CARACTERIZACIÓN DE LÁSERES DE DIODO

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CARACTERIZACIÓN DE LÁSERES DE DIODO"

Transcripción

1 Física del láser CARACTERIZACIÓN DE LÁSERES DE DIODO OBJETIVOS A Estudio de la potencia de salida en función del bombeo. B Estudio del estrechamiento espectral. C Estudio de la coherencia temporal. MATERIAL 1 láser de semiconductor (651 nm) 1 circuito de alimentación 2 multímetros 1 detector de potencia 1 monocromador + 1 fotodiodo 1 interferómetro de Michelson Los alumnos son responsables del buen estado de los equipos. ATENCIÓN: No mirar la emisión de los láseres, ni directamente ni sus reflejos. INTRODUCCIÓN Los láseres de semiconductor pueden considerarse láseres de 4 niveles (Fig. 1) con ensanchamiento homogéneo, similares a los láseres de colorante, en los que la transición de emisión de fluorescencia/láser se efectúa entre la banda de conducción y la de valencia en una unión p-n. Por tanto el diodo semiconductor puede utilizarse para generar luz incoherente (fluorescencia) denominándose en ese caso LED (Light Emittíng Diode) o luz temporalmente coherente denominándose en ese caso diodo láser. Un representante típico es el GaAs, el cual al ser dopado con Se o Zn se convierte en un material conductor tipo n o tipo p. Al establecer una corriente en la dirección de paso (Fig. 2) se recombinan en la zona p-n los electrones y los huecos, y se libera energía en forma de luz. Para intensidades de corriente de inyección I bajas hay pocas, recombinaciones, poca densidad de fotones emitidos y éstos tienen características de emisión de fluorescencia (baja potencia P de emisión, ancho espectro de emisión λ flu 50 nm). Si circula una corriente I suficientemente alta a través de la transición p-n puede superarse la condición umbral y tiene lugar la amplificación de radiación vía emisión estimulada. La comprensión del fenómeno requiere conocimientos profundos de la física del Estado Sólido. A la corriente eléctrica que produce la inversión de población umbral la designaremos como I u. Para corrientes I > I u el diodo láser dará una potencia de salida P > P u y la emisión estimulada tiene lugar preferentemente para aquellas transiciones en las que la ganancia es más alta, produciéndose lo que se denomina un estrechamiento espectral λ flu > λ láser 10 nm. El láser de diodo es de gran importancia en la transmisión de señales, a pesar de su baja potencia de salida. Se modula fácilmente, y dadas sus pequeñas dimensiones (Fig.2) puede acoplarse fácilmente a cable de fibra óptica. Una desventaja en su gran ancho de banda (hasta 10 nm) y la gran divergencia (hasta 10 ), consecuencia esta última de la difracción en la reducida dimensión (algunas micras) de la transición p-n. El láser real consiste en muchas capas dopadas de forma diferente (heteroestructuras) para conseguir un alto grado de eficiencia y bajas pérdidas. 1

2 Figura 1. Esquemas de niveles para un diodo láser. Figura 2. Esquema representativo de un láser de diodo. 2

3 En la tabla siguiente pueden compararse las características físicas y de emisión de diferentes sistemas láser. Figura 3. Montaje de alimentación. 3

4 DESARROLLO DE LA PRÁCTICA En la Fig. 3 puede observarse el montaje de alimentación de un láser de diodo de emisión continua a 651 nm que va a ser utilizado. La fuente de corriente para el diodo es una pila de 9 V. En la caja hay un circuito que consiste esencialmente en la pila con una resistencia variable (potenciómetro) en serie con el láser. Al girar el potenciómetro aumenta la resistencia de 0 a 420 Ω aproximadamente, y la corriente I inyectada al diodo láser disminuye. En la posición de partida el interruptor debe estar en off y la marca blanca del potenciómetro en 420 Ω. A. Estudio de la potencia de salida en función del bombeo Si ahora conectamos el interruptor, por el circuito circula una corriente I, que es inyectada al diodo láser y éste emite. Si colocamos un papel delante del láser observaremos el haz emitido. Podemos ir bajando la resistencia lentamente para aumentar la intensidad de corriente inyectada y el propio ojo será capaz de observar cómo la intensidad de luz emitida es cada vez mayor. Al principio el cambio en la intensidad emitida es igualmente lento, hasta que se llega a un valor de la resistencia para el cual la intensidad emitida cambia bruscamente. En este punto hemos alcanzado la intensidad umbral I u que hay que inyectar al diodo para que la emisión preferente sea estimulada, es decir láser. Si seguimos aumentando I observaremos una mayor intensidad de salida. Repetiremos el proceso anterior sustituyendo el papel por un sistema de medida de la potencia (Fig. 4), en el que detectamos con un fotodiodo cuya salida puede ser amplificada y leída en un voltímetro. Si el detector está corregido a la respuesta espectral, el valor indicado será la potencia P del láser. (Consultar al profesor antes de realizar las medidas). Por otro lado la corriente de alimentación del láser se puede medir conectando un amperímetro en serie. Con los valores de P(mW) frente a I/I u dibujar la curva de ganancia y dar el valor obtenido de I u - Figura 4. Sistema medidor de potencia 4

5 B. Estudio del estrechamiento espectral La medición del rango espectral de emisión se realizará con un monocromador, al cual hay acoplado un fotodiodo. Una vez localizada la λ de potencia máxima P max de emisión de fluorescencia, localice las longitudes de onda para las cuales la intensidad de emisión vale P max /2. A continuación coloque el láser por encima del umbral y proceda de igual forma. Calcule la razón de anchos espectrales por debajo y por encima del umbral λ láser / λ flu. Figura 5. Sistema medidor de ancho espectral C. Estudio de la coherencia temporal La medición de la coherencia temporal se realizará con un interferómetro de Michelson con lámina compensadora. La estimación de la coherencia temporal la realizaremos con la diferencia de camino óptico que puede haber entre los brazos para observar franjas. Debajo del umbral el láser tiene poca coherencia temporal y por tanto será difícil observar la interferencia a la salida del interferómetro, salvo que éste esté en contacto óptico (diferencia de camino óptico entre los haces 0). En primer lugar utilizaremos una fuente de luz blanca con un difusor para buscar las condiciones de contacto óptico del interferómetro. Mida la diferencia de camino óptico para la observación de franjas con luz blanca. Una vez localizadas las franjas con el propio ojo sustituimos la fuente de luz blanca y el difusor por el láser de diodo operando debajo del umbral I u. Con objeto de observar una buena formación de franjas, quitaremos la lente colimadora que hay a la salida del láser. Mida la diferencia de camino óptico para la observación de franjas con el láser por debajo del umbral. A partir de este momento no vuelva a observar las interferencias con el OJO a la salida del interferómetro. A continuación quite el difusor, coloque el láser por encima del umbral y ponga un papel blanco a la salida del interferómetro para observar las franjas formadas. Estime la coherencia temporal por encima del umbral. BIBLIOGRAFÍA Bergmann; Schäfer, Lehrbuch der Experimental Physik. Editor, H. Niedrig. De Gruyter. Berlín, Nueva York (1993). A. Siegman, Lasers. üniversity Science Books. Sausalito, CA. (1986) 5

6 Figura 6. Interferómetro de Michelson 6

7 RESUMEN DE RESULTADOS A. Estudio de la potencia de salida en función del bombeo I (ma) P (mw) I (ma) P (mw) I (ma) P (mw) Valor obtenido para I u : B. Estudio del estrechamiento espectral λ láser / λ flu = C. Estudio de la coherencia temporal Téngase en cuenta que el desplazamiento real del espejo del interferómetro corresponde a 1/5 del desplazamiento leído en el tomillo micrométrico. Por debajo del umbral: L = En el umbral: L = Por encima del umbral: L = 7

LASER Conceptos Básicos

LASER Conceptos Básicos LASER Conceptos Básicos Laser - Light Amplification by Stimulate Emission of Radiation Amplificación de Luz por Emisión Estimulada de Radiación Como Funciona? Usa a emisión estimulada para desencadenar

Más detalles

DIODO EMISOR DE LUZ.

DIODO EMISOR DE LUZ. DIODO EMISOR DE LUZ. Un LED (Light Emitting Diode- Diodo Emisor de Luz), es un dispositivo semiconductor que emite radiación visible, infrarroja o ultravioleta cuando se hace pasar un flujo de corriente

Más detalles

Pr.B Boletín de problemas de la Unidad Temática B.III: Detección y generación de señales luminosas

Pr.B Boletín de problemas de la Unidad Temática B.III: Detección y generación de señales luminosas Pr.B Boletín de problemas de la Unidad Temática B.III: Detección y generación de señales luminosas Pr.B.4. Detección de luz e imágenes 1. Un detector de Ge debe ser usado en un sistema de comunicaciones

Más detalles

La ley de desplazamiento de Wien (Premio Nobel 1911):

La ley de desplazamiento de Wien (Premio Nobel 1911): Trabajo de laboratorio Nro 1: Verificación de la ley de Stefan Boltzmann y determinación de la constante de Planck mediante el análisis de la radiación del cuerpo negro Introducción Toda superficie cuya

Más detalles

Láser Semiconductor. La Excitación Bombeo es la corriente del diodo. Haz Laser. Reflector 99% Reflector 100% Zona N Medio activo

Láser Semiconductor. La Excitación Bombeo es la corriente del diodo. Haz Laser. Reflector 99% Reflector 100% Zona N Medio activo Láser Semiconductor Relacionando con la teoría de láser: Al medio activo lo provee la juntura P-N altamente contaminada. Esta juntura está formada por materiales N y P degenerados por su alta contaminación.

Más detalles

Laboratorio de Optica

Laboratorio de Optica Laboratorio de Optica 8. Interferómetro de Michelson Neil Bruce Laboratorio de Optica Aplicada, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, U.N.A.M., Objetivos A.P. 70-186, México, 04510, D.F.

Más detalles

Prueba experimental. Constante de Planck y comportamiento de un LED

Prueba experimental. Constante de Planck y comportamiento de un LED Prueba experimental. Constante de Planck y comportamiento de un LED Objetivo. Se va a construir un circuito eléctrico para alimentar LEDs de diferentes colores y obtener un valor aproximado de la constante

Más detalles

CIRCUITOS ELECTRÓNICOS, DIODO LED

CIRCUITOS ELECTRÓNICOS, DIODO LED Laboratorio electrónico Nº 3 CIRCUITOS ELECTRÓNICOS, DIODO LED Objetivo Aplicar los conocimientos de circuitos electrónicos Familiarizarse con los dispositivos y componentes electrónicos Objetivo específico

Más detalles

Tabla 5: Mecanizado de silicio. Reducción del espesor de la oblea, taladrado y corte del silicio.

Tabla 5: Mecanizado de silicio. Reducción del espesor de la oblea, taladrado y corte del silicio. Anexo C Anexo C: Micromecanizado por Introducción Conceptos básicos de la tecnología Tipos de Óptica concentradora Láser pulsados y continuos Aplicaciones de la tecnología de mecanizado Índice de tablas:

Más detalles

CAPITULO 5 ARREGLO EXPERIMENTAL. En esta sección describiremos el arreglo experimental (Figura 5.1) y sus elementos.

CAPITULO 5 ARREGLO EXPERIMENTAL. En esta sección describiremos el arreglo experimental (Figura 5.1) y sus elementos. CAPÍTULO 5 Y RESULTADOS 5.1 Arreglo y sus elementos En esta sección describiremos el arreglo experimental (Figura 5.1) y sus elementos. Figura 5.1 Arreglo experimental del sistema Las conexiones entre

Más detalles

Prueba experimental. Absorción de luz por un filtro neutro.

Prueba experimental. Absorción de luz por un filtro neutro. Prueba experimental. Absorción de luz por un filtro neutro. Objetivo Cuando un haz de luz de intensidad I 0 incide sobre una de las caras planas de un medio parcialmente transparente, como un filtro de

Más detalles

TRANSDUCTORES OPTOELECTRONICOS

TRANSDUCTORES OPTOELECTRONICOS TRANSDUCTORES OPTOELECTRONICOS Hay dos aspectos relacionados con la luz que se utilizan, juntos o separados, para explicar muchos fenómenos relacionados con ella. Fenómenos ópticos, tales como la interferencia

Más detalles

Caracterización de un diodo Láser

Caracterización de un diodo Láser Práctica 6 Caracterización de un diodo Láser OBJETIVO Obtener la curva característica del diodo Láser Observar el efecto de la temperatura sobre este dispositivo Obtener el patrón de irradiancia del ILD.

Más detalles

CAPÍTULO 3. FUENTES DE RADIACIÓN EN FIBRA ÓPTICA DOPADA CON TIERRAS RARAS

CAPÍTULO 3. FUENTES DE RADIACIÓN EN FIBRA ÓPTICA DOPADA CON TIERRAS RARAS CAPÍTULO 3. FUENTES DE RADIACIÓN EN FIBRA ÓPTICA DOPADA CON TIERRAS RARAS Las tierras raras también conocidas como Lantánidos son elementos del grupo IIIB, la característica principal de estos elementos

Más detalles

COMUNICACIONES ÓPTICAS CUESTIONES- SEGUNDA PARTE (II) Curso 2004/05. Segundo Semestre

COMUNICACIONES ÓPTICAS CUESTIONES- SEGUNDA PARTE (II) Curso 2004/05. Segundo Semestre COMUNICACIONES ÓPTICAS CUESTIONES- SEGUNDA PARTE (II) Curso 2004/05. Segundo Semestre 4.1. Al conmutar un LED desde I = 0 a I = I ON, la potencia emitida: a. Responde infinitamente rápido. b. Tarda un

Más detalles

ÓPTICA DE MICROONDAS

ÓPTICA DE MICROONDAS Laboratorio 3 de Física 93 ÓPTICA DE MICROONDAS Objetivos: Estudiar la aplicación leyes de la óptica para las microondas: Reflexión, refracción, polarización, interferencia Encontrar la longitud de onda

Más detalles

SISTEMA LASER. Introducción

SISTEMA LASER. Introducción SISTEMA LASER Introducción Anteriormente se presentaron los procesos físicos necesarios para producir amplificación de la luz en un sistema atómico. Ahora la atención se centra en cómo puede lograrse lo

Más detalles

5. Medidas y resultados

5. Medidas y resultados 5. Medidas y resultados Es en este apartado donde se caracteriza el circuito mediante su análisis en el laboratorio. Tras el diseño teórico y la realización física del circuito se pasa a comprobar si éste

Más detalles

LASER DE SEMICONDUCTORES

LASER DE SEMICONDUCTORES LASER DE SEMICONDUCTORES La palabra LASER corresponde al acrónimo en inglés de las palabras que definen este tipo de radiación, y que son Light Amplification by Stimulated Emission of Radiation, es decir

Más detalles

4. El diodo semiconductor

4. El diodo semiconductor 4. El diodo semiconductor Objetivos: Comprobar el efecto de un circuito rectificador de media onda con una onda senoidal de entrada. Observar cómo afecta la frecuencia en el funcionamiento de un diodo

Más detalles

Otros tipos de Diodos. ITESM Campus Monterrey, Departamento de Ing. Eléctrica

Otros tipos de Diodos. ITESM Campus Monterrey, Departamento de Ing. Eléctrica Otros tipos de Diodos Diodo Schottky Se forma uniendo un metal como platino o aluminio a un silicio tipo p o n. Utilizado en circuitos integrados en donde se requiera conmutación a altas velocidades Voltaje

Más detalles

Sistemas de comunicaciones vía Fibra Óptica II

Sistemas de comunicaciones vía Fibra Óptica II Sistemas de comunicaciones vía Fibra Óptica II UNIVERSIDAD TECNOLOGICAS DE LA MIXTECA INGENIERÍA EN ELECTRÓNICA NOVENO SEMESTRE DICIEMBRE 2005 M.C. MARIBEL TELLO BELLO TRANSMISORES DE FIBRA ÓPTICA TRANSMISORES

Más detalles

DIODOS EMISORES DE LUZ (LEDS)

DIODOS EMISORES DE LUZ (LEDS) DIODOS EMISORES DE LUZ (LEDS) FUENTES DE LUZ PARA COMUNICACIONES OPTICAS LED y LASER basados en heterouniones de semiconductores de gap directo Ventajas: pequeño tamaño, gran fiabilidad, potencia óptica

Más detalles

CAPÍTULO 5 ARREGLO EXPERIMENTAL 5.1 INTRODUCCIÓN 5.2 GENERACIÓN DE MICROONDAS

CAPÍTULO 5 ARREGLO EXPERIMENTAL 5.1 INTRODUCCIÓN 5.2 GENERACIÓN DE MICROONDAS CAPÍTULO 5 ARREGLO EXPERIMENTAL 5.1 INTRODUCCIÓN En este capítulo se presenta una técnica fotónica que permite medir la potencia de reflexión en una antena microstrip, como resultado de las señales de

Más detalles

XI Olimpiada Iberoamericana de Física

XI Olimpiada Iberoamericana de Física XI Olimpiada Iberoamericana de Física Coimbra, Brasil. Septiembre 23-30 de 2006-11-03 EXPERIENCIA 1: Pesavinos (10 puntos) OBJETIVO El objetivo de esta experiencia es la determinación de la densidad de

Más detalles

ESPECTROSCOPIA Q.F. ALEX SILVA ARAUJO

ESPECTROSCOPIA Q.F. ALEX SILVA ARAUJO Q.F. ALEX SILVA ARAUJO INSTRUMENTOS PARA ESPECTROSCOPIA OPTICA Los primeros instrumentos espectroscópicos se desarrollaron para ser utilizados en la región del visible (instrumentos ópticos). En la actualidad

Más detalles

SEMICONDUCTORES. Silicio intrínseco

SEMICONDUCTORES. Silicio intrínseco Tema 3: El Diodo 0 SEMICONDUCTORES Silicio intrínseco 1 SEMICONDUCTORES Conducción por Huecos A medida que los electrones se desplazan a la izquierda para llenar un hueco, el hueco se desplaza a la derecha.

Más detalles

Máster Universitario en Ingeniería de Telecomunicación Tecnología Fotónica Curso Académico 2014/2015 Curso 1º Cuatrimestre 2º

Máster Universitario en Ingeniería de Telecomunicación Tecnología Fotónica Curso Académico 2014/2015 Curso 1º Cuatrimestre 2º Máster Universitario en Ingeniería de Telecomunicación Tecnología Fotónica Curso Académico 2014/2015 Curso 1º Cuatrimestre 2º PRÁCTICA 1. 2 Contenido 1 OBJETIVOS... 4 2 CONCEPTOS TEÓRICOS... 4 2.1 Propiedades

Más detalles

LABORATORIO DE FÍSICA 2 - E.T.S.E.T.-CURSO 2004/2005 PRÁCTICA 4 MICROONDAS

LABORATORIO DE FÍSICA 2 - E.T.S.E.T.-CURSO 2004/2005 PRÁCTICA 4 MICROONDAS MICROONDAS Libro de texto: Francis W. Sears, Mark W. Zemansky, et al., Física Universitaria, Tomo 2, 11ª edición, Pearson Educación, Mexico (2004), Capítulos: 32-6 El espectro electromagnético (páginas

Más detalles

COMUNICACIONES ÓPTICAS

COMUNICACIONES ÓPTICAS Cuestiones. Tema 4 COMUNICACIONES ÓPTICAS CUESTIONES-Tema 4- CORRECIONES Curso 2005/06. Primer Semestre NOTA: observados errores en las soluciones de las preguntas 4.7, 4.41, 4.42, 4.43, 4.51, 4.54, 4.58,

Más detalles

CAPÍTULO II. FUENTES Y DETECTORES ÓPTICOS. Uno de los componentes clave en las comunicaciones ópticas es la fuente de

CAPÍTULO II. FUENTES Y DETECTORES ÓPTICOS. Uno de los componentes clave en las comunicaciones ópticas es la fuente de CAPÍTULO II. FUENTES Y DETECTORES ÓPTICOS. 2.1 INTRODUCCIÓN. Uno de los componentes clave en las comunicaciones ópticas es la fuente de luz monocromática. En sistemas de comunicaciones ópticas, las fuentes

Más detalles

Electrónica REPASO DE CONTENIDOS

Electrónica REPASO DE CONTENIDOS Tema 1 Electrónica Conocerás las principales componentes de los circuitos eléctricos. Resistencias, condensadores, diodos y transistores. Sabrás cómo montar circuitos eléctricos simples. REPASO DE CONTENIDOS

Más detalles

Planificaciones Optoelectrónica. Docente responsable: GONZALEZ MARTIN GERMAN. 1 de 6

Planificaciones Optoelectrónica. Docente responsable: GONZALEZ MARTIN GERMAN. 1 de 6 Planificaciones 6657 - Optoelectrónica Docente responsable: GONZALEZ MARTIN GERMAN 1 de 6 OBJETIVOS Proporcionar un conocimiento introductorio a la optoelectrónica de forma que el estudiante pueda comprender

Más detalles

Fundamentos de espectroscopia de Fourier. Clase miércoles 13 de octubre de 2010 y clase jueves 14 de octubre

Fundamentos de espectroscopia de Fourier. Clase miércoles 13 de octubre de 2010 y clase jueves 14 de octubre Fundamentos de espectroscopia de Fourier Clase miércoles 13 de octubre de 1 y clase jueves 14 de octubre Esquema del interferómetro de Michelson La espectroscopia de Fourier está fundamentada en la capacidad

Más detalles

Diapositiva 1 PRINCIPIOS DE LA ENERGÍA FOTOVOLTAICA. Radiación solar. Radiación electromagnética emitida por el el Sol. Espectro. Prof. J.G.

Diapositiva 1 PRINCIPIOS DE LA ENERGÍA FOTOVOLTAICA. Radiación solar. Radiación electromagnética emitida por el el Sol. Espectro. Prof. J.G. Diapositiva 1 Radiación solar Radiación electromagnética emitida por el el Sol Espectro Diapositiva 2 Radiación luminosa Parte Parte de de la la radiación electromagnética emitida emitida por por el el

Más detalles

DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Instrumentación Industrial Mecánica Laboratorio de Instrumentación Mecatrónica 1

DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Instrumentación Industrial Mecánica Laboratorio de Instrumentación Mecatrónica 1 1. Tema: Operación del sensor óptico analógico difuso (de reflexión directa). 2. Objetivos: a. Aprender la característica de la respuesta de un sensor óptico analógico difuso. b. Determinar la curva característica

Más detalles

El Diodo TEMA 3. ÍNDICE 3.1. LA UNIÓN P-N EN EQUILIBRIO 3.2. POLARIZACIÓN DIRECTA E INVERSA 3.3. ECUACIÓN DEL DIODO IDEAL

El Diodo TEMA 3. ÍNDICE 3.1. LA UNIÓN P-N EN EQUILIBRIO 3.2. POLARIZACIÓN DIRECTA E INVERSA 3.3. ECUACIÓN DEL DIODO IDEAL TEMA 3 El Diodo El Diodo ÍNDICE 3.1. LA UNIÓN P-N EN EQUILIBRIO 3.2. POLARIZACIÓN DIRECTA E INVERSA 3.3. ECUACIÓN DEL DIODO IDEAL 3.4. FENÓMENOS DE AVALANCHA Y ZENER 3.5. OTROS TIPOS DE DIODOS. MODELOS

Más detalles

CIRCUITOS ELECTRICOS, COMPONENTES ELECTRÓNICOS, Y APARATOS DE MEDIDA

CIRCUITOS ELECTRICOS, COMPONENTES ELECTRÓNICOS, Y APARATOS DE MEDIDA CIRCUITOS ELECTRICOS, COMPONENTES ELECTRÓNICOS, Y APARATOS DE MEDIDA Joaquín Agulló Roca 3º ESO CIRCUITOS ELECTRICOS MAGNITUDES ELECTRICAS La carga eléctrica (q) de un cuerpo expresa el exceso o defecto

Más detalles

GUÍA DE INSTALACIÓN DEL MÓDULO DE DIFRACCIÓN DE LA LUZ

GUÍA DE INSTALACIÓN DEL MÓDULO DE DIFRACCIÓN DE LA LUZ GUÍA DE INSTALACIÓN DEL MÓDULO DE DIFRACCIÓN DE LA LUZ TABLA DE CONTENIDO Pag. EXPERIMENTO DE DIFRACCIÓN DE LA LUZ... 3 1. INTRODUCCIÓN... 3 2. EQUIPOS... 3 3. MONTAJE GENERAL DEL EXPERIMENTO... 5 3.1

Más detalles

Dónde colocar el voltímetro?

Dónde colocar el voltímetro? Dónde colocar el voltímetro? ntroducción El circuito eléctrico más sencillo experimental consiste en una fuente de alimentación, una resistencia, un amperímetro y un voltímetro. El objetivo de este circuito

Más detalles

En el laboratorio hay espejos planos de varias reflectividades entre 80% y 98% -es

En el laboratorio hay espejos planos de varias reflectividades entre 80% y 98% -es Apuntes de Gabriela Capeluto, Ana Amador y Fernando Rausch 1. Láser de Nd:YAG. Cavidades. En el laboratorio hay espejos planos de varias reflectividades entre 80% y 98% -es muy difícil hacer lasear estos

Más detalles

Figura 1: Se muestra el LED y la FR sin el tubito negro

Figura 1: Se muestra el LED y la FR sin el tubito negro XXVI OLIMPIADA NACIONAL DE FÍSICA Culiacán, Sinaloa 8-12 Noviembre, 2015 EXAMEN EXPERIMENTAL Luz de un LED y su efecto en una fotorresistencia Un LED (Diodo Emisor de Luz o Light Emitting Diode, por sus

Más detalles

Firma: 4. T1.- Compare la máxima distancia alcanzada con los sistemas de comunicaciones ópticas siguientes para un régimen binario R

Firma: 4. T1.- Compare la máxima distancia alcanzada con los sistemas de comunicaciones ópticas siguientes para un régimen binario R Apellidos Nombre DNI TEORÍA Grupo 1 2 3 Firma: 4 T1.- Compare la máxima distancia alcanzada con los sistemas de comunicaciones ópticas siguientes para un régimen binario R b = 100 Mbits/sec : SISTEMA 1.-

Más detalles

UD6.- TEORIA DE SEMICONDUCTORES EL DIODO

UD6.- TEORIA DE SEMICONDUCTORES EL DIODO UD6. TEORIA DE SEMICONDUCTORES EL DIODO Centro CFP/ES CONSTITUCIÓN INTERNA DE LA MATERIA Moléculas y Átomos 1 CONSTITUCIÓN INTERNA DE LA MATERIA Clasificación de los cuerpos CONSTITUCIÓN INTERNA DE LA

Más detalles

DIODOS EMISORES DE LUZ (LED)

DIODOS EMISORES DE LUZ (LED) DIODOS EMISORES DE LUZ (LED) El hecho de que las uniones pn puedan absorber luz y producir una corriente eléctrica, se estudió anteriormente. Lo contrario también es posible; es decir, un diodo de unión

Más detalles

Mezcla de Cuatro Ondas (FWM), en redes WDM, con cascadas de Amplificadores a Fibra Dopada con Erbio (EDFAs(

Mezcla de Cuatro Ondas (FWM), en redes WDM, con cascadas de Amplificadores a Fibra Dopada con Erbio (EDFAs( Mezcla de Cuatro Ondas (FWM), en redes WDM, con cascadas de Amplificadores a Fibra Dopada con Erbio (EDFAs( EDFAs) Comunicaciones por Fibra Óptica 2006 Presentation_ID.scr 1 Objetivos Estudiar el impacto

Más detalles

UNIDADES RADIOMETRICAS Y FOTOMETRICAS. Electromagnetic_spectrum-es.svg (Imagen SVG, nominalmente pixels, tamaño de archivo: 231 KB)

UNIDADES RADIOMETRICAS Y FOTOMETRICAS. Electromagnetic_spectrum-es.svg (Imagen SVG, nominalmente pixels, tamaño de archivo: 231 KB) OPTOELECTRÓNICA OPTOELECTRÓNICA Tratamiento de la radiación electromagnética en el rango de las frecuencias ópticas y su conversión en señales eléctricas y viceversa. El rango del espectro electromagnético

Más detalles

XIII OLIMPIADA CHILENA DE FISICA 2005 Sociedad Chilena de Física

XIII OLIMPIADA CHILENA DE FISICA 2005 Sociedad Chilena de Física XIII OLIMPIADA CHILENA DE FISICA 2005 Sociedad Chilena de Física PRUEBA EXPERIMENTAL A NOMBRE: RUT: CURSO: NUMERO TOTAL DE PAGINAS ESCRITAS: PUNTAJE TOTAL La constante de Planck de la física cuántica y

Más detalles

Planificaciones Optoelectrónica. Docente responsable: GONZALEZ MARTIN GERMAN. 1 de 6

Planificaciones Optoelectrónica. Docente responsable: GONZALEZ MARTIN GERMAN. 1 de 6 Planificaciones 8647 - Optoelectrónica Docente responsable: GONZALEZ MARTIN GERMAN 1 de 6 OBJETIVOS Proporcionar un conocimiento introductorio a la optoelectrónica de forma que el estudiante pueda comprender

Más detalles

DE UN MEDIDOR DE AC. Existen diversos tipos de medidores que se pueden emplear en medir magnitudes eléctricas alternas. Se pueden clasificar en:

DE UN MEDIDOR DE AC. Existen diversos tipos de medidores que se pueden emplear en medir magnitudes eléctricas alternas. Se pueden clasificar en: PRÁCTICA 1. DISEÑO Y RESPUESTA EN FRECUENCIA 1 Objetivo. DE UN MEDIDOR DE AC Diseñar y construir un voltímetro elemental de corriente alterna utilizando un puente rectificador de media onda y otro de onda

Más detalles

Energía solar fotovoltaica - B

Energía solar fotovoltaica - B Práctica Nº 4 Energía solar fotovoltaica - B OBJETIVO: Comprobar la producción de energía eléctrica a partir de energía solar. FUNDAMENTO TEÓRICO El Sol es nuestra principal fuente de energía. A pesar

Más detalles

Caracterización de Diodos Láser Laser diodes characterization

Caracterización de Diodos Láser Laser diodes characterization Caracterización de Diodos Láser Laser diodes characterization Claudia Sifuentes Gallardo Ma. Auxiliadora Araiza Esquivel Ernesto García Domínguez Gerardo Miramontes de León Sonia Torres Trejo Unidad Académica

Más detalles

1. 1 Introducción General

1. 1 Introducción General CAPÍTULO I 1. 1 Introducción General A través del tiempo y en un entorno cada vez más ávido de conocimiento, el ser humano se ha visto en la necesidad de perfilar nuevas opciones en el terreno de la ciencia

Más detalles

Interferencias y difracción. Propiedades ondulatorias de la luz

Interferencias y difracción. Propiedades ondulatorias de la luz Interferencias y difracción Propiedades ondulatorias de la luz Naturaleza ondulatoria de la luz Interferencias: al combinarse dos ondas hay máximos y mínimos Difracción: debido a la existencia de varias

Más detalles

LA ENERGIA Y MECANICA. 2. Objetivos: b. Determinar la. del. medio de. depende de. Pág. 1 of 5

LA ENERGIA Y MECANICA. 2. Objetivos: b. Determinar la. del. medio de. depende de. Pág. 1 of 5 1. Tema: Operación del sensor óptico analógico difuso (de reflexión directa). 2. Objetivos: a. Aprender la característicaa de la respuesta de un sensor óptico analógico difuso. b. Determinar la curva característica

Más detalles

DIODOS. Área Académica: Licenciatura en Ingeniería Industrial. Profesor(a):Juan Carlos Fernández Ángeles. Periodo: Enero- Junio 2018

DIODOS. Área Académica: Licenciatura en Ingeniería Industrial. Profesor(a):Juan Carlos Fernández Ángeles. Periodo: Enero- Junio 2018 DIODOS Área Académica: Licenciatura en Ingeniería Industrial Profesor(a):Juan Carlos Fernández Ángeles Periodo: Enero- Junio 2018 Qué es un diodo? El diodo es un elemento semiconductor de estado sólido

Más detalles

OPTOELECTRÓNICA I. Veamos inicialmente el comportamiento de la JPN ante la incidencia de fotones.

OPTOELECTRÓNICA I. Veamos inicialmente el comportamiento de la JPN ante la incidencia de fotones. OPTOELECTRÓNICA I DETECTORES DE JUNTURA P-N: Veamos inicialmente el comportamiento de la JPN ante la incidencia de fotones. Queremos que los fotones actúen en la zona de deplexión. Por lo tanto hacemos

Más detalles

1. Identificar los electrodos de un diodo (de Silicio o de Germanio).

1. Identificar los electrodos de un diodo (de Silicio o de Germanio). EL DIODO SEMICONDUCTOR Objetivos 1. Identificar los electrodos de un diodo (de Silicio o de Germanio). 2. Probar el estado de un diodo utilizando un ohmetro. 3. Obtener curvas características de un diodo.

Más detalles

Práctica Nº 7: Red de difracción

Práctica Nº 7: Red de difracción Práctica Nº 7: Red de difracción 1.- INTRODUCCIÓN. INTERFERENCIA o DIFRACCIÓN? Desde el punto de vista físico ambos fenómenos son equivalentes. En general se utiliza el término INTERFERENCIA, para designar

Más detalles

Laboratorio 6 Difracción de la luz

Laboratorio 6 Difracción de la luz Laboratorio 6 Difracción de la luz 6.1 Objetivo 1. Estudiar el patrón de difracción dado por rendijas rectangulares sencillas y dobles, aberturas circulares, y rejillas de difracción. 2. Medir las constantes

Más detalles

LASER DE HELIO-NEON. (Juan Israel Rivas Sánchez)

LASER DE HELIO-NEON. (Juan Israel Rivas Sánchez) LASER DE HELIO-NEON (Juan Israel Rivas Sánchez) El láser de Helio-Neón fue el primer láser de gas construido y actualmente sigue siendo uno de los láseres más útil y frecuentemente utilizado. Esto a pesar

Más detalles

DIODO. Definición: Dispositivo Semiconductor Dos terminales Permite la Circulación de corriente ( I ) en un solo sentido

DIODO. Definición: Dispositivo Semiconductor Dos terminales Permite la Circulación de corriente ( I ) en un solo sentido DIODO Definición: Dispositivo Semiconductor Dos terminales Permite la Circulación de corriente ( I ) en un solo sentido Símbolo y convenciones V - I: V F - - V R I F I R DIODO Ideal vs. Semiconductor DIODO

Más detalles

Introducción a la Optoelectrónica

Introducción a la Optoelectrónica 86.47 66.57 Introducción a la Optoelectrónica Responsables de la materia: Profesor: Dr. Ing. Martín G. González Clase N 7 Hoja de ruta de la clase 7 Eficiencia Cuántica Óptica Bombeo Sistema de Bombeo

Más detalles

2.1 Generalidades del Sistema de Comunicaciones Óptico

2.1 Generalidades del Sistema de Comunicaciones Óptico CAPÍTULO II 2.1 Generalidades del Sistema de Comunicaciones Óptico En un sistema de comunicación óptico, se necesita de una fuente emisora de luz como transmisor, de un canal de transmisión de información,

Más detalles

Laboratorio 1. Efecto fotoeléctrico

Laboratorio 1. Efecto fotoeléctrico Laboratorio 1 Efecto fotoeléctrico 1.1 Objetivos 1. Determinar la constante de Planck h 2. Determinar la dependencia del potencial de frenado respecto de la intensidad de la radiación incidente. 1.2 Preinforme

Más detalles

EL POLIMETRO. CONCEPTOS BASICOS. MEDIDAS

EL POLIMETRO. CONCEPTOS BASICOS. MEDIDAS EL POLIMETRO. CONCEPTOS BASICOS. MEDIDAS CONCEPTOS BASICOS El aparato de medida más utilizado en electricidad y electrónica es el denominado POLÍMETRO, también denominado a veces multímetro o texter. El

Más detalles

3.1 Interferencia óptica

3.1 Interferencia óptica CAPÍTULO III 3. Interferencia óptica La interferencia es un fenómeno óptico que ocurre entre dos o más ondas ópticas que se encuentran en el espacio. Si estás ondas tienen la misma longitud de onda y se

Más detalles

Efecto de los tratamientos térmicos en la circona utilizada como electrolito en las pilas de combustible de óxido sólido. INDICE DEL ANEXO...

Efecto de los tratamientos térmicos en la circona utilizada como electrolito en las pilas de combustible de óxido sólido. INDICE DEL ANEXO... INDICE DEL ANEXO INDICE DEL ANEXO... 80 ANEXO 1... 81 1.1. Diseño del circuito para medición de resistividad eléctrica a partir del método de las 4 puntas.... 81 1.1.1. Objetivo... 81 1.1.2. Introducción...

Más detalles

Última modificación: 1 de agosto de 2010. www.coimbraweb.com

Última modificación: 1 de agosto de 2010. www.coimbraweb.com TRANSMISORES Y RECEPTORES ÓPTICOS Contenido 1.- Sistema óptico básico. 2.- Diodo emisor de luz LED. 3.- Diodo láser. 4.- Modulación óptica. 5.- Detectores de luz. Objetivo.- Al finalizar, el lector será

Más detalles

Caracterización de un diodo LED

Caracterización de un diodo LED Práctica 5 Caracterización de un diodo LED OBJETIVOS Observar el funcionamiento y conocer algunas propiedades del LED, como una de las fuentes utilizadas en sistemas de comunicaciones vía fibra óptica.

Más detalles

ESPECTROSCOPIA DE FLUORESCENCIA, FOSFORESCENCIA Y QUIMIOLUMINISCENCIA MOLECULAR Q.F. ALEX SILVA ARAUJO

ESPECTROSCOPIA DE FLUORESCENCIA, FOSFORESCENCIA Y QUIMIOLUMINISCENCIA MOLECULAR Q.F. ALEX SILVA ARAUJO FOSFORESCENCIA Y QUIMIOLUMINISCENCIA Q.F. ALEX SILVA ARAUJO GENERALIDADES Aquí se considerarán tres tipos de métodos ópticos relacionados entre sí: fluorescencia, fosforescencia y quimioluminiscencia.

Más detalles

TEMA 2 : DISPOSITIVOS Y COMPONENTES ELECTRÓNICOS

TEMA 2 : DISPOSITIVOS Y COMPONENTES ELECTRÓNICOS UNIVERSIDAD DE LEON Departamento de Ingeniería Eléctrica y Electrónica TEMA 2 : DISPOSITIVOS Y COMPONENTES ELECTRÓNICOS Electrónica Básica, Industrial e Informática Luis Ángel Esquibel Tomillo EL DIODO

Más detalles

Copyright The McGraw-Hill Companies, Inc. Queda prohibida su reproducción o visualización sin permiso del editor.

Copyright The McGraw-Hill Companies, Inc. Queda prohibida su reproducción o visualización sin permiso del editor. Electrónica Tema 1 Semiconductores Contenido Consideraciones previas: Fuentes de corriente Teorema de Thevenin Teorema de Norton Conductores y Semiconductores Unión p-n Fundamentos del diodo 2 Fuente de

Más detalles

Tema 8: Física cuántica

Tema 8: Física cuántica Tema 8: Física cuántica 1. Insuficiencia de la física clásica: Emisión del cuerpo negro Espectros atómicos discontinuos Efecto fotoeléctrico 2. Hipótesis de Planck. Cuantización de la energía. Fotón. 3.

Más detalles

SOLUCIÓN: a) Debe calcularse la potencia óptica generada por la fuente, que depende de la corriente inyectada según:

SOLUCIÓN: a) Debe calcularse la potencia óptica generada por la fuente, que depende de la corriente inyectada según: 1. Se pretende diseñar un sistema de comunicaciones ópticas simple NO GUADO entre dos satélites, del tipo M- DD con codificación digital NRZ a la velocidad de 620 Mbps, y separados una distancia de 500

Más detalles

COMUNICACIONES ÓPTICAS (AMPLIFICADORES ÓPTICOS)

COMUNICACIONES ÓPTICAS (AMPLIFICADORES ÓPTICOS) Departamento de Tecnología Fotónica E.T.S.I.Telecomunicación-UPM COMUNICACIONES ÓPTICAS (AMPLIFICADORES ÓPTICOS) Santiago Aguilera Navarro aguilera@tfo.upm.es INTRODUCCIÓN Pin Bombeo Pout G = P P out in

Más detalles

Física de semiconductores. El diodo

Física de semiconductores. El diodo Fundamentos Físicos y Tecnológicos de la Informática Física de semiconductores. El diodo El diodo. Ley del diodo. Curvas características. Modelos eléctricos. Otros tipos de diodos: Zener y LED. Aplicación

Más detalles

Diodo. Materiales Eléctricos. Definición: Símbolo y Convenciones V - I: 10/06/2015

Diodo. Materiales Eléctricos. Definición: Símbolo y Convenciones V - I: 10/06/2015 Materiales Eléctricos Diodo Definición: Dispositivo Semiconductor Dos terminales Permite la Circulación de corriente ( I ) en un solo sentido Símbolo y Convenciones V - I: V F - - V R I F I R 1 Relación

Más detalles

PRACTICA 2: CIRCUITOS DE CORRIENTE CONTINUA

PRACTICA 2: CIRCUITOS DE CORRIENTE CONTINUA Laboratorio de Circuitos/ Electrotecnia PRÁCTICA 2 LABORATORIO DE CIRCUITOS/ELECTROTECNIA PRACTICA 2: CIRCUITOS DE CORRIENTE CONTINUA OBJETIVOS Analizar el funcionamiento de circuitos resistivos conectados

Más detalles

Teniendo en cuenta que si el voltaje se mide en Volts y la corriente en Amperes las unidades de resistencia resultan ser

Teniendo en cuenta que si el voltaje se mide en Volts y la corriente en Amperes las unidades de resistencia resultan ser Ley de Ohm La resistencia se define como la razón entre la caída de tensión, entre los dos extremos de una resistencia, y la corriente que circula por ésta, tal que 1 Teniendo en cuenta que si el voltaje

Más detalles

TEMA 1.3 APLICACIONES DE LOS DIODOS TEMA 1 SEMICONDUCTORES. DIODO. FUNDAMENTOS DE ELECTRÓNICA

TEMA 1.3 APLICACIONES DE LOS DIODOS TEMA 1 SEMICONDUCTORES. DIODO. FUNDAMENTOS DE ELECTRÓNICA TEMA 1.3 APLICACIONES DE LOS DIODOS TEMA 1 SEMICONDUCTORES. DIODO. FUNDAMENTOS DE ELECTRÓNICA 09 de octubre de 2014 TEMA 1.3 APLICACIONES DE LOS DIODOS Rectificador Regulador de tensión Circuitos recortadores

Más detalles

UNIVERSIDAD CATOLICA ANDRES BELLO FACULTAD DE INGENIERIA DEPARTAMENTO DE FÍSICA LABORATORIO DE FÍSICA II TELECOMUNICACIONES OPTICA FISICA

UNIVERSIDAD CATOLICA ANDRES BELLO FACULTAD DE INGENIERIA DEPARTAMENTO DE FÍSICA LABORATORIO DE FÍSICA II TELECOMUNICACIONES OPTICA FISICA UNIVERSIDAD CATOICA ANDRES BEO FACUTAD DE INGENIERIA DEPARTAMENTO DE FÍSICA ABORATORIO DE FÍSICA II TEECOMUNICACIONES OPTICA FISICA Una onda es una perturbación física de algún tipo que se propaga en el

Más detalles

Oscilaciones transversales de una cuerda, 4-8 pequeñas Potencia transportada por las ondas en una 4-8, 4-10

Oscilaciones transversales de una cuerda, 4-8 pequeñas Potencia transportada por las ondas en una 4-8, 4-10 Índice alfabético Tema Ejercicio Dinámica, evolución 1-1, 2-1, 2-3 Oscilaciones 1-2 Periódicas, funciones. 1-2 Armónicas, funciones. 1-2 Armónicas complejas, funciones 1-2 Período T 1-2, 4-4 Frecuencia

Más detalles

La Ley de Ohm establece una relación entre voltaje, V, aplicado a un conductor y corriente, I, circulando a través del mismo.

La Ley de Ohm establece una relación entre voltaje, V, aplicado a un conductor y corriente, I, circulando a través del mismo. FIS-1525 Ley de Ohm Objetivo Estudiar empíricamente la relación existente entre el voltaje aplicado a un conductor y la corriente eléctrica que circula. Probar el cumplimiento de la ley de Ohm para dos

Más detalles

PRÁCTICA NÚMERO 8 EL ESPECTRÓMETRO DE DIFRACCIÓN

PRÁCTICA NÚMERO 8 EL ESPECTRÓMETRO DE DIFRACCIÓN PRÁCTICA NÚMERO 8 EL ESPECTRÓMETRO DE DIFRACCIÓN I. 0bjetivos. 1. Medir el rango de longitudes que detecta el ojo humano. 2. Analizar el espectro de emisión de un gas. II. Material. 1. Espectrómetro de

Más detalles

ELECTRICIDAD DINÁMICA. Profesor Mauricio Hernández F Física 8 Básico

ELECTRICIDAD DINÁMICA. Profesor Mauricio Hernández F Física 8 Básico ELECTRICIDAD DINÁMICA Durante las clases anteriores En qué se diferencia este tipo de electricidad de la que usamos en los electrodomésticos? 1 Electricidad básica http://dpto.educacion.navarra.es/micros/tecnologia/elect.swf

Más detalles

INTEGRANTES (Apellido, nombres) FIRMA SECCION NOTA

INTEGRANTES (Apellido, nombres) FIRMA SECCION NOTA UNIVERSIDAD TECNOLÓGICA DE EL SALVADOR FACULTAD DE INFORMATICA Y CIENCIAS APLICADAS ESCUELA DE CIENCIAS APLICADASDEPARTAMENTO DE MATEMATICA Y CIENCIAS CATEDRA FISICA ASIGNATURA: FUNDAMENTOS DE FISICA APLICADA

Más detalles

Práctica 4. Interferómetro de Michelson

Práctica 4. Interferómetro de Michelson . Interferómetro de Michelson 1. OBJETIVOS Estudiar una de las propiedades ondulatorias de la luz, la interferencia. Aplicar los conocimientos para la medida (interferometría) de longitudes de onda o distancias.

Más detalles

FOTODIODO. (a) (b) Figura 14. (a) Símbolo. (b) Corte y funcionamiento de un fotodiodo de unión p-n.

FOTODIODO. (a) (b) Figura 14. (a) Símbolo. (b) Corte y funcionamiento de un fotodiodo de unión p-n. FOTODIODO Casi para cada tipo de semiconductor de unión existe un dispositivo óptico análogo que responde a la luz en vez (o en conjunción) de a una señal eléctrica. La primera vez que se observó que un

Más detalles

CAPÍTULO 2: CONFIGURACIÓN EXPERIMENTAL

CAPÍTULO 2: CONFIGURACIÓN EXPERIMENTAL CAPÍTULO 2: CONFIGURACIÓN EXPERIMENTAL Los tiempos de respuesta de un dispositivo de emisión de luz son una característica esencial, porque dependiendo de la rapidez con la que funcionen son las aplicaciones

Más detalles

UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN ELECTRÓNICA Y BIOMÉDICA

UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN ELECTRÓNICA Y BIOMÉDICA UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN ELECTRÓNICA Y BIOMÉDICA CICLO: 01-2013 GUIA DE LABORATORIO # 3 Nombre de la Práctica: Optoelectrónica Lugar de Ejecución: Laboratorio

Más detalles

1.3. Mediciones básicas de parámetros ópticos, acústicos y de calor. 1.3.1. Parámetros. 1.3.2. Sensores Ópticos.

1.3. Mediciones básicas de parámetros ópticos, acústicos y de calor. 1.3.1. Parámetros. 1.3.2. Sensores Ópticos. 1.3. Mediciones básicas de parámetros ópticos, acústicos y de calor. 1.3.1. Parámetros. 1.3.2. Sensores Ópticos. En los sensores optoelectrónicos, los componentes fotoeléctricos emisores se utilizan para

Más detalles

HI-TECH AUTOMATIZACION S.A. NIT:

HI-TECH AUTOMATIZACION S.A. NIT: Instrumentos experimentales óptica HI-TECH AUTOMATIZACION S.A. NIT: 900.142.317-3 WWW.HI-TECHAUTOMATIZACION.COM Vea nuestra gama de instrumentos / sistemas experimentales que están especialmente diseñados

Más detalles

Tema 6: DISPOSITIVOS OPTOELECTRÓNICOS

Tema 6: DISPOSITIVOS OPTOELECTRÓNICOS Tema 6: DISPOSITIVOS OPTOELECTRÓNICOS 6.1 Interacción entre los semiconductores y la luz. Absorción de luz con generación luminosa de pares electrón hueco. Generación de luz por recombinación radiativa

Más detalles

EJERCICIO 1 EJERCICIO 2

EJERCICIO 1 EJERCICIO 2 EJERCICIO 1 Se miden 0 Volt. en los terminales del diodo de la fig. siguiente, la tensión de la fuente indica +5 Volt. respecto de masa. Qué está mal en el circuito? EJERCICIO 2 En la fig. siguiente la

Más detalles

Características Específicas de los Mini Multímetros Digitales, MultiPort. Ciclo de Trabajo % mv/v µa/a Ω/MΩ nf/µf Hz/MHz C C %

Características Específicas de los Mini Multímetros Digitales, MultiPort. Ciclo de Trabajo % mv/v µa/a Ω/MΩ nf/µf Hz/MHz C C % Características Generales de los Mini Multímetros Digitales, MultiPort Los Mini Multímetros Digitales MultiPort VentDepot, poseen pantalla LCD doble retroiluminada con dígitos de fácil lectura. Protección

Más detalles