalles

MEDICIONES ELECTRICAS II

MEDICIONES ELECTRICAS II Año:... Alumno:... Comisión:... MEDICIONES ELECTRICAS II Trabajo Práctico N 2 Tema: RESISTENCIA DE PUESTA A TIERRA. Conceptos Fundamentales: Finalidad de la Puesta a tierra Las tomas a tierra son necesarias

Más detalles

ANEXO 1. CALIBRADO DE LOS SENSORES.

ANEXO 1. CALIBRADO DE LOS SENSORES. ANEXO 1. CALIBRADO DE LOS SENSORES. Las resistencias dependientes de la luz (LDR) varían su resistencia en función de la luz que reciben. Un incremento de la luz que reciben produce una disminución de

Más detalles