SEGUNDA LEY DE LA TERMODINAMICA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "SEGUNDA LEY DE LA TERMODINAMICA"

Transcripción

1 U n i v e r s i d a d C a t ó l i c a d e l N o r t e E s c u e l a d e I n g e n i e r í a Unidad 4 SEGUNDA EY DE A ERMODINAMICA Segunda ey a 2 ey de la ermodinámica nos permite establecer la direc ción de los procesos naturales. En combinación con la ey, perm ite predecir la dirección natural de cualquier proceso y con ello pronosticar el estado de equilibrio. Por ejemplo, el agua fluye desde el cerro hacia abajo, el calor fluye desde un cuerpo caliente a un cuerpo frío, el fluido fluye desde una región de alta presión a una región de baja presión, y lamentablemente todos envejecemos. Nuestras experiencias en la vida sugieren que los procesos tienen una dirección definida. Este hecho tiene tal importancia que su replanteamiento sirve como una expresión aceptable de la 2 ey.

2 Segunda ey a primera ley establece las relaciones entre trabajo, calor y diferencias de energía interna en los sistemas, pero no establece que procesos son efectivamente posibles. Así se puede pensar en muchos procesos que respetarían la primera ley, pero no son posibles en la naturaleza. Por ejemplo cuando un auto frena, la mayor parte de su energía cinética de traslación se transforma en energía interna, la cual calienta los frenos y el pavimento, cumpliéndose la conservación de energía (primera ley). Sin embargo, es impensable el proceso inverso, según el cual uno podría enfriar los frenos del automóvil y trasformar ese energía en energía cinética (o sea movimiento) del vehículo. A pesar que ellos no estaría en contra la primera ley, porque habría conservación de energía. a segunda ley establece cuales relaciones, de todas las que respetan la primera ley son realmente posibles Segunda ey De la misma manera que la formulación de la primera ley dio origen a la energía interna, el segundo principio permite la definición de una nueva función de estado denominada entropía (S). Están función de estado mide el desorden de un sistema físico o químico y por tanto es una representación de su proximidad al equilibrio térmico a entropía es una magnitud física de carácter extensivo, que mediante cálculo, permite determinar la parte de la energía que no puede utilizarse para producir trabajo. 2

3 Segunda ey a segunda ley puede establecerse de diversas formas. a siguiente ecuación es la representación matemática de esta: S 0 a igualdad se cumple para procesos reversibles, mientras que la desigualdad para procesos irreversibles os procesos reversibles son aquellos que en un momento dado pueden detenerse e invertir la secuencia de estados recorridos para hacer retornar al sistema y a los alrededores a su estado original. Por ejemplo, el proceso de compresión adiabática a través de un pistón ejercido sobre un gas que se encuentra dentro de un cilindro. Si la compresión se realiza lentamente, el proceso puede invertirse en cualquier momento y recuperar, en la expansión, todo el trabajo requerido en la compresión, un proceso con este comportamiento es reversible. Esta ultima ecuación establece que la entropía neta debe siempre aumentar en procesos cíclicos irreversibles. Segunda ey Si consideramos dos reservas de calor, una a temperatura y otra a (con < ) la variación de entropía de ambas reservas vendrá dada por: S S S total + : Calor transferido desde la reserva mas caliente a la mas fría 3

4 Enunciados de la segunda ey a segunda ley de la termodinámica puede establecerse en diferentes formas. En este curso se enfocara en el concept de maquinas térmicas, donde se presentaran dos enunciados mas comunes: ) Enunciado de Clausius (físico alemán, ) Es imposible construir un dispositivo el cual opere en un ciclo y cuyo único efecto sea la transferencia de calor desde un cuerpo mas frio a uno mas caliente. Este enunciado esta asociado a un refrigerador (o a una bomba de calor). Establece que es imposible construir un refrigerador que transfiera energía desde un cuerpo mas frio a uno mas caliente sin el ingreso de trabajo. Esta violación se mostrara en la figura siguiente) Dicho en otras palabras, a segunda ley elimina la posibilidad de que fluya en forma natural del cuerpo frio al cuerpo caliente y así determina la dirección de la transmisión de la energía Enunciados de la segunda ey Enunciado de Clausius: o bomba de calor 4

5 Enunciados de la segunda ey 2) Enunciado de Kelvin-Plank (físico alemán, ; fisico británico ) Es imposible construir una maquina cíclica que tenga una eficiencia térmica de 00%, es decir, es imposible construir un dispositivo que opere cíclicamente y cuyo único efecto sea la generación de trabajo y la transferencia de calor desde un único cuerpo. Es decir, es imposible construir una máquina de calor que extraiga energía desde un reservorio, genere trabajo y no transfiera calor a un reservorio de menor temperatura. Reservorio: sistema termodinámico que cede energía en forma de calor o trabajo, o que proporciona partículas. Enunciados de la segunda ey Enunciado de Kelvin-Plank: Máquina de calor En este curso nos referiremos a dispositivos que operan cíclicamente, como son: Máquinas de calor, bomba de calor y refrigerador 5

6 Máquinas y Bombas de Calor, ) Maquina de calor: su objetivo es efectuar trabajo. Este sistema termodinámico recibe calor desde un recipiente o baño cliente,, cede calor a un baño frio,, y genera trabajo W. odo ello ocurre en un proceso cíclico, por ejemplo en un central eléctrica ingresa a la caldera, sale del condensador y el trabajo es el que ingresa por la bomba y sale por la turbina En un motor real, el foco caliente está representado por la caldera de vapor que suministra el calor, el sistema cilindroémbolo produce el trabajo, y se cede calor al foco frío que es la atmósfera. Máquinas y Bombas de Calor, 2) Bomba de calor: su objetivo es suministrar calor aun cuerpo. Esta maquina térmica permite transferir energía en forma de calor en un ambiente a otro, según se requiera. Para lograr esta acción es necesario un aporte de trabajo acorde a la segunda ley de la termodinámica, según la cual el calor se dirige de manera espontanea de un foco cliente a otro frio, y no al revés, hasta que sus temperaturas se igualan. 6

7 Máquinas y Bombas de Calor, 3) : su objetivo es extraer energía de un cuerpo a operación de refrigeradores y acondicionadores de aire son inversas a la de una maquina térmica, se realiza trabajo para extraer calor de una región fría y expulsarla hacia una región con temperatura mas alta. Máquinas y Bombas de Calor, El rendimiento o eficiencia de una maquina se define entre el cuociente de lo que se desea obtener, en este caso trabajo y lo que se gasta, que en este caso es. a cual viene dada por la siguiente expresión: Wneto η Si los procesos son reversibles: S S Siendo posible expresar la ultima ecuación en términos de las temperaturas: Aplicando la primera ley de la termodinámica, -W U, como el proceso es cíclico U0, por lo tanto W; -, de este modo: η W El valor de la eficienciaηes menor que, no puede ser igual a ya que eso implicaría que 0 y por lo tanto todo el calor se ha convertido en trabajo, lo cual hemos visto que es imposible de ocurrir. 7

8 Máquinas y Bombas de Calor, Respecto a los refrigeradores y bombas de calor, como hemos visto son maquinas térmicas que funcionan en dirección opuesta, esto es gastan trabajo, se extrae energía desde un baño frio, y se cede calor,, por tanto >. Según se utilice para enfriar el baño frio o calentar el caliente, se llama refrigerador o bomba de calor respectivamente. os acondicionadores de aire funcionan de ambas formas, mediante un sistema de control, de modo que en invierno enfrían la calle para calentar la casa y en el verano al revés. Si se extrae energía desde un cuerpo, el objetivo será generar la máxima transferencia de calor con el mínimo trabajo de entrada. Para medir esto se define el coeficiente de desempeño de operación o de rendimiento COP. Máquinas y Bombas de Calor, Si la maquina se utiliza para refrigerar un ambiente, el efecto útil es el calor extraído del foco frio, obteniéndose la expresión para el refrigerador: El cuociente define la energía deseada/coste COP energético. W neto es el trabajo necesario para Wneto remover el calor del área con la temperatura baja. El COP puede ser mayor que Ahora si la bomba de calor se esta utilizando para calentar una zona, el efecto útil es el calor introducido y en este caso se obtiene: COP W neto El cuociente define la energía deseada/coste energético. El cual siempre es mayor que a siguiente igualdad puede aplicarse a cualquier maquina reversible o refrigerador: 8

9 Máquinas y Bombas de Calor, Por lo tanto, podemos expresar las ecuaciones anteriores en términos de las temperaturas η W neto neto COP W COP W neto neto W + W neto / / Maquina de calor Bomba de calor Una maquina de calor tiene un COP entre 2 y 6, dependiendo de la diferencia entren las temperaturas de ambos focos. Máquinas y Bombas de Calor, Par una maquina térmica cíclica: S S S total + 9

10 Reversibilidad Cuando se estudio la primera ey, se utilizo el concepto de equilibrio (o cuasiequilibrio) con referencia únicamente al sistema. Ahora se introducirá el concepto de reversibilidad, el cual permitirá tratar la maquina de mayor eficiencia que pueda construirse, una maquina que opere con procesos únicamente reversibles. al maquina se llama maquina reversible. Un proceso reversible se define un proceso el cual habiendo tomado lugar, puede ser revertido, sin variar la salida, tanto en el sistema como en los alrededores El proceso esta en cuasiequilibrio los requerimientos son: No hay fricción a transferencia de calor ocurre debido a un cambio infinitesimal de temperatura Maquina y Ciclo de Carnot a máquina de calor de mayor eficiencia que opera entre un recipiente de alta y otro de baja temperatura, es la maquina de Carnot. Es una maquina térmica ideal que utiliza procesos reversibles para lograr el ciclo, también se conoce como máquina reversible. a máquina de Carnot debe su importancia a que es considerada la máquina de mayor eficiencia posible frente a cualquier máquina real bajo las mismas condiciones de temperatura. Además por ser reversible puede recorrer en el otro sentido, comportándose como un refrigerador o bomba de calor. El ciclo de Carnot consta de 4 etapas: dos procesos isotérmicos y 2 procesos adiabáticos (aislados térmicamente). Considerando un gas ideal como la sustancia de trabajo tenemos los siguientes procesos: 0

11 Maquina y Ciclo de Carnot -2: Expansión isotérmica: el calor es transferido reversiblemente desde un recipiente de alta temperatura a temperatura constante,. El pistón en el cilindro provoca un incremento en el volumen. 2-3: Expansión adiabática reversible: el cilindro es completamente aislado de modo que no hay transferencia de calor en este proceso reversible. El pistón provoca otro aumento en el volumen. 3-4: Compresión isotérmica: El calor es transferido reversiblemente al recipiente de baja temperatura a temperatura constante,. El pistón comprime la sustancia de trabajo,. Provocando una disminución del volumen. 4-: Compresión adiabática reversible: el cilindro esta completamente aislado y por lo tanto no hay transferencia de calor durante este proceso reversible. El pistón continua comprimiendo la sustancia de trabajo hasta su volumen original, temperatura y presión iniciales, completando el ciclo. Maquina y Ciclo de Carnot

12 Maquina y Ciclo de Carnot Maquina y Ciclo de Carnot 2

13 Maquina y Ciclo de Carnot Aplicando la primera ley de la termodinámica, al clico de Carnot, se obtiene: W neto a eficiencia térmica del ciclo de Carnot se define como: η Donde se asumirá como un valor positivo para la transferencia de calor al recipiente de baja temperatura PRINCIPIO DE CARNO El principio de Carnot es una consecuencia de la segunda ley de la termodinámica y establece que:. El rendimiento de una maquina térmica que siga un proceso irreversible que opere entre dos zonas de temperatura distinta es menor que el rendimiento de cualquier maquina termica que siga un proceso reversible que opere entre las mismas zonas de temperatura. 2. odas las máquinas térmicas que sigan un proceso reversible poseen la misma eficiencia (rendimiento) si operan entre las mismas regiones de temperatura. Nicolás Carnot, ingeniero y oficial en el ejercito francés ) 3

14 Eficiencia de maquina de Carnot a eficiencia de la maquina de Carnot depende solo de las dos temperaturas de los reservorios. El fluido de trabajo es un gas ideal, a continuación se obtiene las ecuaciones para cada proceso involucrado en el ciclo. Proceso - 2: como es gas ideal e isotérmico U0 Y W V2 W pdv mr 2 ln V V V 2 Proceso 2-3:como es adiabático 23 0 u w 2 u 23 c ( 23 v ) Eficiencia de maquina de Carnot Proceso 3-4: como es gas ideal e isotérmico U0 Y W V 4 V4 W 34 pdv mr ln V V 3 3 Proceso 4 - :como es adiabático 4 0 w u 4 u 4 c ( 4 v ) 4

15 Eficiencia de maquina de Carnot η + ln( V ln( V 4 2 / V3) / V ) Eficiencia térmica Durante los procesos adiabáticos reversibles 2-3 y 4 V V 2 3 k V V Igualando estas dos ultimas expresiones y sustituyéndolas en la eficiencia térmica, se obtiene: η Esta ultima expresión es aplicable a toda maquina o refrigerador reversible. a eficiencia de una maquina de Carnot depende únicamente de la temperatura de los dos recipientes. El que se haya ocupado un gas ideal para efectuar los cálculos, no es importante, ya que la eficiencia es independiente de la sustancia de trabajo. 4 k Eficiencia de maquina de Carnot emos visto que un maquina de Carnot opera entre dos reservas de calor. Cualquier maquina reversible que trabaje entre dos reservas de calor es una maquina de Carnot, dada su característica de reversible es que es posible trabajar en sentido inverso, el ciclo de Carnot se recorre en dirección opuesta, convirtiéndose en una maquina frigorífica y dando lugar a un ciclo de refrigeración (o bomba de calor), donde los valores,, y W son los mismos pero en dirección opuesta. En esta maquina se extrae calor del foco frio y se suministra al foco caliente a costa de realizar un trabajo contra el sistema. odas las maquinas térmicas reversibles que operan entre as mismas fuentes de temperatura tiene el mismo rendimiento. En el caso de dos maquinas térmicas, una que actué en un ciclo reversible y otra en ciclo irreversible, se cumplirá que: η rev > η irrev 5

16 Eficiencia de maquina de Carnot a maquina de calor, cuando es operada en reversa, dará a lugar a un refrigerador o bomba de calor, dependiendo de la transferencia de calor deseada. a bomba de calor es una maquina térmica invertida, utilizada para calentar casas y edificios comerciales en invierno y enfriar en verano. En invierno absorbe calor del ambiente y lo expulsa hacia el edificio, en veranos el proceso es al revés, absorbe calor del edificio y lo expulsa hacia los alrededores Eficiencia de maquina de Carnot El COP para una bomba de calor será: COP / COPRe frigerador + Wneto Y para un refrigerador: COP COPbomba de calor W / neto 6

17 Ejemplo a temperatura del foco frio de una maquina térmica reversible con una eficiencia del 22% es 0 C. Por cada ciclo la maquina cede 90 kcal al foco frio. Determine: a) El calor cedido por el foco caliente en kcal b) a variación de entropía del foco caliente por cada ciclo de funcionamiento c) a variación de entropía del universo 7

III Tema Segunda ley de la termodinámica

III Tema Segunda ley de la termodinámica UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO "EL SABINO" PROGRAMA DE INGENIERÍA PESQUERA AREA DE TECNOLOGÍA UNIDAD CURRICULAR: TERMODINÁMICA APLICADA III Tema Segunda ley de

Más detalles

F. Aclarando conceptos sobre termodinámica

F. Aclarando conceptos sobre termodinámica IES Antonio Glez Glez Principios de máquinas Página 1 F. Aclarando conceptos sobre termodinámica Termodinámica La termodinámica es la parte de la física que analiza los fenómenos en los que interviene

Más detalles

Tema 3. Máquinas Térmicas II

Tema 3. Máquinas Térmicas II Asignatura: Tema 3. Máquinas Térmicas II 1. Motores Rotativos 2. Motores de Potencia (Turbina) de Gas: Ciclo Brayton 3. Motores de Potencia (Turbina) de Vapor: Ciclo Rankine Grado de Ingeniería de la Organización

Más detalles

Electricidad y calor

Electricidad y calor Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temario A. Termodinámica 1. Temperatura y Ley Cero. (3horas) 1. Equilibrio Térmico y ley

Más detalles

Electricidad y calor. Webpage: Departamento de Física Universidad de Sonora

Electricidad y calor. Webpage: Departamento de Física Universidad de Sonora Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temario A. Termodinámica 1. Temperatura y Ley Cero. (3horas) 1. Equilibrio Térmico y ley

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA ERMODINÁMICA AANZADA Unidad I: ropiedades y Leyes de la ermodinámica! Ciclos de potencia! Ciclo de refrigeración 8/7/0 Ctenido! Ciclos termodinámicos!! Ciclo Rankine! ariantes del Ciclo Rankine! Ciclos

Más detalles

Guía Teórica Experiencia Motor Stirling

Guía Teórica Experiencia Motor Stirling Universidad de Chile Escuela de Verano 2009 Curso de Energía Renovable Guía Teórica Experiencia Motor Stirling Escrito por: Diego Huarapil Enero 2009 Introducción El Motor Stirling es un motor térmico,

Más detalles

PROBLEMARIO No. 2. Veinte problemas con respuesta sobre los Temas 3 y 4 [Trabajo y Calor. Primera Ley de la Termodinámica]

PROBLEMARIO No. 2. Veinte problemas con respuesta sobre los Temas 3 y 4 [Trabajo y Calor. Primera Ley de la Termodinámica] Universidad Simón olívar Departamento de Termodinámica y Fenómenos de Transferencia -Junio-007 TF - Termodinámica I Prof. Carlos Castillo PROLEMARIO No. Veinte problemas con respuesta sobre los Temas y

Más detalles

INGENIERIA DE EJECUCIÓN EN MECANICA PROGRAMA PROSECUCION DE ESTUDIOS VESPERTINO GUIA DE LABORATORIO

INGENIERIA DE EJECUCIÓN EN MECANICA PROGRAMA PROSECUCION DE ESTUDIOS VESPERTINO GUIA DE LABORATORIO INGENIERIA DE EJECUCIÓN EN MECANICA PROGRAMA PROSECUCION DE ESTUDIOS VESPERTINO GUIA DE LABORATORIO ASIGNATURA 9562 EQUIPOS E INSTALACIONES TÉRMICAS E HIDRAULICAS TOPICO II NIVEL 05 EXPERIENCIA E-952 TURBINA

Más detalles

Capítulo 17. Temperatura. t(h) = 100 h h 0

Capítulo 17. Temperatura. t(h) = 100 h h 0 Capítulo 17 Temperatura t(h) = 100 h h 0 h 1 00 h 0 rincipio cero de la termodinámica. Temperatura empírica. La temperatura empírica de un sistema en equilibrio termodinámico se puede asignar mediante

Más detalles

Termotecnia y Mecánica de Fluidos (DMN) Mecánica de Fluidos y Termodinámica (ITN) TD. T6.- Ciclos de Refrigeración

Termotecnia y Mecánica de Fluidos (DMN) Mecánica de Fluidos y Termodinámica (ITN) TD. T6.- Ciclos de Refrigeración Termotecnia y Mecánica de Fluidos (DMN) Mecánica de Fluidos y Termodinámica (ITN) TD. T6.- Ciclos de Refrigeración Las trasparencias son el material de apoyo del profesor para impartir la clase. No son

Más detalles

Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Mecánica de los Fluidos. Carrea de Ingeniería Civil

Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Mecánica de los Fluidos. Carrea de Ingeniería Civil Universidad Nacional de Córdoba Facultad de Ciencias Exactas Físicas y Naturales Cátedra de Mecánica de los Fluidos Carrea de Ingeniería Civil FLUJO COMPRESIBLE DR. ING. CARLOS MARCELO GARCÍA 2011 A modo

Más detalles

Sustancias puras, procesos de cambios de fase, diagramas de fase. Estado 3 Estado 4 Estado 5. P =1 atm T= 100 o C. Estado 3 Estado 4.

Sustancias puras, procesos de cambios de fase, diagramas de fase. Estado 3 Estado 4 Estado 5. P =1 atm T= 100 o C. Estado 3 Estado 4. TERMODINÁMICA Departamento de Física Carreras: Ing. Industrial y Mecánica Trabajo Práctico N 2: PROPIEDADES DE LAS SUSTANCIAS PURAS La preocupación por el hombre y su destino debe ser el interés primordial

Más detalles

Sistemas de refrigeración: compresión y absorción

Sistemas de refrigeración: compresión y absorción Sistemas de refrigeración: compresión y absorción La refrigeración es el proceso de producir frío, en realidad extraer calor. Para producir frío lo que se hace es transportar calor de un lugar a otro.

Más detalles

CICLOS DE POTENCIAS DE GAS AIRE CERRADOS

CICLOS DE POTENCIAS DE GAS AIRE CERRADOS UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO "EL SABINO" PROGRAMA DE INGENIERÍA MECÁNICA AREA DE TECNOLOGÍA UNIDAD CURRICULAR: TERMODINÁMICA APLICADA CICLOS DE POTENCIAS DE

Más detalles

Tema 2. Segundo Principio de la Termodinámica

Tema 2. Segundo Principio de la Termodinámica ema Segundo Principio de la ermodinámica EMA SEGUNDO PRINCIPIO DE LA ERMODINÁMICA. ESPONANEIDAD. SEGUNDO PRINCIPIO DE LA ERMODINÁMICA 3. ENROPÍA 4. ECUACIÓN FUNDAMENAL DE LA ERMODINÁMICA 5. DEERMINACIÓN

Más detalles

Capítulo 8. Termodinámica

Capítulo 8. Termodinámica Capítulo 8 Termodinámica 1 Temperatura La temperatura es la propiedad que poseen los cuerpos, tal que su valor para ellos es el mismo siempre que estén en equilibrio térmico. Principio cero de la termodinámica:

Más detalles

Electricidad y calor

Electricidad y calor Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora 1 emas 5. Segunda ley de la ermodinámica. i. Máquinas térmicas y su eficiencia. ii. Segunda

Más detalles

FUNDAMENTOS SISTEMAS TRITÉRMICOS EYECCION

FUNDAMENTOS SISTEMAS TRITÉRMICOS EYECCION SISTEMAS TRITÉRMICOS EYECCION LAS MÁQUINAS DE EYECCIÓN FUNDAMENTOS Como en el sistema de compresión, la máquina de eyección es un sistema basado en la vaporización de un líquido a baja presión. Las funciones

Más detalles

TEMA 13: Termodinámica

TEMA 13: Termodinámica QUÍMICA I TEMA 13: Termodinámica Tecnólogo Minero Temario ü Procesos espontáneos ü Entropía ü Segunda Ley de la Termodinámica ü Energía libre de Gibbs ü Energía libre y equilibrio químico Procesos espontáneos

Más detalles

QUÉ ES LA TEMPERATURA?

QUÉ ES LA TEMPERATURA? 1 QUÉ ES LA TEMPERATURA? Nosotros experimentamos la temperatura todos los días. Cuando estamos en verano, generalmente decimos Hace calor! y en invierno Hace mucho frío!. Los términos que frecuentemente

Más detalles

Unidad 16: Temperatura y gases ideales

Unidad 16: Temperatura y gases ideales Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 16: Temperatura y gases ideales Universidad Politécnica de Madrid 14 de abril de 2010

Más detalles

La energía interna. Nombre Curso Fecha

La energía interna. Nombre Curso Fecha Ciencias de la Naturaleza 2.º ESO Unidad 10 Ficha 1 La energía interna La energía interna de una sustancia está directamente relacionada con la agitación o energía cinética de las partículas que la componen.

Más detalles

Bioquímica Termodinámica y bioenergética.

Bioquímica Termodinámica y bioenergética. Bioquímica Termodinámica y bioenergética. Facultad de Enfermería Universidad de la República ESFUNO 2014 Amalia Ávila Termodinámica y bioenergética Los organismos vivos no se encuentran en equilibrio con

Más detalles

PRODUCCIÓN DE ENERGÍA ELÉCTRICA DE FUGA DE CALOR:

PRODUCCIÓN DE ENERGÍA ELÉCTRICA DE FUGA DE CALOR: PRODUCCIÓN DE ENERGÍA ELÉCTRICA DE FUGA DE CALOR: ciclo doble / simple etapa ORC con un innovador motor rotativo termovolumetrico patentada de alta eficiencia 0.Resumen Se presentan algunos resultados

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA ERMODINÁMICA AANZADA Cantidades fundamentales Cantidades básicas y unidaded Unidad I: ropiedades y Leyes de la ermodinámica Cantidades fundamentales ropiedades de estado Función de estado y ecuación de

Más detalles

Termodinámica y Máquinas Térmicas

Termodinámica y Máquinas Térmicas Termodinámica y Máquinas Térmicas Tema 04. Funciones de Estado Inmaculada Fernández Diego Severiano F. Pérez Remesal Carlos J. Renedo Estébanez DPTO. DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Este tema se publica

Más detalles

1.- Conceptos básicos. Sistemas, variables y procesos. 2.- Energía, calor y trabajo. 1 er Principio de la Termodinámica. 3.- Entalpía. 4.

1.- Conceptos básicos. Sistemas, variables y procesos. 2.- Energía, calor y trabajo. 1 er Principio de la Termodinámica. 3.- Entalpía. 4. 1.- Conceptos básicos. Sistemas, variables y procesos. 2.- Energía, calor y trabajo. 1 er Principio de la Termodinámica. 3.- Entalpía. 4.- Calor de reacción. Ley de Hess. 5.- Entalpías estándar de formación.

Más detalles

FUNDAMENTOS DE REFRIGERACION

FUNDAMENTOS DE REFRIGERACION FUNDAMENTOS DE REFRIGERACION PRESENTACION EN ESPAÑOL Mayo 2010 Renato C. OLvera Index ESTADOS DE LA MATERIA LOS DIFERENTES ESTADOS DE LA MATERIA SON MANIFESTACIONES DE LA CANTIDAD DE ENERGIA QUE DICHA

Más detalles

LEYES DE LA TERMODINAMICA LEY DE LA ENERGIA LEY DE LA ENTROPIA

LEYES DE LA TERMODINAMICA LEY DE LA ENERGIA LEY DE LA ENTROPIA LEYES DE LA TERMODINAMICA LEY DE LA ENERGIA LEY DE LA ENTROPIA Joaquín Medín Molina Fisica general 2 2006 FORMULACION SIMPLIFICADA DE LEYES TERMODINAMICAS PARA SISTEMAS PURAMENTE TERMICOS energia de cuerpo

Más detalles

AHORRO DE ENERGÍA EN CIRCUITOS FRIGORÍFICOS

AHORRO DE ENERGÍA EN CIRCUITOS FRIGORÍFICOS VI SEMINARIO CLIMATIZACÍÓN Y REFRIGERACIÓN AHORRO DE ENERGÍA EN CIRCUITOS FRIGORÍFICOS 22/09/2016 NIK INGENIEROS 1 VARIABLES QUE INTERVIENEN EN EL CONSUMO ENERGÉTICO EN CIRCUITOS FRIGORÍFICOS JOSE MARIA

Más detalles

EQUIPOS PARA LA GENERACIÓN DE VAPOR Y POTENCIA

EQUIPOS PARA LA GENERACIÓN DE VAPOR Y POTENCIA Diagrama simplificado de los equipos componentes de una central termo-eléctrica a vapor Caldera (Acuotubular): Quemadores y cámara de combustión (hogar): según el tipo de combustible o fuente de energía

Más detalles

INGENIERÍA AERONÁUTICA TERMODINÁMICA SÍLABO

INGENIERÍA AERONÁUTICA TERMODINÁMICA SÍLABO I. DATOS GENERALES: INGENIERÍA AERONÁUTICA TERMODINÁMICA SÍLABO 1.1 ASIGNATURA : Termodinámica 1.2 CÓDIGO : 3301-33212 1.3 PRE-REQUISITO : 3301-33108 y 3301-33111 1.4 HORAS SEMANALES : 05 1.4.1 TEORÍA

Más detalles

LAS MÁQUINAS DE ABSORCIÓN

LAS MÁQUINAS DE ABSORCIÓN INTRODUCCIÓN LAS MÁQUINAS DE ABSORCIÓN INTRODUCCION MODOS DE FUNCIONAMIENTO Las máquinas frigoríficas de absorción se integran dentro del mismo grupo de producción de frío que las convencionales de compresión,

Más detalles

MATERIAL DE APOYO DE USO ESCLUSIVO DEL CENTRO DE ESTUDIOS MATEMÁTICOS. C.E.M.

MATERIAL DE APOYO DE USO ESCLUSIVO DEL CENTRO DE ESTUDIOS MATEMÁTICOS. C.E.M. 1-. Una cubeta con hielo recibe constantemente calor de un B. mechero como se aprecia en la figura. C. D. De la gráfica de temperatura como función del tiempo, para la muestra, se concluye que entre A.

Más detalles

UNIVERSIDAD DE COSTA RICA FACULTAD DE CIENCIAS ESCUELA DE FISICA PROGRAMA JUSTIFICACION DEL CURSO

UNIVERSIDAD DE COSTA RICA FACULTAD DE CIENCIAS ESCUELA DE FISICA PROGRAMA JUSTIFICACION DEL CURSO UNIVERSIDAD DE COSTA RICA FACULTAD DE CIENCIAS ESCUELA DE FISICA PROGRAMA FS0310 FISICA GENERAL II Créditos: 3 Correquisito: FS-311 Requisitos: FS-210, FS-211, MA-1002 ó MA-2210 Horas por semana: 4 JUSTIFICACION

Más detalles

Los principios de Carnot son:

Los principios de Carnot son: IV.- Principios de Carnot La segunda ley de termodinámica pone límites en la operación los ciclos. Una máquina térmica no puede operar intercambiando calor con un reservorio simple, y un refrigerador no

Más detalles

FÍSICA CICLO 5 CAPACITACIÓN La Termodinámica es el estudio de las propiedades de la energia térmica y de sus propiedades.

FÍSICA CICLO 5 CAPACITACIÓN La Termodinámica es el estudio de las propiedades de la energia térmica y de sus propiedades. UNIDAD 5 TERMODINÁMICA - HIDRAULICA TERMODINÁMICA La Termodinámica es el estudio de las propiedades de la energia térmica y de sus propiedades. ENERGIA TERMICA: Todos los cuerpos se componen de pequeñas

Más detalles

TEMA 3: CINÉTICA HOMOGÉNEA. REACCIONES SIMPLES CQA-3/1

TEMA 3: CINÉTICA HOMOGÉNEA. REACCIONES SIMPLES CQA-3/1 TEMA 3: CINÉTICA HOMOGÉNEA. REACCIONES SIMPLES CQA-3/1 CARACTERÍSTICAS DE LAS REACCIONES HOMOGÉNEAS Todas las sustancias reaccionantes se encuentran en una sola fase Velocidad de reacción: Objetivo principal

Más detalles

1. FLUIDOS (1 punto) Enuncie la ecuación de Bernoulli y describa cada uno de los términos.

1. FLUIDOS (1 punto) Enuncie la ecuación de Bernoulli y describa cada uno de los términos. Física Forestales. Examen A. 7-0-0 Instrucciones. La parte de teoría se contestará en primer lugar utilizando la hoja de color, sin consultar libros ni apuntes, durante el tiempo que el estudiante considere

Más detalles

Termodinámica y. transmisión de calor

Termodinámica y. transmisión de calor UF0565 Eficiencia energética en las instalaciones de calefacción y ACS en los edificios Termodinámica y 1 transmisión de calor Qué? Para poder cumplir correctamente con la eficiencia energética en este

Más detalles

A) FÍSICA II (CURSO DE LA FACULTAD DE CIENCIAS, CLAVE : T91F2) B) DATOS BÁSICOS DEL CURSO C) OBJETIVOS DEL CURSO

A) FÍSICA II (CURSO DE LA FACULTAD DE CIENCIAS, CLAVE : T91F2) B) DATOS BÁSICOS DEL CURSO C) OBJETIVOS DEL CURSO UNIVERSIDAD AUTÓNOMA DE SAN LUIS POTOSI Facultad de Ciencias Programas Analíticos de los primeros dos semestres de la licenciatura en Biofísica. 1) NOMBRE DE CADA CURSO O ACTIVIDAD CURRICULAR A) FÍSICA

Más detalles

CAPITULO V TERMODINAMICA - 115 -

CAPITULO V TERMODINAMICA - 115 - CAPIULO V ERMODINAMICA - 5 - 5. EL GAS IDEAL Es el conjunto de un gran número de partículas diminutas o puntuales, de simetría esférica, del mismo tamaño y de igual volumen, todas del mismo material. Por

Más detalles

Congeneración Aplicada a Generadores

Congeneración Aplicada a Generadores Congeneración Aplicada a Generadores En el presente artículo, se analizan las interesantes posibilidades de implementar sistemas de cogeneración, que poseen todas aquellas empresas que cuenten con generadores

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA AREA DE TECNOLOGIA DEPARTAMENTO DE ENERGETICA UNIDAD CURRICULAR: LAB. CONVERSION DE ENERGIA

UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA AREA DE TECNOLOGIA DEPARTAMENTO DE ENERGETICA UNIDAD CURRICULAR: LAB. CONVERSION DE ENERGIA UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA AREA DE TECNOLOGIA DEPARTAMENTO DE ENERGETICA UNIDAD CURRICULAR: LAB. CONVERSION DE ENERGIA PRACTICA N 1 CICLO RANKINE SIMPLE AUTOR ING. CARACCIOLO

Más detalles

ESTO NO ES UN EXAMEN, ES UNA HOJA DEL CUADERNILLO DE EJERCICIOS. Heroica Escuela Naval

ESTO NO ES UN EXAMEN, ES UNA HOJA DEL CUADERNILLO DE EJERCICIOS. Heroica Escuela Naval CUADERNILLO DE FÍSICA. TERCER GRADO. I.- SUBRAYE LA RESPUESTA CORRECTA EN LOS SIGUIENTES ENUNCIADOS. 1.- CUANDO DOS CUERPOS CON DIFERENTE TEMPERATURA SE PONEN EN CONTACTO, HAY TRANSMISIÓN DE: A) FUERZA.

Más detalles

Tema 9: Calor, Trabajo, y Primer Principio

Tema 9: Calor, Trabajo, y Primer Principio 1/34 Tema 9: Calor, Trabajo, y Primer Principio Fátima Masot Conde Ing. Industrial 2010/11 Tema 9: Calor, Trabajo, Primer Principio 2/34 Índice: 1. Introducción. 2. Capacidad calorífica. Calor específico.

Más detalles

INGENIERO. JOSMERY SÁNCHEZ

INGENIERO. JOSMERY SÁNCHEZ UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO "EL SABINO" PROGRAMA DE INGENIERÍA MECÁNICA AREA DE TECNOLOGÍA UNIDAD CURRICULAR: TERMODINÁMICA APLICADA REALIZADO POR: INGENIERO.

Más detalles

Módulo 2: Termodinámica. mica Temperatura y calor

Módulo 2: Termodinámica. mica Temperatura y calor Módulo 2: Termodinámica mica Temperatura y calor 1 Termodinámica y estado interno Para describir el estado externo de un objeto o sistema se utilizan en mecánica magnitudes físicas como la masa, la velocidad

Más detalles

EFICIENCIA EN PLANTAS DE TÉRMICAS

EFICIENCIA EN PLANTAS DE TÉRMICAS EFICIENCIA EN PLANTAS DE TÉRMICAS En el presente artículo se describen las alternativas de mejoramiento de eficiencia y reducción de costos, asociados a la generación de vapor. 1. Antecedentes Con el fin

Más detalles

ENERGÍA. Trabajo y Calor

ENERGÍA. Trabajo y Calor ENERGÍA Trabajo y Calor La energía se puede definir como toda propiedad que se puede producir a partir de trabajo o que puede convertirse en trabajo, incluyendo el propio trabajo. Como existen diferentes

Más detalles

JOTAGALLO S.A. MANUAL DE MANEJO Y CALIBRACIÓN TOSTADORA 12.5 KILOS

JOTAGALLO S.A. MANUAL DE MANEJO Y CALIBRACIÓN TOSTADORA 12.5 KILOS JOTAGALLO S.A. MANUAL DE MANEJO Y CALIBRACIÓN TOSTADORA 12.5 KILOS TOLVA PRINCIPAL ENTRADA AIREA FRIO CICLON TOSTADORA TABLERO CICLON VASCA CONTRA PESA PUERTA VISOR DE TOSTION BANDEJA IMPUREZAS RODACHINES

Más detalles

TÉCNICO SUPERIOR UNIVERSITARIO EN ENERGÍAS RENOVABLES ENERGÍA SOLAR EN COMPETENCIAS PROFESIONALES ASIGNATURADE TERMODINÁMICA

TÉCNICO SUPERIOR UNIVERSITARIO EN ENERGÍAS RENOVABLES ENERGÍA SOLAR EN COMPETENCIAS PROFESIONALES ASIGNATURADE TERMODINÁMICA TÉCNICO SUPERIOR UNIVERSITARIO EN ENERGÍAS RENOVABLES ENERGÍA SOLAR EN COMPETENCIAS PROFESIONALES ASIGNATURADE TERMODINÁMICA 1. Competencias Plantear y solucionar problemas con base en los principios y

Más detalles

Recuperación de la energía de las aguas grises

Recuperación de la energía de las aguas grises Recuperación de la energía de las aguas grises Jesús SOTO Ing. especialista en climat. y EE Gerente de Alter Technica Ingenieros T. 921 46 25 26 / 610 40 11 62 jesus.soto@altertech.es S O S T E N I B I

Más detalles

PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA

PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA OBJETIVO GENERAL: Familiarizar al alumno con los sistemas de torres de refrigeración para evacuar el calor excedente del agua. OBJETIVOS ESPECÍFICOS: Investigar

Más detalles

TUTORIAL BÁSICO DE MECÁNICA FLUIDOS

TUTORIAL BÁSICO DE MECÁNICA FLUIDOS TUTORIAL BÁSICO DE MECÁNICA FLUIDOS El tutorial es básico pues como habréis visto en muchos de ellos es haceros entender no sólo la aplicación práctica de cada teoría sino su propia existencia y justificación.

Más detalles

TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR

TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR El calor: Es una forma de energía en tránsito. La Termodinámica y La Transferencia de calor. Diferencias. TERMODINAMICA 1er. Principio.Permite determinar

Más detalles

Servicios energéticos en polígonos industriales

Servicios energéticos en polígonos industriales Servicios energéticos en polígonos industriales Zona Franca de Barcelona Índice Índice 1. Red de Ecoenergies Barcelona 2. Concepto del BZI 3. Propuesta de servicio 4. Ventajas del modelo 2 1 Red de Ecoenergies

Más detalles

Carrera: MCT 0540. Participantes. Representantes de las academias de Ingeniería Mecánica de Institutos Tecnológicos. Academia de Ingeniería

Carrera: MCT 0540. Participantes. Representantes de las academias de Ingeniería Mecánica de Institutos Tecnológicos. Academia de Ingeniería 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Termodinámica Ingeniería Mecánica MCT 0540 2 3 7 2.- HISTORIA DEL PROGRAMA Lugar

Más detalles

TEMA IV: ENERGÍA DE LAS REACCIONES QUÍMICAS

TEMA IV: ENERGÍA DE LAS REACCIONES QUÍMICAS TEMA IV: ENERGÍA DE LAS REACCIONES QUÍMICAS 1.- INTRODUCCIÓN A LA TERMODINÁMICA 2.- PRIMER PRINCIPIO DE LA TERMODINÁMICA 3.- ENTALPIAS DE REACCIÓN Y DE FORMACIÓN 4.- ECUACIONES TERMOQUÍMICAS.REACCIONES

Más detalles

Capítulo 6: Entropía.

Capítulo 6: Entropía. Capítulo 6: Entropía. 6. La deigualdad de Clauiu La deigualdad de Clauiu no dice que la integral cíclica de δq/ e iempre menor o igual que cero. δq δq (ciclo reverible) Dipoitivo cíclico reverible Depóito

Más detalles

ADAPTACIÓN CURRICULAR TEMA 11 CIENCIAS NATURALES 2º E.S.O

ADAPTACIÓN CURRICULAR TEMA 11 CIENCIAS NATURALES 2º E.S.O ADAPTACIÓN CURRICULAR TEMA 11 CIENCIAS NATURALES 2º E.S.O Calor y temperatura 1ª) Qué es la energía térmica? La energía térmica es la energía que posee un cuerpo (o un sistema material) debido al movimiento

Más detalles

TEMA 4: Circuito frigorífico y bomba de calor: elementos y aplicaciones.

TEMA 4: Circuito frigorífico y bomba de calor: elementos y aplicaciones. Esquema: TEMA 4: Circuito frigorífico y bomba de calor: elementos y aplicaciones. TEMA 4: Circuito frigorífico y bomba de calor: elementos y aplicaciones....1 1.- Introducción...1 2.- Máquina frigorífica...1

Más detalles

1.3.- V A L O R A B S O L U T O

1.3.- V A L O R A B S O L U T O 1.3.- V A L O R A B S O L U T O OBJETIVO.- Que el alumno conozca el concepto de Valor Absoluto y sepa emplearlo en la resolución de desigualdades. 1.3.1.- Definición de Valor Absoluto. El valor absoluto

Más detalles

CÍA. INDUSTRIAL EL VOLCÁN S.A.

CÍA. INDUSTRIAL EL VOLCÁN S.A. (40, 50 y 80 mm) Dirección comercial: Teléfono de contacto: Página web: Agustinas 1357, Piso 10 (56)(2) 483 0500 www.volcan.cl PRODUCTO: AISLAN COLCHONETA PAPEL 1 CARA Papel flexible con papel kraft en

Más detalles

AHORRO DE ENERGÍA EN UNA CALDERA UTILIZANDO

AHORRO DE ENERGÍA EN UNA CALDERA UTILIZANDO AHORRO DE ENERÍA EN UNA CALDERA UTILIZANDO ECONOMIZADORES Javier Armijo C., ilberto Salas C. Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos Resumen En el presente trabajo

Más detalles

ΔS > 0 aumento del desorden. ΔS < 0 disminución del desorden.

ΔS > 0 aumento del desorden. ΔS < 0 disminución del desorden. PRIMER PRINCIPIO La Energía del universo (sistema + entorno) se conserva. A + B C La energía del universo se conservará asimismo para: C A + B Los cambios pueden ocurrir en ambos sentidos? Qué determina

Más detalles

CONFORMACIÓN PLASTICA DE METALES: FORJA

CONFORMACIÓN PLASTICA DE METALES: FORJA CONFORMACIÓN PLASTICA DE METALES: FORJA CONTENIDO Definición y Clasificación de los Procesos de Forja Equipos y sus Características Técnicas Variables Principales del Proceso Métodos Operativos (Equipos

Más detalles

Determinación de entalpías de vaporización

Determinación de entalpías de vaporización Prácticas de Química. Determinación de entalpías de vaporización I. Introducción teórica y objetivos........................................ 2 II. Desarrollo experimental...............................................

Más detalles

FRIO SOLAR. Eficiencia y Ahorro Energético. Enero, 2011

FRIO SOLAR. Eficiencia y Ahorro Energético. Enero, 2011 FRIO SOLAR Eficiencia y Ahorro Energético Enero, 2011 1. Empresa 2. Confort y Climatización 3. Tecnología 4. Frío Solar 5. Aplicaciones 6. Ejemplo de Instalación 2 La Compañía Estocolmo, Suecia Sede Corporativa,

Más detalles

Departamento de Mantenimiento Subestaciones. EDICIÓN Y CONTROL: APROBACIÓN Y FECHA: 25.02.13 Gerente General

Departamento de Mantenimiento Subestaciones. EDICIÓN Y CONTROL: APROBACIÓN Y FECHA: 25.02.13 Gerente General Instrucciones Técnicas TÍTULO: Mantenimiento Aire Acondicionado de Subestaciones REFERENCIA: RIT026 EDICIÓN: 2/21.12.1.2 PÁGINA: 1 DE: 4 AFECTA A: Departamento de Mantenimiento Subestaciones EDICIÓN Y

Más detalles

UTN Facultad Regional La Plata Integración III

UTN Facultad Regional La Plata Integración III Balance de energía El concepto de balance de energía macroscópico, es similar al concepto del balance de materia macroscópico. Acumulación Transferencia Transferencia Generación Consumo de energía de energía

Más detalles

Un sistema se encuentra en un estado de equilibrio químico cuando su composición no varía con el tiempo.

Un sistema se encuentra en un estado de equilibrio químico cuando su composición no varía con el tiempo. Un sistema se encuentra en un estado de equilibrio químico cuando su composición no varía con el tiempo. N 2 g 3 H 2 g 2 NH 3 g 2 NH 3 g N 2 g 3 H 2 g concentración H 2 N 2 NH 3 concentración NH 3 H 2

Más detalles

Guía del docente. 1. Descripción curricular:

Guía del docente. 1. Descripción curricular: Guía del docente 1. Descripción curricular: - Nivel: 3º medio. - Subsector: Ciencias Físicas. - Unidad temática: Fluidos, hidrostática. - Palabras claves: fluidos, prensa hidráulica, hidrostática, fluidos

Más detalles

MÁQUINAS Y MOTORES TÉRMICOS

MÁQUINAS Y MOTORES TÉRMICOS Máquinas y motores térmicos 1 MÁQUINAS Y MOTORES TÉRMICOS Objetivo 1. Comprobar el funcionamiento general de las máquinas térmicas de producción de trabajo (motores, i.e. que dan vueltas), de producción

Más detalles

Significado Físico de los Potenciales Termodinámicos

Significado Físico de los Potenciales Termodinámicos Significado Físico de los Potenciales Termodinámicos Gonzalo Abal julio 2003 Instituto de Física Facultad de Ingeniería revisado: junio 2004 Abstract En estas notas justificamos la definición de los potenciales

Más detalles

MÁQUINAS TERMODINÁMICA

MÁQUINAS TERMODINÁMICA MÁQUINAS r r Trabajo: W F * d (N m Julios) (producto escalar de los dos vectores) Trabajo en rotación: W M * θ (momento o par por ángulo de rotación) Trabajo en fluidos: W p * S * d p * Energía: capacidad

Más detalles

Estudiar el fenómeno de trasferencia de calor en los procesos de fundido y evaporación del agua. Calcular el calor latente de vaporización del agua.

Estudiar el fenómeno de trasferencia de calor en los procesos de fundido y evaporación del agua. Calcular el calor latente de vaporización del agua. CAMBIOS DE FASE. OBJETIVO: Estudiar el fenómeno de trasferencia de calor en los procesos de fundido y evaporación del agua. Calcular el calor latente de vaporización del agua. INTRODUCCION. Los procesos

Más detalles

DIVISIÓN DE INGENIERIAS DEPARTAMENTO DE INGENIERÍA QUÍMICA PROGRAMA DE ASIGNATURA

DIVISIÓN DE INGENIERIAS DEPARTAMENTO DE INGENIERÍA QUÍMICA PROGRAMA DE ASIGNATURA CENTRO UNIVERSITARIO DE CIENCIAS EXACTAS E INGENIERIAS DIVISIÓN DE INGENIERIAS DEPARTAMENTO DE INGENIERÍA QUÍMICA PROGRAMA DE ASIGNATURA NOMBRE DE MATERIA TERMODINÁMICA QUÍMICA CLAVE DE MATERIA DEPARTAMENTO

Más detalles

V B. g (1) V B ) g, (2) +ρ B. =( m H. m H (3) ρ 1. ρ B. Aplicando al aire la ecuación de estado de los gases perfectos, en la forma.

V B. g (1) V B ) g, (2) +ρ B. =( m H. m H (3) ρ 1. ρ B. Aplicando al aire la ecuación de estado de los gases perfectos, en la forma. Un globo de aire caliente de volumen =, m 3 está abierto por su parte inferior. La masa de la envoltura es =,87 kg y el volumen de la misma se considera despreciable. La temperatura inicial del aire es

Más detalles

Transformación de trabajo en calor y calor en trabajo. Motores y Frigoríficos.

Transformación de trabajo en calor y calor en trabajo. Motores y Frigoríficos. Transformación de trabajo en calor y calor en trabajo Motores y Frigoríficos. De lo expuesto, se debe concluir que cualquier sistema que este expuesto al intercambio de trabajo y calor con el exterior

Más detalles

Relativo al etiquetado energético de los acondicionadores de aire. 26 de Julio de de Enero de 2013

Relativo al etiquetado energético de los acondicionadores de aire. 26 de Julio de de Enero de 2013 Resumen del Reglamento Delegado UE nº 626/2011, por el que se complementa la Directiva 2010/30/UE del Parlamento Europeo y del Consejo en lo que respecta al ETIQUETADO ENERGÉTICO DE LOS ACONDICIONADORES

Más detalles

EJERCICIOS DE TERMOQUÍMICA

EJERCICIOS DE TERMOQUÍMICA EJERCICIOS DE TERMOQUÍMICA En los exámenes de Acceso a la Universidad se proponen una serie de cuestiones (más teóricas) y problemas (prácticos) para resolver. En estos apuntes vamos a resolver ambos tipos

Más detalles

El calor y la temperatura

El calor y la temperatura 2 El calor y la temperatura Contenidos Índice 1 2 3 4 Energía térmica Medida de la temperatura Propagación del calor Equilibrio térmico 1. Energía térmica Se denomina energía térmica a la energía cinética

Más detalles

ESTUDIO REALIZADO POR DIRA S.L. (Desenvolupament, Investigació i Recerca Aplicada S.L.)

ESTUDIO REALIZADO POR DIRA S.L. (Desenvolupament, Investigació i Recerca Aplicada S.L.) : nuevo refrigerante sustitutivo del R-22 con bajo PCA (GWP). Comparación de rendimiento con seis refrigerantes ya existentes ESTUDIO REALIZADO POR DIRA S.L. (Desenvolupament, Investigació i Recerca Aplicada

Más detalles

Sistemas de Micro-cogeneración y Trigeneración. Santiago Quinchiguango

Sistemas de Micro-cogeneración y Trigeneración. Santiago Quinchiguango Sistemas de Micro-cogeneración y Trigeneración Santiago Quinchiguango 11/2014 1. Micro-Cogeneración 1.1 Cogeneración Cogeneración es la producción combinada de electricidad y energía térmica útil (calentamiento

Más detalles

CALDERAS: CARACTERÍSTICAS Y DATOS TÉCNICOS. M. En C. José Antonio González Moreno Máquinas Térmicas CETI Tonalá Septiembre del 2015

CALDERAS: CARACTERÍSTICAS Y DATOS TÉCNICOS. M. En C. José Antonio González Moreno Máquinas Térmicas CETI Tonalá Septiembre del 2015 CALDERAS: CARACTERÍSTICAS Y DATOS TÉCNICOS M. En C. José Antonio González Moreno Máquinas Térmicas CETI Tonalá Septiembre del 2015 INTRODUCCIÓN: Una caldera es una máquina o dispositivo de ingeniería que

Más detalles

el calor cedido al medio disipante (generalmente el aire ambiente o agua) i W el trabajo necesario para que funcione el sistema.

el calor cedido al medio disipante (generalmente el aire ambiente o agua) i W el trabajo necesario para que funcione el sistema. Capítulo 1 Métodos frigoríficos 1. Introducción La refrigeración consiste en la extracción de calor de una sustancia que deseamos mantener a una temperatura inferior a la del medio ambiente. Para ello

Más detalles

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física Electricidad y calor Dr. Roberto Pedro Duarte Zamorano Departamento de Física 2011 A. Termodinámica Temario 1. Temperatura y Ley Cero. (3horas) 2. Calor y transferencia de calor. (5horas) 3. Gases ideales

Más detalles

Laboratorio de Termotécnia E. T. S. E. I. B.

Laboratorio de Termotécnia E. T. S. E. I. B. Laboratorio de Termotécnia E. T. S. E. I. B. Universitat Politècnica de Catalunya Profesor José Mª Nacenta, Dr. Ingeniero Industrial Instalación típica: EcoTermIn Máquina de frío: Es una máquina de trasladar

Más detalles

Apuntes de Electroquímica

Apuntes de Electroquímica En la región donde interaccionan electrodo y disolución pueden ocurrir dos tipos de reacciones: de oxidación o de reducción. La velocidad de una reacción elemental depende de la concentración de las especies

Más detalles

Mediciones Confiables con Termómetros de Resistencia i de Platino. Edgar Méndez Lango

Mediciones Confiables con Termómetros de Resistencia i de Platino. Edgar Méndez Lango Mediciones Confiables con Termómetros de Resistencia i de Platino Edgar Méndez Lango Termometría, Metrología Eléctrica, CENAM Noviembre 2009 Contenido 2 1. Concepto de temperatura 2. La Escala Internacional

Más detalles

TEMA 2.-INTRODUCCIÓN A LOS CONCEPTOS DE OFERTA Y DEMANDA: EL EQUILIBRIO DEL MERCADO

TEMA 2.-INTRODUCCIÓN A LOS CONCEPTOS DE OFERTA Y DEMANDA: EL EQUILIBRIO DEL MERCADO TEMA 2.-INTRODUCCIÓN A LOS CONCEPTOS DE OFERTA Y DEMANDA: EL EQUILIBRIO DEL MERCADO 2.0.- INTRODUCCIÓN 2.1.- FUNCIÓN DE DEMANDA Y MOVIMIENTOS 2.2.- FUNCIÓN DE OFERTA Y MOVIMIENTOS 2.3.- EL EQUILIBRIO DE

Más detalles

TEMPERATURA DILATACIÓN. 9. En la escala Celsius una temperatura varía en 45 C. Cuánto variará en la escala Kelvin y

TEMPERATURA DILATACIÓN. 9. En la escala Celsius una temperatura varía en 45 C. Cuánto variará en la escala Kelvin y TEMPERATURA 1. A cuántos grados kelvin equivalen 50 grados centígrados? a) 303 b) 353 c) 453 d) 253 2. Si un cuerpo presenta una temperatura de 20 C Cuál será la lectura de esta en la escala Fahrenheit?

Más detalles

REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS)

REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS) 1 REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS) 1. EN LA REGIÓN DE DRAKUL DE LA REPÚBLICA DE NECROLANDIA, LAS AUTORIDADES ECONÓMICAS HAN REALIZADO UNA REVISIÓN

Más detalles

y 2 Considere que el viento no sopla en la dirección AB sino que lo hace de forma que v r

y 2 Considere que el viento no sopla en la dirección AB sino que lo hace de forma que v r P1. Anemometría sónica. Hoy en día, los Centros Meteorológicos disponen de aparatos muy sofisticados para medir la velocidad del viento que, además y simultáneamente, miden la temperatura del aire. El

Más detalles

PROBLEMAS. Segundo Principio. Problema 1

PROBLEMAS. Segundo Principio. Problema 1 PROBLEMAS Segundo Principio Problema 1 La figura muestra un sistema que capta radiación solar y la utiliza para producir electricidad mediante un ciclo de potencia. El colector solar recibe 0,315 kw de

Más detalles

Sistemas de vacío de múltiples etapas a chorro de vapor operando en circuito cerrado alcalino (Alkaline Closed Loop - ACL)

Sistemas de vacío de múltiples etapas a chorro de vapor operando en circuito cerrado alcalino (Alkaline Closed Loop - ACL) Sistemas de vacío de múltiples etapas a chorro de vapor operando en circuito cerrado alcalino (Alkaline Closed Loop - ACL) Sistemas de vacío de múltiples etapas a chorro de vapor Los sistemas de vacío

Más detalles

BARCO A VAPOR TERMODINÁMICO. INTEGRANTES: Bibiana Rodríguez Laura Liliana Triana Carlos Alberto Chinome

BARCO A VAPOR TERMODINÁMICO. INTEGRANTES: Bibiana Rodríguez Laura Liliana Triana Carlos Alberto Chinome BARCO A VAPOR TERMODINÁMICO INTEGRANTES: Bibiana Rodríguez Laura Liliana Triana Carlos Alberto Chinome PLANTEAMIENTO DEL PROBLEMA Continuando con la promoción y desarrollo de la cátedra de termodinámica

Más detalles

T 1 T 2. x L. Con frecuencia es importante el valor de la resistencia térmica multiplicado por el área de flujo de calor, en este caso sera

T 1 T 2. x L. Con frecuencia es importante el valor de la resistencia térmica multiplicado por el área de flujo de calor, en este caso sera 1. ey de Fourier ué flujo de calor es necesario hacer pasar a través de una barra circular de madera de 5 cm de diámetro y 10 cm de longitud, cuya temperatura en los extremos es de 50 C y 10 C en sus extremos?

Más detalles