Análisis de estabilidad en circuitos con amplificadores operacionales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Análisis de estabilidad en circuitos con amplificadores operacionales"

Transcripción

1 Capítulo Análisis de estabilidad en circuitos con amplificadores operacionales El objetivo de todo sistema de control consiste en obtener de una determinada planta, G p (s), un cierto comportamiento de acuerdo con un conjunto de requerimientos. Estos pueden ser, por ejemplo: Seguimiento de una referencia sin error Respuestadelaplantaacotadayestable Rechazo a las perturbaciones Para lograr estas características es necesario realimentar dicha planta para forzarla a seguir la referencia y compensar las posibles inestabilidades, mediante un compensador. En la mayoría de los sistemas de control, la red de realimentación H(s) es pasiva, determinando las características de lazo cerrado. Definido H(s) a través de la transferencia de lazo cerrado (T LC ), lo que resta por definir es el compensador G c (s), elcualesel encargado de hacer estable al lazo y cumplir con las especificaciones descriptas anteriormente. El mismo puede ser analógico o digital y ser lineal o no lineal. Cuando se desea diseñar un compensador analógico y lineal, la mejor opción es utilizar un amplificador operacional (A.O.). Por lo tanto es de fundamental importancia abocarse al estudio del A.O., ya que constituye una parte importante del sistema de control. Se realizará un análisis general del A.O., considerándolo como un dispositivo real. El modelo a emplear para el A.O. incluye una impedancia de entrada finita Z i,unaimpedancia de salida no nula Z 0 y un ancho de banda limitado, dado por la transferencia A(ω). La figura. muestra el circuito de partida para el análisis. En cada terminal del A.O. se conecta un cuadripolo, particularmente cuadripolos con parámetros admitancia (Y). Se emplean parámetros admitancia porque es conveniente en el diseño del sistema definir tensiones como entrada y salida del sistema. Por otra parte, el nodo de realimentación (terminal inversor) es más sencillo de estudiar por parámetros Y, ya que quedan

2 2 CAPÍTULO. ANÁLISIS DE ESTABILIDAD EN CIRCUITOS CON AMPLIFICADORES OPERACIONALES Figura.: Modelo general en cuadripolos del A.O. realimentado. tres cuadripolos en paralelo y el equivalente circuital resulta de sumar los parámetros individuales. Esto último es consecuencia de que la tensión del nodo es la misma para los cuadripolos en paralelo. Los parámetros Y responden a las siguientes ecuaciones: I = Y V + Y 2 V 2 I 2 = Y 2 V + Y 22 V 2 donde Y = I V V2 =0 Y 2 = I 2 V V2 =0 Y 2 = I V 2 V =0 Y 22 = I 2 V 2 V2 =0. Análisis del circuito El objetivo ahora, consiste en construir un diagrama en bloques del sistema. Para ello se necesita determinar la ecuación que gobierna la tensión diferencial V d. Obteniendo los equivalentes de Thevenin en los puntos A y B, tal como muestra la figura.2, se obtiene el circuito equivalente de la figura.3:

3 .. ANÁLISIS DEL CIRCUITO 3 Figura.2: Circuito equivalente de entrada del A.O. Figura.3: Circuito equivalente de Thevenin de la entrada. donde ³ V th = Y2N V N +Y 2R V R Y 22N +Y 22R R th = Y 22N +Y 22R V th2 = Y 2P V P R th2 = yademás V R = V 0 V 2N = V 2R Por simple inspección de la figura.3 se obtiene: V d = V 2P V 2N (.) V d = Z i (V th2 V th ) Z i + Y 22N +Y 22R + = F e (V th2 V th ) (.2)

4 4 CAPÍTULO. ANÁLISIS DE ESTABILIDAD EN CIRCUITOS CON AMPLIFICADORES OPERACIONALES donde Z i + Y 22N +Y 22R F e, Z i + F e es una relación de impedancias que en lo sucesivo se llamará factor de entrada. Por diseño, se desea que este factor tienda a la unidad. Por lo tanto se debe cumplir que Z i À Y 22N +Y 22R + Y 22P. Reemplazando V th2 y V th en la (.2) se obtiene: V d = Y 2P V P + µ Y2N V N + Y 2R V 0 Y 22N + Y 22R Z i Z i + Y 22N +Y 22R + (.3) Para continuar con la construcción del diagrama en bloques se necesita conocer la ecuación que rige la tensión de salida V 0. Previo al cálculo se transforma el generador de tensión del A.O. junto con su impedancia de salida en un equivalente Norton. Circuito equivalente Norton de la salida del A.O. Resolviendo el circuito de salida, a partir de la figura.2 y sabiendo que V R = V 0 se deduce que: V 0 = A(ω)Y 0V d Y 2R V 2N Y L + Y 0 + Y R = F s [A(ω)Y 0 V d Y 2R V 2N ] (.4) Análogamente se define un factor de salida F s, /(Y 0 + Y L + Y R ) queenestecaso tiene unidades de impedancia. Para finalizar, sólo resta calcular la tensión V 2N. Del circuito de la figura.2: V 2N = V d + V 2P V 2N = V d V d Z i V P Y 2P V 2N = V d µ + Z i V P Y 2P (.5) Con las ecuaciones (.3), (.4) y (.5) se puede construir el diagrama en bloques completo del sistema de la figura., como muestra la figura.4. Aplicando la regla de Mason [] V 0 = V N ( P todos los caminos desde V N hasta V 0 )+V P ( P todos los caminos desde V N hasta V 0 ) + P lazos cerrados tomados de a uno V 0 = V N (G 2 G 3 G 4 G 5 + G 2 G 3 G 7 G 8 G 5 )+V P ( G G 8 G 5 + G G 3 G 7 G 8 G 5 + G G 3 G 4 G 5 ) +G 3 G 4 G 5 G 6 + G 3 G 7 G 8 G 5 G 6 (.6) y observando la ecuación (.6) se concluye en que la estabilidad del sistema estará dada por +G 3 G 4 G 5 G 6 + G 3 G 7 G 8 G 5 G 6.

5 .2. SIMPLIFICACIONES 5.2 Simplificaciones Figura.4: Diagrama en bloques completo. En general, los bloques G 7 y G 8 complican el cálculo y bajo ciertas circunstancias pueden eliminarse del diagrama. Los bloques G 4 y G 7 G 8 están en paralelo, por lo tanto si el producto G 7 G 8 es menor en el rango de frecuencias de interés que G 4, pueden despreciarse dichas transferencias. Sin embargo también debe tenerse en cuenta el camino a través de G G 8. Para simplificar este camino, es necesario que el aporte de éste sea despreciable a lo aportado por G 4. Despreciando G 7 y G 8 resulta: donde G = G 3 G 4 G 5 H = G 6 V 0 = V N (G 2 G 3 G 4 G 5 )+V P (G G 3 G 4 G 5 ) +G 3 G 4 G 5 G 6 V 0 = G 3 G 4 G 5 (V N G 2 + V P G ) +G 3 G 4 G 5 G 6 V 0 = G (V N G 2 + V P G ) +GH Aquí se observa la gran ventaja del análisis, puesto que se advierte qué esta dentro y qué esta fuera del lazo de control. Suponiendo que GH À µ G 2 G V 0 = V N + V P G 6 G 6 V 0 = Y 2N V N + Y 2P (Y 22N + Y 22R ) V P Y 2R Y 2R

6 6 CAPÍTULO. ANÁLISIS DE ESTABILIDAD EN CIRCUITOS CON AMPLIFICADORES OPERACIONALES.3 Conclusiones. Las impedancias de entrada y salida del A.O. afectan la estabilidad del lazo. 2. La transferencia de lazo cerrado no es siempre /H (bajas frecuencias). 3. La estabilidad esta determinada por A(ω)Y 0 y los cuadripolos N y R (G 4 y G 6, en la figura.4). 4. Conviene diseñar de manera que F e y F s /Y 0. Ejemplo Dado el siguiente circuito obtener el diagrama en bloques del mismo, identificandocadabloque. Se resolverá utilizando el modelo. Para ello, cada cuadripolo esta compuesto por una impedancia Z, obteniéndose los siguientes parámetros admitancia Y = Y 22 =/Z (.7) Y 2 = Y 2 = /Z (.8) por lo tanto el factor de entrada F e queda: Z i F e = = Z i +/R +/R 2 ya que por diseño, las resistencias R y R 2 son mucho menores que la impedancia de entrada. Por su parte el factor de salida F s se calcula como: F s = = Z0 /R L +/Z 0 +/R 2 ya que por diseño, Z 0 R 2 R L. Luego, el resto de los bloques se calcula como: G 4 = A(ω) Z 0 G 7 G 8 = R 2 G 2 = /R = R 2 /R +/R 2 R + R 2 G 3 G 4 G 5 = A(ω)/R 0 R 0 = A(ω) G 6 = /R 2 R = /R +/R 2 R + R 2

7 .3. CONCLUSIONES 7 y el diagrama en bloques obtenido sería el siguiente: La ganancia del A.O., A(ω), es mucho mayor que R 0 /R 2 para el rango de frecuencias en donde el GH del sistema es mayor que uno. Por lo tanto puede eliminarse, ya que no tendrá influencia en la estabilidad del circuito. Finalmente la respuesta a lazo cerrado será: T LC = R 2 R + R 2 A(ω) R 2 R + R 2 R +A(ω) = R 2 = R R +R + R 2 R R 2 Ejemplo 2 Dado el siguiente circuito, obtenga conclusiones sobre la estabilidad del mismo y su respuesta a lazo cerrado. Apartirdelafigura.4 pueden calcularse los diferentes bloques. Los parámetros admitancia para un dipolo ya fueron calculados en el ejemplo anterior, por tanto, utilizando las ecuaciones (.7) y (.8): Y R = Y 22R = sc Y 2R = Y 2R = sc Y N = Y 22N =/R Y 2N = Y 2N = /R Z i Z 0 = R 0

8 8 CAPÍTULO. ANÁLISIS DE ESTABILIDAD EN CIRCUITOS CON AMPLIFICADORES OPERACIONALES Luego, el resto de los bloques se calcula como: G 3 = G 5 = /R 0 + sc = R 0 +scr 0 G 4 = A(ω) R 0 G 7 G 8 = sc G 2 = /R /R + sc = +scr G 4 = A(ω)/R 0 G 6 = sc /R + sc = scr +scr y el diagrama en bloques queda de la siguiente forma: La misma solución puede obtenerse a partir del análisis circuital, el cual se basa en los principios utilizados para la derivación del modelo general. Como primer paso se obtendrá la tensión diferencial a la entrada del operacional mediante el teorema de superposición: v d = v i +scr v d = v 0 scr +scr v d = v i +scr v scr 0 (.9) +scr A continuación se calcula la tensión de salida v 0. En alta frecuencia, v d afecta directamente a v 0, debido a que la impedancia del condensador C es muy baja. Utilizando el principio de superposición:

9 .3. CONCLUSIONES 9 Circuito equivalente para la salida. R 0 //R L v 0 vd = v d R 0 //R L +/sc = v sc (R 0 //R L ) d +sc (R 0 //R L ) RL // sc v 0 vx = v x R 0 + R L // sc = v x R L R 0 + R L +sc (R 0 //R L ) (.0) (.) y combinando ambas ecuaciones v 0 = v 0 vd + v 0 vx sc (R 0 //R L ) v 0 = v d +sc (R 0 //R L ) + v R L x R 0 + R L +sc (R 0 //R L ) (.2) A partir de las ecuaciones (.9) y (.2) se puede obtener el diagrama en bloques mostrado en la siguiente figura. La transferencia a lazo cerrado para bajas frecuencias será: T LC ' +scr +scr scr = scr (.3) tal cual se esperaba.

10 0 CAPÍTULO. ANÁLISIS DE ESTABILIDAD EN CIRCUITOS CON AMPLIFICADORES OPERACIONALES A partir del diagrama en bloques se pueden obtener los diagramas de bode. El sistema es estable para cualquier valor de C. En las cercanías de GH =(punto A en el bode final) el sistema deja de tener ganancia y su repuesta en frecuencia es: T LC = G ( + scr) +GH (.4) T LC = T LC = T LC s = ( + scr) scr 0 +scr 0 + scr 0 scr +scr 0 +scr = ( + scr) scr 0 ( + scr) +sc (R + R 0 ) (.5) scr 0 +sc (R + R 0 ) (.6) R 0 R + R 0 (.7) En la figura se muestra el nuevo diagrama en bloques resultante, para frecuencias superiores a GH =, que es lo que se deduce por simple inspección del circuito. Nótese que la realimentación se transforma en positiva, pero en ningún momento GH supera la unidad, ya que el circuito equivalente es puramente pasivo. En la siguiente figura se muestra el diagrama de bode : Las transferencias de /H y /( + scr) estan desplazadas para mayor claridad del gráfico.

11 .3. CONCLUSIONES

12 2 CAPÍTULO. ANÁLISIS DE ESTABILIDAD EN CIRCUITOS CON AMPLIFICADORES OPERACIONALES

13 Bibliografía [] Benjamin C. Kuo. Sistemas Automáticos de Control. Compañía Editorial Continental S.A., Calz. de Tlalpan Num. 4620, México 22, D.F., 978.

Tecnología Electrónica

Tecnología Electrónica Universidad de Alcalá Departamento de Electrónica Tecnología Electrónica Ejercicios Tema 2: Realimentación y estabilidad Referencias: Problemas propuestos por profesores del Departamento de Electrónica

Más detalles

El amplificador operacional

El amplificador operacional Tema 7 El amplificador operacional Índice 1. Introducción... 1 2. El amplificador diferencial... 2 3. El amplificador operacional... 5 3.1. Configuración inversora... 7 3.2. Configuración no inversora...

Más detalles

Realimentación. Electrónica Analógica II. Bioingeniería

Realimentación. Electrónica Analógica II. Bioingeniería Realimentación Electrónica Analógica II. Bioingeniería Concepto: La realimentación consiste en devolver parte de la salida de un sistema a la entrada. La realimentación es la técnica habitual en los sistemas

Más detalles

Tema 2 El Amplificador Operacional

Tema 2 El Amplificador Operacional CICUITOS ANALÓGICOS (SEGUNDO CUSO) Tema El Amplificador Operacional Sebastián López y José Fco. López Instituto de Microelectrónica Aplicada (IUMA) Universidad de Las Palmas de Gran Canaria 3507 - Las

Más detalles

Se agrupan ambos generadores de corriente, obteniéndose el circuito equivalente de la figura.

Se agrupan ambos generadores de corriente, obteniéndose el circuito equivalente de la figura. EJEMPLO Obtener el circuito equivalente Thevenin del circuito de la figura, mediante transformaciones Thevenin-Norton RESOLUCIÓN: Para agrupar los generadores de tensión V 1 y V 2 se aplica la transformación

Más detalles

Problemas Tema 6. Figura 6.3

Problemas Tema 6. Figura 6.3 Problemas Tema 6 6.1. Se conecta una fuente de voltaje V s =1mV y resistencia interna R s =1MΩ a los terminales de entrada de un amplificador con una ganancia de voltaje en circuito abierto A v0 =10 4,

Más detalles

REPASO DE REDES ELÉCTRICAS

REPASO DE REDES ELÉCTRICAS Conceptos fundamentales REPASO DE REDES ELÉCTRICAS Rama: Cada uno de los componentes de un circuito entre dos terminales Nodo: Unión de tres o más ramas. Se escoge uno como referencia Malla: cualquier

Más detalles

UNIDAD 2: EL AMPLIFICADOR OPERACIONAL - TEORÍA

UNIDAD 2: EL AMPLIFICADOR OPERACIONAL - TEORÍA CURSO: ELECTRÓNICA ANALÓGICA UNIDAD 2: EL AMPLIFICADOR OPERACIONAL PROFESOR: JORGE ANTONIO POLANÍA La electrónica analógica se ha visto enriquecida con la incorporación de un nuevo componente básico: el

Más detalles

El amplificador operacional

El amplificador operacional Tema 8 El amplificador operacional Índice 1. Introducción... 1 2. El amplificador diferencial... 2 3. El amplificador operacional... 4 3.1. Configuración inversora... 5 3.2. Configuración no inversora...

Más detalles

EJERCICIOS DE RESOLUCIÓN DE CIRCUITOS ELÉCTRICOS MEDIANTE LOS TEOREMAS GENERALES.

EJERCICIOS DE RESOLUCIÓN DE CIRCUITOS ELÉCTRICOS MEDIANTE LOS TEOREMAS GENERALES. EJERCICIOS DE RESOLUCIÓN DE CIRCUITOS ELÉCTRICOS MEDIANTE LOS TEOREMAS GENERALES. EJERCICIO. En el circuito de la figura, hallar la corriente que circula por la impedancia Ω. RESOLUCIÓN: MÉTODO DE LAS

Más detalles

Descripción del problema: Características de transferencia del A.O.V.: Ideal: Real:

Descripción del problema: Características de transferencia del A.O.V.: Ideal: Real: Descripción del problema: btención de un modelo canónico extendido del A... de pequeña señal Uso de A... s no compensados internamente ompensación local de A... con redes complejas (en gral. cuadripolos)

Más detalles

Teoría de circuitos Segundo Parcial

Teoría de circuitos Segundo Parcial Teoría de circuitos Segundo Parcial CUE 13 de julio de 2015 Indicaciones: La prueba tiene una duración total de 3 horas. Cada hoja entregada debe indicar nombre, número de C.I., y número de hoja. La hoja

Más detalles

INDICE Prefacio 1. Introducción 2. Conceptos de circuitos 3. Leyes de los circuitos 4. Métodos de análisis

INDICE Prefacio 1. Introducción 2. Conceptos de circuitos 3. Leyes de los circuitos 4. Métodos de análisis INDICE Prefacio XIII 1. Introducción 1.1. magnitudes eléctricas y unidades del S.I. 1 1.2. fuerza, trabajo y potencia 2 1.3. carga y corriente eléctrica 3 1.4. potencial eléctrico 1.5. energía y potencia

Más detalles

TEMA 5 AMPLIFICADORES OPERACIONALES

TEMA 5 AMPLIFICADORES OPERACIONALES TEMA 5 AMPLIFICADORES OPERACIONALES 1 F.V.Fernández-S.Espejo-R.Carmona Área de Electrónica, ESI 5.1 El amplificador operacional de tensiones ideal La operación de un amplificador operacional se describe

Más detalles

Universidad Nacional de Quilmes 1. Teoría de Circuitos. Métodos de resolución de circuitos

Universidad Nacional de Quilmes 1. Teoría de Circuitos. Métodos de resolución de circuitos 1 Teoría de Circuitos Métodos de resolución de circuitos Condición: se aplican a redes bilaterales lineales. El término bilateral se refiere a que no habrá cambios en el comportamiento de la respuesta

Más detalles

COLECCIÓN DE EJERCICIOS TEORÍA DE CIRCUITOS I

COLECCIÓN DE EJERCICIOS TEORÍA DE CIRCUITOS I COLECCÓN DE EJECCOS TEOÍA DE CCUTOS ngeniería de Telecomunicación Centro Politécnico Superior Curso 9 / Aspectos Fundamentales de la Teoría de Circuitos Capítulo Problema.. (*) En cada uno de los dispositivos

Más detalles

TEMA 3. Conceptos de Realimentación

TEMA 3. Conceptos de Realimentación TEMA 3 Conceptos de Realimentación 1 Concepto de Realimentación 2 La realimentación consiste en introducir una porción de la señal de salida a la entrada del sistema. Realimentar negativamente significa

Más detalles

TEMA VII RED DE DOS PUERTOS - CUADRIPOLOS

TEMA VII RED DE DOS PUERTOS - CUADRIPOLOS 7.1. INTRODUCCIÓN. TEMA VII RED DE DOS PUERTOS - CUADRIPOLOS En Temas precedentes se ha puesto el énfasis en el análisis del funcionamiento interno de redes, es decir, el aspecto fundamental del análisis

Más detalles

Principio de Superposición Principio de Superposición

Principio de Superposición Principio de Superposición Principio de Superposición Principio de Superposición Si en un sistema lineal la respuesta a una excitación x k (k=1,2,,n) es una salida y k, la respuesta a una excitación compuesta por una combinación

Más detalles

Instrumental y Dispositivos Electrónicos

Instrumental y Dispositivos Electrónicos F-UNE - DAE - DE- nstrumental y Dispositivos Electrónicos Departamento Académico Electrónica Facultad de ngeniería 2018 DE- DAE - F-UNE nstrumental y Dispositivos Electrónicos Análisis de circuitos eléctricos

Más detalles

INDICE Prologo Capitulo 1. Introducción Capitulo 2. Semiconductores Capitulo 3. Teoría de los diodos Capitulo 4. Circulitos de diodos

INDICE Prologo Capitulo 1. Introducción Capitulo 2. Semiconductores Capitulo 3. Teoría de los diodos Capitulo 4. Circulitos de diodos INDICE Prologo XIII Capitulo 1. Introducción 1-1 los tres tipos de formulas 1 1-2 aproximación 4 1-3 fuentes de tensión 6 1-4 fuentes de corriente 9 1-5 teorema de Thevenin 13 1-6 teorema de Norton 18

Más detalles

Electrónica 1. Práctico 2 Amplificadores operacionales 2

Electrónica 1. Práctico 2 Amplificadores operacionales 2 Electrónica 1 Práctico 2 Amplificadores operacionales 2 Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic

Más detalles

PROGRAMA DE LA ASIGNATURA Curso académico 2011/12

PROGRAMA DE LA ASIGNATURA Curso académico 2011/12 PROGRAMA DE LA ASIGNATURA Curso académico 2011/12 Identificación y características de la asignatura Denominación Electrónica Analógica Código 101658 Créditos (T+P) 6+3 Licenciado en Física Titulación Centro

Más detalles

Contenido. Capítulo 2 Semiconductores 26

Contenido. Capítulo 2 Semiconductores 26 ROMANOS_MALVINO.qxd 20/12/2006 14:40 PÆgina vi Prefacio xi Capítulo 1 Introducción 2 1.1 Las tres clases de fórmulas 1.5 Teorema de Thevenin 1.2 Aproximaciones 1.6 Teorema de Norton 1.3 Fuentes de tensión

Más detalles

Contenido. Circuitos Eléctricos - Dorf. Alfaomega

Contenido. Circuitos Eléctricos - Dorf. Alfaomega CAPÍTULO 1 Variables de circuitos eléctricos... 1 1.1 Introducción... 1 1.2 Circuitos eléctricos y corriente... 1 1.3 Sistemas de unidades... 5 1.4 Voltaje... 7 1.5 Potencia y energía... 7 1.6 Análisis

Más detalles

Introducción al control de fuentes conmutadas.

Introducción al control de fuentes conmutadas. Introducción al control de fuentes conmutadas. En una fuente conmutada ideal la tensión de salida es una función de la tensión de entrada y del valor del ciclo de trabajo definido. En la práctica existirán

Más detalles

GRADO: Grado en Ingeniería Electrónica Industrial y Automática CURSO: 3º CUATRIMESTRE: 1 PLANIFICACIÓN SEMANAL DE LA ASIGNATURA

GRADO: Grado en Ingeniería Electrónica Industrial y Automática CURSO: 3º CUATRIMESTRE: 1 PLANIFICACIÓN SEMANAL DE LA ASIGNATURA SESIÓN SEMANA DENOMINACIÓN ASIGNATURA: Electrónica Analógica 1 GRADO: Grado en Ingeniería Electrónica Industrial y Automática CURSO: 3º CUATRIMESTRE: 1 PLANIFICACIÓN SEMANAL DE LA ASIGNATURA DESCRIPCIÓN

Más detalles

Trabajo práctico: Realimentación

Trabajo práctico: Realimentación Problema 1 En los siguientes casos identifique variables muestreadas y comparadas. Diga cuál conjunto de parámetros es el más adecuado para el estudio de la realimentación y calcule los correspondientes

Más detalles

SILABO. Nombre del curso : Circuitos Analógicos II Facultad : Ingeniería Industrial Sistema e Informática

SILABO. Nombre del curso : Circuitos Analógicos II Facultad : Ingeniería Industrial Sistema e Informática SILABO 1. DATOS GENERALES Nombre del curso : Circuitos Analógicos II Facultad : Ingeniería Industrial Sistema e Informática Carrera : Ingeniería Electrónica Docente : MSC. ING. Fernando López Aramburu

Más detalles

Trabajo práctico: Amplificador Operacional

Trabajo práctico: Amplificador Operacional Problema 1 El amplificador operacional de la figura posee resistencia de entrada infinita, resistencia de salida cero y ganancia de lazo abierto A LA =50. Calcule la ganancia de lazo cerrado Ar=Vo/Vi si

Más detalles

INDICE. XIII Agradecimiento

INDICE. XIII Agradecimiento INDICE Prefacio XIII Agradecimiento XIV Capitulo 1. Introducción 1-2 fuentes de corriente 1 1-3 teorema de Thevenin 2 1-4 teorema de Norton 4 1-5 teorema de Thevenin 6 1-6 detección de averías 7 1-7 aproximaciones

Más detalles

EL42A - Circuitos Electrónicos

EL42A - Circuitos Electrónicos ELA - Circuitos Electrónicos Clase No. 24: Amplificadores Operacionales (1) Patricio Parada pparada@ing.uchile.cl Departamento de Ingeniería Eléctrica Universidad de Chile 3 de Noviembre de 2009 ELA -

Más detalles

TEMA I. Teoría de Circuitos

TEMA I. Teoría de Circuitos TEMA I Teoría de Circuitos Electrónica II 2007 1 1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos:

Más detalles

Trabajo práctico: Amplificador Operacional

Trabajo práctico: Amplificador Operacional Problema 1 El amplificador operacional de la figura posee resistencia de entrada infinita, resistencia de salida cero y ganancia de lazo abierto A LA =50. Calcule la ganancia de lazo cerrado Ar=Vo/Vi si

Más detalles

TEMA 1. Introducción al procesado analógico de señales

TEMA 1. Introducción al procesado analógico de señales 1 ELECTRÓNICA ANALÓGICA 1.1. Introducción Los sistemas electrónicos procesan señales de entrada para obtener a la salida la señal deseada. Nosotros plantearemos el problema según la metodología top-down

Más detalles

INDICE Capitulo 1. Variables de Circuitos Capitulo 2. Elementos de Circuito Capitulo 3. Circuitos Resistivos Simples

INDICE Capitulo 1. Variables de Circuitos Capitulo 2. Elementos de Circuito Capitulo 3. Circuitos Resistivos Simples INDICE Capitulo 1. Variables de Circuitos 1 1.1. Introducción a la ingeniería eléctrica 1 1.2. Sistema internacional de unidades 8 1.3. Introducción al análisis de circuitos 10 1.4. Voltaje y corriente

Más detalles

6. Diagramas de flujo.

6. Diagramas de flujo. Ingeniería de Control I Tema 6 Diagramas de flujo 1 6. Diagramas de flujo. Representación en DF Simplificaciones Fórmula de Mason Formas de Kalman Sistemas MIMO Diagramas de Flujo 2 1 Bibliografía Señales

Más detalles

INDICE Capitulo 1. Magnitudes Electrónicas y Resolución de Circuitos de cc Capitulo 2. Capacidad e Inductancia. Comportamiento en cc

INDICE Capitulo 1. Magnitudes Electrónicas y Resolución de Circuitos de cc Capitulo 2. Capacidad e Inductancia. Comportamiento en cc INDICE Prólogo XI Capitulo 1. Magnitudes Electrónicas y Resolución de Circuitos de 1 cc 1.1. Introducción 1 1.2. Magnitudes más relevantes del circuito electrónico 2 1.2.1. Tensión eléctrica 2 1.2.2. Intensidad

Más detalles

Pontificia Universidad Católica Argentina

Pontificia Universidad Católica Argentina PROGRAMA DE ELECTRÓNICA II 421 PLAN DE ESTUDIOS 2006 - AÑO 2010 Carrera: Ingeniería Electrónica Ubicación en el Plan de Estudios: 4 Año 1 Cuatrimestre Carga Horaria: 8 horas/ semana Objetivos de la materia:

Más detalles

Análisis de estabilidad y diseño de en frecuencia de sistemas realimentados

Análisis de estabilidad y diseño de en frecuencia de sistemas realimentados Análisis de estabilidad y diseño de en frecuencia de sistemas realimentados Análisis de estabilidad y diseño de en frecuencia de sistemas realimentados INTRODUCCIÓN El principal inconveniente de los amplificadores

Más detalles

TEMA 3 Amplificadores Operacionales

TEMA 3 Amplificadores Operacionales TEMA 3 Amplificadores Operacionales Simbología. Características del amplificador operacional ideal. Modelos. Análisis de circuitos con amplificadores operacionales ideales: inversor y no inversor. Aplicaciones

Más detalles

Amplificadores Operacionales

Amplificadores Operacionales Amplificadores Operacionales Configuraciones básicas del amplificador operacional Los amplificadores operacionales se pueden conectar según dos circuitos amplificadores básicos: las configuraciones (1)

Más detalles

FILTROS TEMA 4 ELECTRONICA I- FACET- UNT

FILTROS TEMA 4 ELECTRONICA I- FACET- UNT FILTROS TEMA 4 Introducción En los sistemas eléctricos y electrónicos, se desea manejar información la cual debe estar dentro de ciertas frecuencias. Pero, ciertos grupos de frecuencias se deben permitir

Más detalles

TEMA I. Teoría de Circuitos

TEMA I. Teoría de Circuitos TEMA I Teoría de Circuitos Electrónica II 2009-2010 1 1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos:

Más detalles

2 Electrónica Analógica

2 Electrónica Analógica 2 Electrónica Analógica 2.1 Amplificadores Operacionales. 2.2 Aplicaciones de los Amplificadores Operacionales. 2.3 Filtros. 2.4 Transistores. 26 Resumen Amplificador Inversor Amplificador NO Inversor

Más detalles

INDICE Capitulo 1. Variables del Circuito Eléctrico Capitulo 2. Elementos del Circuito Capitulo 3. Circuitos Resistivos

INDICE Capitulo 1. Variables del Circuito Eléctrico Capitulo 2. Elementos del Circuito Capitulo 3. Circuitos Resistivos INDICE Capitulo 1. Variables del Circuito Eléctrico 1 1.1. Albores de la ciencia eléctrica 2 1.2. Circuitos eléctricos y flujo de corriente 10 1.3. Sistemas de unidades 16 1.4. Voltaje 18 1.5. Potencia

Más detalles

CAPITULO III ANALISIS DE REDES RESISTIVAS.

CAPITULO III ANALISIS DE REDES RESISTIVAS. CAPITULO III ANALISIS DE REDES RESISTIVAS. 3.1.-METODO DE MALLAS Y METODO DE NODOS. El análisis de circuitos eléctricos está vinculado por lo general con la solución de un conjunto de n ecuaciones con

Más detalles

UNIVERSIDAD TECNICA DE ORURO INGENIERIA ELECTRICA ELECTRONICA ELECTRONICA III

UNIVERSIDAD TECNICA DE ORURO INGENIERIA ELECTRICA ELECTRONICA ELECTRONICA III UNIVERSIDAD TECNICA DE ORURO INGENIERIA ELECTRICA ELECTRONICA ELECTRONICA III OBJETIVOS Calcular los componentes de un integrador y diferenciador real e ideal. Determinar la forma de onda del voltaje de

Más detalles

2 Electrónica Analógica TEMA II. Electrónica Analógica

2 Electrónica Analógica TEMA II. Electrónica Analógica TEMA II Electrónica Analógica Electrónica II 2007 1 2 Electrónica Analógica 2.1 Amplificadores Operacionales. 2.2 Aplicaciones de los Amplificadores Operacionales. 2.3 Filtros. 2.4 Transistores. 2 1 2.1

Más detalles

Parcial_2_Curso.2012_2013

Parcial_2_Curso.2012_2013 Parcial_2_Curso.2012_2013 1. La función de transferencia que corresponde al diagrama de Bode de la figura es: a) b) c) d) Ninguna de ellas. w (rad/s) w (rad/s) 2. Dado el circuito de la figura, indique

Más detalles

Contenido. Alfaomega. Circuitos Eléctricos - Dorf. Prefacio xiii

Contenido. Alfaomega. Circuitos Eléctricos - Dorf. Prefacio xiii Prefacio xiii CAPÍTULO 1 Variables de circuitos eléctricos... 1 1.1 Introducción... 1 1.2 Circuitos eléctricos y corriente... 1 1.3 Sistemas de unidades... 5 1.4 Voltaje... 7 1.5 Potencia y energía...

Más detalles

Consideraciones a tener en cuenta para el calculo de la ganancia de lazo abierto en sistemas eléctricos lineales realimentados

Consideraciones a tener en cuenta para el calculo de la ganancia de lazo abierto en sistemas eléctricos lineales realimentados Consideraciones a tener en cuenta para el calculo de la ganancia de lazo abierto en sistemas eléctricos lineales realimentados Sistemas Lineales 2 2 do semestre 2009 Resumen Las presentes notas pretenden

Más detalles

Práctica #2 Amplificador Diferencial BJT y FET

Práctica #2 Amplificador Diferencial BJT y FET Universidad de San Carlos de Guatemala Facultad de Ingeniería Escuela de Mecánica Eléctrica Laboratorio de Electrónica Electrónica 2 Vacaciones diciembre 2016 Práctica #2 Amplificador Diferencial BJT y

Más detalles

Teoremas y métodos generales en el cálculo de circuitos de corriente alterna

Teoremas y métodos generales en el cálculo de circuitos de corriente alterna Teoremas y métodos generales en el cálculo de circuitos de corriente alterna Objetivos 1. Aplicar los teoremas y métodos generales de análisis de circuitos eléctricos, en la solución de circuitos de corriente

Más detalles

ANÁLISIS DE CIRCUITOS. 1º Ingeniería en Telecomunicación 4ª Relación de problemas

ANÁLISIS DE CIRCUITOS. 1º Ingeniería en Telecomunicación 4ª Relación de problemas ANÁLISIS DE IRUITOS 1º Ingeniería en Telecomunicación 4ª Relación de problemas 1. alcule la impedancia equivalente de las asociaciones de la figura, para una frecuencia de 1 khz.. 2. Dado el circuito de

Más detalles

TEMA 4.1 OPAMP TEMA 4 AMPLIFICADOR OPERACIONAL FUNDAMENTOS DE ELECTRÓNICA

TEMA 4.1 OPAMP TEMA 4 AMPLIFICADOR OPERACIONAL FUNDAMENTOS DE ELECTRÓNICA TEMA 4.1 OPAMP TEMA 4 AMPLIFICADOR OPERACIONAL FUNDAMENTOS DE ELECTRÓNICA 20 de marzo de 2015 TEMA 4.1 OPAMP Introducción Funcionamiento ideal Regiones de operación Lazo abierto Lazo cerrado TEMA 4.1 OPAMP

Más detalles

A. AMPLIFICADOR OPERACIONAL CON REALIMENTACION NEGATIVA. Para el sistema con realimentación negativa de la figura se pide:

A. AMPLIFICADOR OPERACIONAL CON REALIMENTACION NEGATIVA. Para el sistema con realimentación negativa de la figura se pide: 1/12 Ejercicio N 1 A. AMPLIFICADOR OPERACIONAL CON REALIMENTACION NEGATIVA Para el sistema con realimentación negativa de la figura se pide: a. Hallar A F = So / Si y Se / Si en función de A OL y β. b.

Más detalles

Tema IV: Cuadripolos

Tema IV: Cuadripolos Tema IV: Cuadripolos Conceptos básicos... 8 Clasificación general de cuadripolos... 8 Parámetros característicos... 83 Reciprocidad y simetría... 83 Obtención de los parámetros característicos... 84 Inserción

Más detalles

EXAMEN DE ELECTRÓNICA ANALÓGICA.- CONVOCATORIA º CURSO DE INGENIERÍA TÉCNICA EN ELECTRÓNICA INDUSTRIAL

EXAMEN DE ELECTRÓNICA ANALÓGICA.- CONVOCATORIA º CURSO DE INGENIERÍA TÉCNICA EN ELECTRÓNICA INDUSTRIAL 1 a PARTE DEL EXAMEN: PREGUNTAS DE TEORÍA: 1.- AMPLIFICADORES OPERACIONALES. Efectos de 2º orden 1.1) Respuesta frecuencial del amplificador operacional en lazo abierto, considerándolo como un sistema

Más detalles

Temario. Tema 5. El amplificador operacional real OBJETIVOS DEL TEMA. Introducción

Temario. Tema 5. El amplificador operacional real OBJETIVOS DEL TEMA. Introducción Temario Tema Teo. Pro. 1. Amplificación 2h 1h 2. Realimentación 2.5h 1.5h 3. Amplificador operacional (AO) y sus etapas lineales 7h 4h 4. Comparadores y generadores de onda 7h 4h 5. El amplificador operacional

Más detalles

Tema 07: Acondicionamiento. M. en C. Edgardo Adrián Franco Martínez edgardoadrianfrancom

Tema 07: Acondicionamiento. M. en C. Edgardo Adrián Franco Martínez edgardoadrianfrancom Tema 07: Acondicionamiento M. en C. Edgardo Adrián Franco Martínez http://www.eafranco.com edfrancom@ipn.mx @edfrancom edgardoadrianfrancom 1 Contenido Acondicionamiento de una señal Caracterización del

Más detalles

Problema 1 (60 minutos - 5 puntos)

Problema 1 (60 minutos - 5 puntos) Amplitude Imaginary Axis EXAMEN DE JULIO DE REGULACIÓN AUTOMÁTICA (13/14) Problema 1 (6 minutos - 5 puntos) El control de temperatura de la planta Peltier de la asignatura es realizado mediante un sistema

Más detalles

SIMULACIONES INTERACTIVAS DE FUNDAMENTOS DE CIRCUITOS

SIMULACIONES INTERACTIVAS DE FUNDAMENTOS DE CIRCUITOS SIMULACIONES INTERACTIVAS DE FUNDAMENTOS DE CIRCUITOS ANTONIO JOSE SALAZAR GOMEZ UNIVERSIDAD DE LOS ANDES FACULTAD DE INGENIERIA DEPARTAMENTO DE INGENIERIA ELECTRICA Y ELECTRONICA TABLA DE CONTENIDO 1.

Más detalles

Pruebas de Acceso a la Universidad. Recomendaciones sobre los contenidos del examen de las pruebas de acceso, y criterios de corrección de los mismos.

Pruebas de Acceso a la Universidad. Recomendaciones sobre los contenidos del examen de las pruebas de acceso, y criterios de corrección de los mismos. Pruebas de Acceso a la Universidad Recomendaciones sobre los contenidos del examen de las pruebas de acceso, y criterios de corrección de los mismos. Materia: Tecnología Industrial II 1. Recomendaciones

Más detalles

UNIVERSIDAD RICARDO PALMA FACULTAD DE INGENIERÍA ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA ELECTRONICA

UNIVERSIDAD RICARDO PALMA FACULTAD DE INGENIERÍA ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA ELECTRONICA UNIVERSIDAD RICARDO PALMA FACULTAD DE INGENIERÍA ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA ELECTRONICA PLAN DE ESTUDIOS 2006-II SÍLABO 1.- DATOS ADMINISTRATIVOS: Curso : CIRCUITOS ELECTRÓNICOS II Código

Más detalles

uco.es/grados GUÍA DOCENTE DENOMINACIÓN DE LA ASIGNATURA DATOS DEL PROFESORADO REQUISITOS Y RECOMENDACIONES COMPETENCIAS

uco.es/grados GUÍA DOCENTE DENOMINACIÓN DE LA ASIGNATURA DATOS DEL PROFESORADO REQUISITOS Y RECOMENDACIONES COMPETENCIAS Curso 17/18 DENOMINACIÓN DE LA ASIGNATURA Denominación: Código: 1 Plan de estudios: GRADO DE FÍSICA Curso: 3 Denominación del módulo al que pertenece: ELECTROMAGNETISMO Materia: CIRCUITOS Carácter: OBLIGATORIA

Más detalles

Módulo 4 MÉTODOS DE RESOLUCIÓN DE CIRCUITOS EN CORRIENTE ALTERNA

Módulo 4 MÉTODOS DE RESOLUCIÓN DE CIRCUITOS EN CORRIENTE ALTERNA E.E.S.T. 8 Módulo 4 MÉTODOS DE RESOLUCIÓN DE CIRCUITOS EN CORRIENTE ALTERNA Ing. Rodríguez, Diego E.E.S.T. 8 INTRODUCCIO N Se entiende por resolver un circuito eléctrico el calcular sus corrientes de rama

Más detalles

Ejemplos del tema I: = C.

Ejemplos del tema I: = C. Ejemplos del tema I: I.1 Por un medio conductor circula una corriente dada por : i(t)=10 sen(πt/2) amperios. alcular la carga total transferida y la corriente media entre t=0 s y t=6 s. I.2 Si la corriente

Más detalles

Osciladores Senoidales. Electrónica Analógica II. Bioingeniería

Osciladores Senoidales. Electrónica Analógica II. Bioingeniería Osciladores Senoidales Electrónica Analógica II. Bioingeniería Definición Los osciladores senoidales son dispositivos electrónicos capaces de generar una tensión senoidal sin necesidad de aplicar una señal

Más detalles

AMPLIFICADORES OPERACIONALES. Un Amplificador operacional es un dispositivo con dos puertas de entrada y una de salida, que se caracteriza por tener:

AMPLIFICADORES OPERACIONALES. Un Amplificador operacional es un dispositivo con dos puertas de entrada y una de salida, que se caracteriza por tener: AMPLIFICADORES OPERACIONALES Modelo Un Amplificador operacional es un dispositivo con dos puertas de entrada y una de salida, que se caracteriza por tener: 1. Una impedancia de entrada muy elevada en cada

Más detalles

TCI - Teoría de Circuitos

TCI - Teoría de Circuitos Unidad responsable: 330 - EPSEM - Escuela Politécnica Superior de Ingeniería de Manresa Unidad que imparte: 750 - EMIT - Departamento de Ingeniería Minera, Industrial y TIC Curso: 2016 Titulación: Créditos

Más detalles

CONTROL ANALÓGICO I. MODELADO MATEMÁTICOS DE SISTEMAS DE CONTROL Unidad II

CONTROL ANALÓGICO I. MODELADO MATEMÁTICOS DE SISTEMAS DE CONTROL Unidad II CONTROL ANALÓGICO I MODELADO MATEMÁTICOS DE SISTEMAS DE CONTROL Unidad II Modelado de sistemas Con la finalidad de diseñar y analizar el comportamiento dinámico de un sistema físico, es necesario obtener

Más detalles

INSTRUMENTACION INDUSTRIAL Y ELECTROTENIA

INSTRUMENTACION INDUSTRIAL Y ELECTROTENIA Programa de: Hoja 1 de 5. UNIVERSIDAD NACIONAL DE CÓRDOBA FACULTAD DE CIENCIAS EXACTAS F. Y N. REPÚBLICA ARGENTINA INSTRUMENTACION INDUSTRIAL Y ELECTROTENIA Código: Carrera: Ingeniería Química Plan: 2004

Más detalles

TEST. EXAMEN DE CIRCUITOS 22 de junio de 2000 NOMBRE: 1ª PREGUNTA RESPUESTA 2ª PREGUNTA RESPUESTA 3ª PREGUNTA RESPUESTA

TEST. EXAMEN DE CIRCUITOS 22 de junio de 2000 NOMBRE: 1ª PREGUNTA RESPUESTA 2ª PREGUNTA RESPUESTA 3ª PREGUNTA RESPUESTA NOMBRE: TEST 1ª PREGUNTA RESPUESTA Una capacidad C y una impedancia Z están en serie. Las tensiones en C, en Z y en el conjunto en serie tienen igual módulo. La impedancia Z tiene que ser: A. Impedancia

Más detalles

Electrónica Analógica 1

Electrónica Analógica 1 Trabajo Práctico 4: El transistor bipolar como amplificador. Modelo equivalente de pequeña señal. Parámetros híbridos. Configuraciones multietapa. Análisis en pequeña señal: método de trabajo La figura

Más detalles

BLOQUES BÁSICOS ACTIVOS

BLOQUES BÁSICOS ACTIVOS TEMA 0 Labels E: 0ge Labels F: 0 Labels L: 0 Labels T: 0 BLOQUES BÁSICOS ACTIVOS 0. Introducción Los A.O. se utilizan con tres propósitos: bien amplificar señales, bien sumar señales, o bien simular el

Más detalles

Tema 6.-AMPLIFICADORES OPERACIONALES

Tema 6.-AMPLIFICADORES OPERACIONALES Tema 6.-AMPLIFICADORES OPERACIONALES INTRODUCCION.- El concepto original del AO (amplificador operacional) procede del campo de los computadores analógicos, en los que comenzaron a usarse técnicas operacionales

Más detalles

DISEÑO DE UN SISTEMA DE AMPLIFICACIÓN Y ACONDICIONAMIENTO DE SEÑALES ELECTROENCEFALOGRAFÍAS

DISEÑO DE UN SISTEMA DE AMPLIFICACIÓN Y ACONDICIONAMIENTO DE SEÑALES ELECTROENCEFALOGRAFÍAS ETSID DISEÑO DE UN SISTEMA DE AMPLIFICACIÓN Y ACONDICIONAMIENTO DE SEÑALES ELECTROENCEFALOGRAFÍAS Trabajo Nº 11 Morera Romera, Rubén (grupo 222) Rabadán Mayordomo, Sara (grupo 223) Carrió García, Pablo

Más detalles

EC1282 LABORATORIO DE CIRCUITOS PRELABORATORIO Nº 7 PRÁCTICA Nº 9 APLICACIONES DEL AMPLIFICADOR OPERACIONAL. Seguidor de voltaje

EC1282 LABORATORIO DE CIRCUITOS PRELABORATORIO Nº 7 PRÁCTICA Nº 9 APLICACIONES DEL AMPLIFICADOR OPERACIONAL. Seguidor de voltaje EC1282 LABORATORIO DE CIRCUITOS PRELABORATORIO Nº 7 PRÁCTICA Nº 9 APLICACIONES DEL AMPLIFICADOR OPERACIONAL Amplificador no inversor Amplificador diferencial básico Seguidor de voltaje CONCEPTOS TEÓRICOS

Más detalles

2.3 Filtros. 2 Electrónica Analógica TEMA II. Electrónica Analógica. Transformada de Laplace. Transformada de Laplace. Transformada inversa

2.3 Filtros. 2 Electrónica Analógica TEMA II. Electrónica Analógica. Transformada de Laplace. Transformada de Laplace. Transformada inversa TEMA II Electrónica Analógica 2.3 Filtros -Transformada de Laplace. -Teoremas valor inicial y valor final. -Resistencia, condensador, inductor. -Función de transferencia -Diagramas de Bode -Filtros pasivos.

Más detalles

DIE UPM. Se dispone de una etapa amplificadora conectada a una resistencia de carga R L de valor 1KΩ en paralelo con un condensador C L.

DIE UPM. Se dispone de una etapa amplificadora conectada a una resistencia de carga R L de valor 1KΩ en paralelo con un condensador C L. UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES UPM DIE DEPARTAMENTO DE AUTOMÁTICA, INGENIERÍA ELECTRÓNICA E INFORMÁTICA INDUSTRIAL DIVISIÓN DE INGENIERÍA ELECTRÓNICA

Más detalles

INDICE Capítulo 1. Variables del Circuito Eléctrico Capítulo 2. Elementos de Circuitos Capítulo 3. Circuitos Resistivos

INDICE Capítulo 1. Variables del Circuito Eléctrico Capítulo 2. Elementos de Circuitos Capítulo 3. Circuitos Resistivos INDICE Capítulo 1. Variables del Circuito Eléctrico 1 Introducción 1 1.1. Reto de diseño: Controlador de una válvula para tobera 2 1.2. Albores de la ciencia eléctrica 2 1.3. Circuitos eléctricos y flujo

Más detalles

AC - Análisis de Circuitos

AC - Análisis de Circuitos Unidad responsable: Unidad que imparte: Curso: Titulación: Créditos ECTS: 2017 330 - EPSEM - Escuela Politécnica Superior de Ingeniería de Manresa 750 - EMIT - Departamento de Ingeniería Minera, Industrial

Más detalles

Tema 7. Amplificacio n. Índice. 1. Introducción

Tema 7. Amplificacio n. Índice. 1. Introducción Tema 7 Amplificacio n Índice 1. Introducción... 1 2. Conceptos fundamentales de amplificación... 2 2.1. Decibelios y unidades naturales... 2 2.2. Modelado de la fuente de señal y la carga... 3 3. Circuito

Más detalles

Circuitos. Métodos de Análisis Marzo Plantear el método de las nudos en el circuito de la Figura y determinar todas las magnitudes del circuito.

Circuitos. Métodos de Análisis Marzo Plantear el método de las nudos en el circuito de la Figura y determinar todas las magnitudes del circuito. Circuitos. Métodos de Análisis Marzo 003 POBLEMA 3.1 Plantear el método de las mallas en el circuito de la Figura y determinar todas las magnitudes del circuito ( tensiones en nudos y corrientes en ramas

Más detalles

INSTITUTO DE FORMACIÓN DOCENTE CONTINUA VILLA MERCEDES

INSTITUTO DE FORMACIÓN DOCENTE CONTINUA VILLA MERCEDES PROFESOR: ING. Juan Omar IBAÑEZ ÁREA: TECNOLOGÍA CARRERA: PROFESORADO EN EDUCACIÓN TECNOLÓGICA ESPACIO CURRICULAR: ELECTRICIDAD Y ELECTRÓNICA INSTITUTO DE FORMACIÓN DOCENTE CONTINUA VILLA MERCEDES PROGRAMA

Más detalles

Aula Virtual Análisis de Circuitos D.C. Facultad Tecnológica Universidad Distrital Francisco José de Caldas.

Aula Virtual Análisis de Circuitos D.C. Facultad Tecnológica Universidad Distrital Francisco José de Caldas. http:///wpmu/gispud/ 3.7 EQUIVALENTE THEVENIN Y NORTON Ejercicio 52. Equivalente Thévenin y Norton. a) Determine el equivalente Thévenin visto desde los terminales a y b. Circuito 162. Equivalente Thévenin

Más detalles

GRADO: Grado de Ingeniería de Sistemas de Comunicaciones CURSO: 2 CUATRIMESTRE: 2 PLANIFICACIÓN SEMANAL DE LA ASIGNATURA

GRADO: Grado de Ingeniería de Sistemas de Comunicaciones CURSO: 2 CUATRIMESTRE: 2 PLANIFICACIÓN SEMANAL DE LA ASIGNATURA SESIÓN SEMANA DENOMINACIÓN ASIGNATURA: Análisis y Diseño de Circuitos GRADO: Grado de Ingeniería de Sistemas de Comunicaciones CURSO: 2 CUATRIMESTRE: 2 PLANIFICACIÓN SEMANAL DE LA ASIGNATURA DESCRIPCIÓN

Más detalles

Unidad I Análisis de Sistemas Realimentados

Unidad I Análisis de Sistemas Realimentados Prof. Gerardo Torres - gerardotorres@ula.ve - Cubículo 003 Departamento de Circuitos y Medidas de la Escuela de Ingeniería Eléctrica de la Universidad de Los Andes Unidad I Análisis de Sistemas Realimentados

Más detalles

Prefacio. 1 Sistemas de control

Prefacio. 1 Sistemas de control INGENIERIA DE CONTROL por BOLTON Editorial Marcombo Prefacio 1 Sistemas de control Sistemas Modelos Sistemas en lazo abierto y cerrado Elementos básicos de un sistema en lazo abierto Elementos básicos

Más detalles

Tema: Amplificador de Instrumentación

Tema: Amplificador de Instrumentación Instrumentación Industrial. Guía 1 1 Facultad: Ingeniería Escuela: Electrónica Asignatura: Instrumentación Industrial Lugar de ejecución: Instrumentación y Control (Edificio 3, 2da planta) Tema: Amplificador

Más detalles

PLANIFICACIÓN SEMANAL DE LA ASIGNATURA

PLANIFICACIÓN SEMANAL DE LA ASIGNATURA DENOMINACIÓN ASIGNATURA: Análisis y Diseño de Circuitos GRADO: Grado de Ingeniería en Tecnologías de Telecomunicación CURSO: 2 CUATRIMESTRE: 2 PLANIFICACIÓN SEMANAL DE LA ASIGNATURA SEMANA SESIÓN DESCRIPCIÓN

Más detalles

Sistema de Medida de Respuesta en Frecuencia de Circuitos Analógicos

Sistema de Medida de Respuesta en Frecuencia de Circuitos Analógicos ! " # $ % & " ' ( ) * +, -. / 0 1. / 2 -. 3 -. / 0 4 5 6. 2 7 8 / 3 5 9 5 : 5. 5 ; 8 2 < 8. 9 5 : =. >. 2?. 5 * * 8 7 + 5.? 5 *. / *, 9 5 : 5. 5 ; 8 2 < 8. 9 5 + * 8 * ) * 9 5 : 5 8 @. A 2 B / * 8 /..

Más detalles

Asignatura: ANÁLISIS DE CIRCUITOS I. Horas/Semana:3 Teoría + 2 Laboratorio. Objetivos

Asignatura: ANÁLISIS DE CIRCUITOS I. Horas/Semana:3 Teoría + 2 Laboratorio. Objetivos Asignatura: ANÁLISIS DE CIRCUITOS I Curso académico: 2010/2011 Código: 590000530 Créditos: 7.5 Curso: 1 Horas/Semana:3 Teoría + 2 Laboratorio Departamento: ICS Objetivos? Tipo de asignatura: Troncal (Ingeniero

Más detalles

GRADO: INGENIERÍA ELECTRÓNICA INDUSTRIAL Y AUTOMÁTICA CURSO: 2º CUATRIMESTRE: 2º

GRADO: INGENIERÍA ELECTRÓNICA INDUSTRIAL Y AUTOMÁTICA CURSO: 2º CUATRIMESTRE: 2º SESIÓN SEMANA DENOMINACIÓN ASIGNATURA: FUNDAMENTOS DE INGENIERÍA ELECTRÓNICA GRADO: INGENIERÍA ELECTRÓNICA INDUSTRIAL Y AUTOMÁTICA CURSO: 2º CUATRIMESTRE: 2º La asignatura tiene 29 sesiones que se distribuyen

Más detalles

ANX-PR/CL/ GUÍA DE APRENDIZAJE. ASIGNATURA Electrotecnia II. CURSO ACADÉMICO - SEMESTRE Primer semestre

ANX-PR/CL/ GUÍA DE APRENDIZAJE. ASIGNATURA Electrotecnia II. CURSO ACADÉMICO - SEMESTRE Primer semestre ANX-PR/CL/001-01 GUÍA DE APRENDIZAJE ASIGNATURA Electrotecnia II CURSO ACADÉMICO - SEMESTRE 2016-17 - Primer semestre GA_05TI_55000204_1S_2016-17 Datos Descriptivos Nombre de la Asignatura Titulación Centro

Más detalles

GRADO: INGENIERÍA ELECTRÓNICA INDUSTRIAL Y AUTOMÁTICA CURSO: 2º CUATRIMESTRE: 2º

GRADO: INGENIERÍA ELECTRÓNICA INDUSTRIAL Y AUTOMÁTICA CURSO: 2º CUATRIMESTRE: 2º SESIÓN SEMANA DENOMINACIÓN ASIGNATURA: FUNDAMENTOS DE INGENIERÍA ELECTRÓNICA GRADO: INGENIERÍA ELECTRÓNICA INDUSTRIAL Y AUTOMÁTICA CURSO: 2º CUATRIMESTRE: 2º La asignatura tiene 29 sesiones que se distribuyen

Más detalles

GRADO: INGENIERÍA ELECTRÓNICA INDUSTRIAL Y AUTOMÁTICA CURSO: 2º CUATRIMESTRE: 2º

GRADO: INGENIERÍA ELECTRÓNICA INDUSTRIAL Y AUTOMÁTICA CURSO: 2º CUATRIMESTRE: 2º SESIÓN SEMANA DENOMINACIÓN ASIGNATURA: FUNDAMENTOS DE INGENIERÍA ELECTRÓNICA GRADO: INGENIERÍA ELECTRÓNICA INDUSTRIAL Y AUTOMÁTICA CURSO: 2º CUATRIMESTRE: 2º La asignatura tiene 29 sesiones que se distribuyen

Más detalles