Tecnologías de Control
|
|
|
- Lorenzo Sánchez Herrera
- hace 8 años
- Vistas:
Transcripción
1 Introducción al modelado de Sistemas físicos Tecnologías de Control 5º ELEC Cód M a r t í n C r e s p o C l a u d i a P e n d i n o Dpto. de Electrotécnia
2 1. Introducción El control automático ha jugado un papel vital en el avance de la ciencia y de la ingeniería. Además de su extrema importancia en vehículos espaciales, sistemas de piloto automático de aeronaves, sistemas robóticos y otros, el control automático se ha vuelto parte integral e importante de los procesos industriales y de manufactura modernos. Resulta esencial en operaciones industriales como el control de presión, temperatura, humedad y viscosidad, y ujo en las industrias de transformación. Como los avances en la teoría y práctica del control automático brindan medios para lograr el funcionamiento óptimo de sistemas dinámicos, mejorar productividad, liberarse de la monotonía de muchas operaciones manuales rutinarias y repetitivas, y otras ventajas, la mayoría de los ingenieros y cientícos deben poseer un buen conocimiento en ese campo. Quizá la cualidad más característica de la ingeniería de control sea la oportunidad de controlar máquinas y procesos industriales y económicos en benecio de la sociedad. Deniciones: Variable controlada: Es la cantidad o condición que se mide y controla. Variable manipulada: Es la cantidad o condición modicada por el controlador. Normalmente es la salida del sistema. Control: Signica medir el valor de la variable controlada del sistema, y aplicar al sistema la variable manipulada para corregir o limitar la desviación del valor medido, respecto al valor deseado. Planta: Una planta ó equipo es un conjunto de piezas funcionando juntas, para lograr un determinado objetivo. Aquí llamaremos planta a un objeto cualquiera físico que ha de ser controlado. Proceso: Cualquier operación que se vaya a controlar: procesos químicos, económicos biológicos. Sistema: Un sistema es una combinación de componentes que actúan conjuntamente y emplean un determinado objetivo. Perturbación: Una perturbación tiende a afectar el valor de la salida de un sistema. Si se genera dentro del sistema se denomina interna, mientras que si se genera fuera del sistema constituye una entrada. Control de realimentación: Este control tiende a reducir la diferencia entre la salida y la entrada de referencia de un sistema. Perturbaciones no previsibles. Sistema de control realimentado: Un sistema de control real es aquel que tiende a mantener una relación preestablecida entre la salida y la entrada de referencia, comparando ambas y utilizando la diferencia (E) como parámetro de control. Servomecanismo: Un servomecanismo es un sistema de control realimentado en el cual la salida es alguna posición, velocidad o aceleración mecánica Control a lazo cerrado y lazo abierto Lazo cerrado: Un sistema de control de lazo cerrado es aquel en el que la salida tiene efecto directo sobre la acción de control. La señal de error actuante es la diferencia entre la señal de entrada y la realimentación (puede ser salida).entra del detector o control de manera de reducir el error y llevar la salida al valor deseado. El lazo cerrado, entonces es el uso de la realimentación para reducir el error del sistema. POLITECNICO 1
3 Figura 1: Diagrama de bloques de un sistema de control a lazo cerrado. Ejemplos de sistemas a con control a lazo cerrado son el control de temperatura (calefacción hogareña) donde la realimentación puede ser manual o automática. Lazo abierto: Los sistemas de control de lazo abierto son sistemas en los que la salida no tiene efecto sobre la acción de control, como se puede apreciar en la gura 2. Aquí la salida no se mide ni se realimenta para compararla con la entrada. Ejemplo de un sistema típico a lazo abierto es el lava-ropa: aquí el manejo, el lavado y el enjuague en la máquina se realizan en una base de tiempos, la máquina no mide la salida (la limpieza de la ropa), o sea, no se compara la salida con la referencia. Figura 2: Diagrama de bloques de un sistema de control a lazo abierto. Comparación entre los sistemas de control de lazo abierto y lazo cerrado: Lazo cerrado: El uso de la realimentación hace que su respuesta sea insensible a las perturbaciones externas y variaciones internas de parámetros del sistema. (Se utilizan componentes más económicos) Lazo abierto: Se utilizan en sistemas donde las entradas son conocidas previamente y en los que no hay perturbaciones. Normalmente se opta por una combinación de controles de lazo abierto y cerrado. Requerimiento de proyecto de sistema de control: 1- Cualquier sistema de control debe ser estable. La velocidad de repuesta debe ser razonablemente rápida y debe presentar amortiguamiento razonable. 2- Un sistema de control debe poder reducir a cero o a un valor pequeño, los errores. (Diferencia entre la salida y la entrada). 2. Modelado de sistemas Los modelos matemáticos constituyen hoy día un medio de trabajo imprescindible para el especialista en técnica de control de procesos. Es posible realizar un modelo del proceso a regular, de su entorno y de sus leyes de control. No existe un único modelo, sino una serie de modelos. Los modelos más sencillos investigan a priori el comportamiento, los más complejos reproducen el comportamiento del sistema real con máxima delidad. Luego existe una solución de compromiso entre elegir el modelo más sencillo, que implica una simplicación excesiva, con el riesgo de fracaso técnico y el modelo más complejo, que signica una complicación inadecuada, con el riesgo de fracaso económico. 2 POLITECNICO
4 2.1. Modelos matemáticos Para diseñar el modelo de un sistema se debe empezar a partir de una predicción de su funcionamiento antes que el sistema pueda diseñarse en detalle. La predicción se basa en una descripción matemática de las características dinámicas del sistema. A esta descripción matemática se la llama modelo matemático. Normalmente el modelo matemático se trata de una serie de ecuaciones diferenciales que describen el comportamiento del sistema (modelo teórico). Sistemas lineales y no lineales: Sistema Lineal: En este caso las ecuaciones que describen el modelo son lineales, se les aplica el principio de superposición (ante dos entradas la salida es la suma de las respuestas individuales). Sistema No lineal: No se aplica el principio de superposición. Existe dicultad matemática, normalmente se los aproxima a modelos matemáticos lineales. Sistemas dinámicos y estáticos: Sistema Dinámico: Si su salida en el presente depende de una entrada en el pasado. Sistema Estático: Su salida en curso depende de la entrada en curso. En este caso la salida no cambia si la entrada no cambia. En el dinámico la salida cambia con el tiempo cuando no está en equilibrio Elaboración de modelos Al aplicar las leyes físicas a un modelo, es posible desarrollar un modelo matemático que describa al sistema (modelo teórico). A veces es imposible desarrollar un modelo teórico, entonces se somete al sistema a un conjunto entradas conocidas y se miden sus salidas, obteniéndose así un modelo experimental. O sea, se calcula el modelo a partir de las relaciones entrada-salida. Ningún modelo matemático puede representar al sistema con precisión. Siempre involucra suposiciones y aproximaciones. Procedimientos para la obtención del modelo: 1. Dibujar un diagrama esquemático del sistema y denir las variables. 2. Utilizando leyes físicas, escribir ecuaciones para cada componente, combinándolas de acuerdo con el diagrama del sistema y obtener el modelo. 3. Para vericar la validez del modelo, la predicción del funcionamiento obtenida al resolver las ecuaciones del modelo, se compara con los resultados experimentales (la validez del modelo se verica mediante un experimento). Si el experimento se aleja de la predicción se debe modicar el modelo y se repite el proceso Validación del Modelo Tanto en el análisis teórico como el análisis experimental, una vez obtenido el modelo es importante su coincidencia con el modelo teórico real. En esto consiste la validación. Los métodos pueden ser: Analizar la respuesta del modelo (al escalón, al impulso, etc.). POLITECNICO 3
5 Análisis de polos y ceros del sistema. Calcular determinadas relaciones estadísticas. Investigar las variaciones de aquellas magnitudes que sean especialmente sensibles a cambios en los parámetros del modelo. 3. Aplicaciones Para denir los modelos necesitamos las leyes físicas correspondientes y así representarlos ya sean eléctricos, hidráulicos, mecánicos, etc. Lo que se pretende es encontrar analogías para poder a partir de éstas, sin tener conocimiento del funcionamiento de cada sistema en particular, determinar su modelo matemático Sistemas Mecánicos Para caracterizar y modelar sistemas mecánicos, es necesaria la implementación de leyes que representen la dinámica mecánica. Debido a esto repasamos algunas deniciones para poder determinar los modelos correspondientes a los sistemas mecánicos: Masa [kg]: La masa de un cuerpo es la cantidad de materia que contiene. Es la propiedad que da su inercia, o sea, su resistencia a parar y arrancar. Fuerza [N]: Causa que tiende a producir un cambio en el movimiento de un cuerpo sobre el que actúa. Par o Momento de fuerza [Nm]: Causa que tiende a producir un cambio en el movimiento rotacional de un cuerpo (es el producto de la fuerza por la distancia perpendicular desde un punto de rotación a la línea de acción de la fuerza). Momento de inercia [Kgm 2 ]: J = r 2 dm (r: distancia del eje de rotación al dm). Signica la resistencia que ofrece un cuerpo a su aceleración angular. Desplazamiento [m]: El desplazamiento x es un cambio de posición de un punto a otro de referencia. Velocidad [ m s ]: v = dx dt = ẋ. La velocidad es la derivada de la posición respecto del tiempo. Aceleración [ m s ]: a = dv 2 dt = v = ẍ. La aceleración es la derivada de la velocidad respecto del tiempo. Desplazamiento angular [rad]: El desplazamiento angular se mide en radianes y se mide en sentido contrario a las agujas del reloj Velocidad angular [ rad dθ seg ]: ω = dt = θ. La velocidad angular es la derivada de la posición angular respecto del tiempo. 4 POLITECNICO
6 Aceleración angular [ rad seg ]: α = dω 2 dt = ω = θ. La aceleración angular es la derivada de la velocidad angular respecto del tiempo. Leyes de Newton: 1 Ley de Newton: La cantidad de movimiento total en un sistema es constante en ausencia de fuerzas externas. m.v = cte. (Movimiento traslacional) J.ω = cte.(movimiento rotacional) 2 Ley de Newton: La aceleración sobre un cuerpo es proporcional a la fuerza que actúa sobre el mismo e inversamente proporcional a su masa. F = m.a (Movimiento traslacional) T = J.α (Movimiento rotacional) 3 Ley de Newton-Ley de acción y reacción. A toda acción se opone una reacción de igual magnitud. Elementos de inercia: Masa (Movimiento traslacional) Momento de inercia (Movimiento rotacional) Ejemplos La mecánica clásica (newtoniana) se ocupa de describir fenómenos asociados con el movimiento de los cuerpos. Por este motivo, en los sistemas mecánicos tendremos habitualmente como variables descriptivas las posiciones, velocidades y aceleraciones. A continuación estudiaremos sistemas mecánicos donde aparecen fenómenos de elasticidad y fricción. Ejemplo N 1: Sistema masa-resorte El sistema de la gura 3 puede representarse por el siguiente sistema de ecuaciones: ΣF uerzas = m.a La fuerza del resorte f resorte será proporcional al desplazamiento x y a la constante elástica k del resorte. f resorte = k.x F f resorte = m.a F = m.a + k.x F = mẍ + k.x (1) La resolución de la ecuación 1 representa el modelo matemático del sistema. POLITECNICO 5
7 Figura 3: Sistema mecánico masa resorte. Ejemplo N 2: Sistema masa-resorte con fricción En el caso del sistema de la gura 4 ahora se introduce un coeciente de rozamiento b entre el bloque de masa m y el piso. En el caso de la fuerza de fricción, una hipótesis habitual es representar la misma como una fuerza que se opone al movimiento cuya magnitud se relaciona con la velocidad, ecuación 2. La sumatoria de fuerzas del sistemas es: f friccion = b.v friccion (2) F f resorte f friccion = m.a F = m.a + b.v friccion + k.x F = mẍ + bẋ + k.x (3) En este caso la resolución de la ecuación 4 representa al modelo matemático del sistema. Figura 4: Sistema mecánico masa resorte con fricción. Ejemplo N 3: Sistema rotacional con fricción Ahora estudiaremos un sistema rotacional. El esquema, que se puede observar en la gura 5, posee una masa de inercia J solidaria a un eje. A dicho eje se la aplica un torque de entrada τ em que hace girar a la masa en sentido horario. En este caso también se considera que existe un torque que se opone al movimiento debido a la fricción lineal b: La sumatoria de torques del sistemas es: τ friccion = b.ω 6 POLITECNICO
8 τ em τ friccion = J.α τ em = b.ω + J.α τ em = b. θ + J. θ (4) En este caso la resolución de la ecuación 4 representa al modelo matemático del sistema. Figura 5: Sistema rotacional Sistemas Eléctricos En los sistemas eléctricos encontramos como variables descriptivas principales a las tensiones y corrientes. La teoría de circuitos caracteriza los fenómenos asociándolos a dipolos que vinculan estática o dinámicamente tensiones y corrientes. Leyes de Electricidad: Basado en la ley de Ohm, la teoría de circuitos representa el fenómeno de disipación de energía mediante un dipolo (resistencia) que establece una relación entre la tensión y corriente. U R = I.R Otros fenómenos fundamentales de estos sistemas son la acumulación de energía en forma de campo eléctrico. Este es descripto por la ley de Coulomb, de la cual se deducen las relaciones que describen el fenómeno de capacitancia. U C = 1 C. i dt Alrededor de una carga en movimiento o corriente hay una región de inuencia que se llama campo magnético. La variación del campo magnético con respecto al tiempo, induce una fuerza electromotriz en el circuito. Las relaciones entre las variables asociadas al fenómeno de almacenamiento de energía en el campo magnético pueden deducirse de las leyes de Faraday y de Ampere. El fenómeno, que la teoría de circuitos caracteriza mediante la inductancia, puede describirse a partir de las siguiente ecuación. POLITECNICO 7
9 U L = L. di dt Por último encontramos relaciones asociadas a la estructura de los circuitos eléctricos. Estas no son otras que las leyes de Kirchho de tensión y corriente. Recordemos que éstas establecen respectivamente que la suma de las tensiones en una malla cerrada es igual a cero y que la suma de las corrientes entrantes a un nudo es también nula Ejemplos Ejemplo N 1: Sistema RC El sistema a estudiar se puede observar en gura 6. Consta de una resistencia R y un capacitor C en serie, a los cuales se le aplica una tensión de entrada U(t). Figura 6: Sistema RC serie. De acuerdo a la ley de Kirchho de tensión, la sumatoria de tensiones en la malla será nula: ΣU = 0 U(t) = i.r + 1 C. i dt Si se considera a la corriente como el ujo de carga i = dq = q, se obtiene la ecuación 5. dt Esta ecuación describe la dinámica del sistema y permite representar la evolución de la corriente respecto al tiempo. U(t) = q.r + 1.q (5) C Notar que inicialmente se consideró al capacitor descargado. En el caso de que éste hubiese estado cargado, se tendría que haber considerado dicha carga como condición inicial de la integral. Ejemplo N 2: Sistema RLC El sistema a estudiar se puede observar en gura 7. La única diferencia al anterior es que ahora se agregó una inductancia L en serie. 8 POLITECNICO
10 Figura 7: Sistema RLC serie. De acuerdo a la ley de Kirchho de tensión, la sumatoria de tensiones en la malla será nula: ΣU = 0 U(t) = L. di dt + i.r + 1 C. i dt Si se considera a la corriente como el ujo de carga i = dq = q, se obtiene la ecuación 6. dt Observar que en este caso, a diferencia del anterior, la carga q aparece en la ecuación con derivada doble ( q). Esto será clave para futuros análisis de la evolución de la corriente respecto al tiempo. U(t) = L. q + q.r + 1.q (6) C En el caso de las inductancias no se consideran 'magnetizaciones iniciales' ya que lo que interesa es la variación del ujo magnético respecto del tiempo (L. di ). En la práctica dichas dt aproximaciones se limitan a la característica lineal de la inductancia, tema que no será de estudio en este curso Sistemas Análogos Los sistemas que pueden representarse mediante el mismo modelo matemático, pero que son diferentes físicamente se llaman sistemas análogos. Así pues, los sistemas análogos se describen mediante las mismas ecuaciones diferenciales o conjuntos de ecuaciones. El concepto de sistema análogo es muy útil en la práctica por las siguientes razones: La solución de la ecuación que describe un sistema físico puede aplicarse directamente al sistema análogo en otro campo. Puesto que un tipo de sistema puede ser más fácil de manejar experimentalmente que otro, en lugar de construir y estudiar un sistema mecánico(o hidráulico, neumático, etc.), podemos construir y estudiar su análogo eléctrico, dado que éstos son más fáciles de tratar experimentalmente. Si observamos las guras 8 y 9, podemos apreciar distintas analogías entre sistemas mecánicos y eléctricos. F (t) = m.ẍ + k.x U(t) = L. q + 1 C.q POLITECNICO 9
11 Figura 8: Analogía sistema mecánico-eléctrico. F (t) = m.ẍ + b.ẋ + k.x U(t) = L. q + R. q + 1 C.q Figura 9: Analogía sistema mecánico-eléctrico. En el caso de los sistemas mecánicos, el resorte y la masa se comportan como elementos almacenadores de energía mientras que la fricción disipa energía. En los sistemas eléctricos los elementos almacenadores de energía son el capacitor y la inductancia (energía en forma de campo eléctrico y magnético respectivamente). La resistencia es claramente un elemento que disipa energía por efecto Joule. Si observamos las ecuaciones que rigen a dichos sistemas, podemos distinguir ciertas analogías entre ambos sistemas. Mecánico Eléctrico Traslacional Rotacional Fuerza - F (t) Torque - τ(t) Tensión - U(t) Desplazamiento - x(t) Angulo - θ(t) Carga - q(t) Velocidad - v(t) Veloc. angular - ω(t) Corriente - i(t) Masa - m Inercia - J Inductancia - L Roce - b - Resistencia - R Cte. elástica - k - Capacidad(inversa) - 1 C Cuadro 1: Analogías. 10 POLITECNICO
12 4. Problemas 1. Para los siguientes sistemas de control, identicar la entrada, la salida y el proceso por controlar: a) Una tostadora de pan convencional b) Una plancha c) Un refrigerador d) Un lavarropas automático 2. Con respecto al problema anterior, indicar si los sistemas respectivos son de lazo abierto o de lazo cerrado. 3. Con respecto a los sistemas de lazo abierto, ¾Cuál sería la nalidad de agregarles sensores?. 4. Un trabajador mantiene el constante el nivel de un líquido en un tanque observándolo a través de una mirilla y ajustando la apertura de la válvula de salida del líquido. El tanque tiene una entrada de líquido cuyo caudal nunca superará al de salida. Se desea automatizar el sistema. Identique el tipo de sistema necesario, y todas la variables y magnitudes involucradas en el mismo. 5. Para los sistemas de las guras determinar el modelo matemático, planteando todas las ecuaciones. (a) (b) (c) 6. El péndulo de la gura tiene una esfera de masa m. Suponiendo que no hay fricción y que la cuerda es de masa despreciable y no posee elasticidad, encuéntrese la ecuación analítica del movimiento del péndulo. POLITECNICO 11
13 7. Para el sistema de la gura hallar las ecuaciones matemáticas que describan la dinámica de la masa de inercia J. 8. Para los siguientes circuitos determinar la relación entre V 1 y V 2. (a) Circuito integrador. (b) Circuito diferenciador. 9. Para el sistema de la gura hallar las ecuaciones matemáticas que describan la dinámica de ambas masas. Observación: Notar que la fuerza del resorte f resorte compresión de este. es proporcional al estiramiento o 10. En el sistema de la gura se puede apreciar una fuente de corriente I(t) en paralelo con una inductancia, una resistencia y un capacitor. a) Obtener las ecuaciones que denan la dinámica del sistema. b) Realizar una analogía con el sistema RLC serie alimentado por una fuente de tensión. 12 POLITECNICO
14 Observación: La fuente de corriente asegura un valor de corriente constante para cualquier diferencia de tensión. 11. Hallar las ecuaciones matemáticas que describan la dinámica del motor de corriente continua (MCC) con excitación independiente, que se presenta a continuación. El MCC consta de dos circuitos galvánicamente independientes: el circuito de excitación o de campo (bobinado del estator) y el circuito de armadura o inducido (bobinado del rotor). La interacción del ujo magnético de excitación en el entrehierro con la corriente establecida en la armadura, produce la conversión de energía eléctrica en energía mecánica. La conversión electromagnético-mecánica de energía responde a las siguientes ecuaciones: τ e = K m.ψ e.i a ɛ = K m.ψ e.ω donde ψ e es el ujo total abrazado por el arrollamiento de excitación. Para un motor de aproximadamente 150Kw, los valores de ψ e y K m son: ψ e = 300W b K m = 0,016 POLITECNICO 13
15 Referencias Pendino, C, Fundamentos de Control, Instituto Politécnico, Karnopp, D y Rosenberg, Introduction to Physical System Dynamics, Mc. Graw Hill, New York, Cátedra de Dinámica de los Sistemas Físicos, Sistemas Fluidodinámicos, Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Ogata, K, Ingeniería de control moderna, Prentice-Hall Hispanoamericana, S.A., México, Dorf, R, Sistemas modernos de control, Addison-Wesley Iberoamericana, S.A., U.S.A, Hernández Gaviño,R, Introducción a los sistemas de control, Prentice-Hall, México, POLITECNICO
Introducción al modelado de sistemas físicos 5º AÑO. Tecnología de Control. Plantas Industriales. C o d. 2 1 5 0 7-1 4
I n s t i t u t o P o l i t é c n i c o i v e r s i d a d N a c i o n a l d e R o s a r i o U n i v e r s i d a d N a c i o n a l d e Introducción al modelado de sistemas físicos 5º AÑO C o d. 2 1 5 0
Introducción a los Sistemas de Control
Introducción a los Sistemas de Control Organización de la presentación - Introducción a la teoría de control y su utilidad - Ejemplo simple: modelado de un motor de continua que mueve una cinta transportadora.
Tema 1. Introducción al Control Automático
Tema 1. Introducción al Control Automático Automática 2º Curso del Grado en Ingeniería en Tecnología Industrial Contenido Tema 1.- Introducción al Control automático 1.1. Introducción. 1.2. Conceptos y
DEFINICIONES Y CONCEPTOS (SISTEMAS DE PERCEPCIÓN - DTE) Curso
DEFINICIONES Y CONCEPTOS (SISTEMAS DE PERCEPCIÓN - DTE) Curso 2009-10 1. Generalidades Instrumentación: En general la instrumentación comprende todas las técnicas, equipos y metodología relacionados con
Representación en el espacio de estado. Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT
Representación en el espacio de estado Representación en espacio de estado Control clásico El modelado y control de sistemas basado en la transformada de Laplace, es un enfoque muy sencillo y de fácil
IX. Análisis dinámico de fuerzas
Objetivos: IX. Análisis dinámico de fuerzas 1. Comprender la diferencia entre masa y peso. 2. Comprender como calcular el momento de masa de inercia de un objeto. 3. Recordar el teorema de ejes paralelos.
Page 1 of 5 Departamento: Dpto Ing. Electrica y Electro Nombre del curso: ELECTROMAGNETISMO CON LABORATORIO Clave: 003880 Academia a la que pertenece: Electromagnetismo Requisitos: Ninguno Horas Clase:
Dinámica del Robot. UCR ECCI CI-2657 Robótica Prof. M.Sc. Kryscia Daviana Ramírez Benavides
UCR ECCI CI-2657 Robótica Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción La dinámica se ocupa de la relación entre las fuerzas que actúan sobre un cuerpo y el movimiento en el que se origina.
2 o Bachillerato. Conceptos básicos
Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos
4.3 Problemas de aplicación 349
4. Problemas de aplicación 49 4. Problemas de aplicación Ejemplo 4.. Circuito Eléctrico. En la figura 4.., se muestra un circuito Eléctrico de mallas en el cual se manejan corrientes, una en cada malla.
Física: Torque y Momento de Torsión
Física: Torque y Momento de Torsión Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Relación entre cantidades angulares y traslacionales. En un cuerpo que rota alrededor de un origen O, el punto
FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA
A) CAMPO MAGNÉTICO El Campo Magnético es la perturbación que un imán o una corriente eléctrica producen en el espacio que los rodea. Esta perturbación del espacio se manifiesta en la fuerza magnética que
UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO 5
UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO 5 CURSO: CONTROL AUTOMATICO PROFESOR: MSC. CESAR LOPEZ AGUILAR INGENIERO EN ENERGIA-INGENIERO MECANICO ELECTRICISTA I. CONTENIDO 1.
DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE FÍSICA III
DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE FÍSICA III HERMOSILLO, SONORA, OCTUBRE DEL 2005 NOMBRE: FISICA III CON LABORATORIO UNIDAD REGIONAL: CENTRO EJE BÁSICO DE
Formatos para prácticas de laboratorio
CARRERA PLAN DE ESTUDIO CLAVE ASIGNATURA NOMBRE DE LA ASIGNATURA TRONCO COMÚN 2005-2 4348 DINÁMICA PRÁCTICA NO. DIN-09 LABORATORIO DE NOMBRE DE LA PRÁCTICA LABORATORIO DE CIENCIAS BÁSICAS PÉNDULO SIMPLE
CAPITULO XII PUENTES DE CORRIENTE ALTERNA
CAPITULO XII PUENTES DE CORRIENTE ALTERNA 2. INTRODUCCION. En el Capítulo IX estudiamos el puente de Wheatstone como instrumento de medición de resistencias por el método de detección de cero. En este
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA SEGUNDA EVALUACIÓN DE FÍSICA A FEBRERO 18 DE 2015 COMPROMISO DE HONOR Yo,.. al firmar este compromiso,
INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR
Dinámica y Leyes de Newton INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR DINÁMICA: Es la rama de la mecánica que estudia las causas del movimiento de los cuerpos. FUERZA: Es toda acción ejercida capaz
Física I. Carrera: INM Participantes Representante de las academias de ingeniería industrial de Institutos Tecnológicos.
1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Física I Ingeniería Industrial INM - 0401 3 2 8 2.- HISTORIA DEL PROGRAMA Lugar
LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro
LISTA DE SÍMBOLOS Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro 2.1.1 Rigidez Flexiva que Difiere en dos Ejes x- Desplazamiento
5.1.1)Principio de funcionamiento.
CAPÍTULO 5 MÁQUINAS DE CORRIENTE CONTINUA 5.1)ASPECTOS CONSTRUCTIVOS Y PRINCI- PIO DE FUNCIONAMIENTO. 5.1.1)Principio de funcionamiento. Devanado de Estator (campo): - Objetivo: producir el campo que posibilita
Fuerzas de Rozamiento
Fuerzas de Rozamiento Universidad Nacional General San Martín. Escuela de Ciencia y Tecnología. Baldi, Romina [email protected] Viale, Tatiana [email protected] Objetivos Estudio de las fuerzas
Nombre: Curso:_3. Si la fuerza se mide en newton (N) y el vector posición en metro (m), el torque se mide en N m.
Nombre: Curso:_3 Cuando un cuerpo están sometidos a una fuerzas neta nula es posible que el cuerpo este en reposo de traslación pero no en reposo de rotación, por ejemplo es posible que existan dos o más
Transformada de Laplace: Aplicación a vibraciones mecánicas
Transformada de Laplace: Aplicación a vibraciones mecánicas Santiago Gómez Jorge Estudiante de Ingeniería Electrónica Universidad Nacional del Sur, Avda. Alem 1253, B8000CPB Bahía Blanca, Argentina [email protected]
Carrera: EMM Participantes. Representantes de las academias de ingeniería en Electromecánica de los Institutos Tecnológicos.
.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Análisis de circuitos eléctricos I Ingeniería Electromecánica EMM-00 --8.- HISTORIA
PRINCIPIOS DE LA DINÁMICA
Capítulo 3 PRINCIPIOS DE LA DINÁMICA CLÁSICA 3.1 Introducción En el desarrollo de este tema, cuyo objeto de estudio son los principios de la dinámica, comenzaremos describiendo las causas del movimiento
Anteriores. EL alumno comprende y aplica las leyes y principios fundamentales de la electricidad y el magnetismo y la termodinámica.
INSTITUTO TECNOLÓGICO DE SALTILLO 1.- Nombre de la asignatura: Física II Carrera: Ingeniería Industrial Clave de la asignatura: INC - 0402 Horas teoría-horas práctica-créditos 4-2-10 2.- HISTORIA DEL PROGRAMA
PROGRAMA INSTRUCCIONAL FUNDAMENTOS DE ELECTRICIDAD
UNIVERSIDAD FERMIN TORO VICE-RECTORADO ACADEMICO FACULTAD DE INGENIERIA ESCUELA DE MANTENIMIENTO MECANICO PROGRAMA AL FUNDAMENTOS DE ELECTRICIDAD CÓDIGO ASIGNADO SEMESTRE U.C DENSIDAD HORARIA FUE-442 IV
Resolución de problemas aplicando leyes de Newton y consideraciones energéticas
UIVERSIDAD TECOLÓGICA ACIOAL Facultad Regional Rosario UDB Física Cátedra FÍSICA I Resolución de problemas aplicando lees de ewton consideraciones energéticas 1º) Aplicando lees de ewton (Dinámica) Pasos
Métodos, Algoritmos y Herramientas
Modelado y Simulación de Sistemas Dinámicos: Métodos, Algoritmos y Herramientas Ernesto Kofman Laboratorio de Sistemas Dinámicos y Procesamiento de la Información FCEIA - Universidad Nacional de Rosario.
PROGRAMA INSTRUCCIONAL FÍSICA II
UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA ESCUELA DE MANTENIMIENTO MECÁNICO PROGRAMA INSTRUCCIONAL FÍSICA II CÓDIGO ASIGNADO SEMESTRE U. C DENSIDAD HORARIA H.T H.P/H.L H.A
TEMARIO PRUEBA DE SÍNTESIS FISICA NIVEL SEPTIMO
NIVEL SEPTIMO Fuerza y movimiento Fuerzas que actúan simultáneamente sobre un objeto en movimiento o en reposo Condición de equilibrio de un cuerpo Fuerza peso, normal, roce, fuerza aplicada Diferencia
MICRODISEÑO CURRICULAR Nombre del Programa Académico
1. IDENTIFICACIÓN Asignatura Física de Campos Área Ciencias Básicas Nivel IV Código FCX 44 Pensum Correquisito(s) Prerrequisito(s) FMX23, CIX23 Créditos 4 TPS 4 TIS 8 TPT 64 TIT 128 2. JUSTIFICACIÓN. El
ESCALARES Y VECTORES
ESCALARES Y VECTORES MAGNITUD ESCALAR Un escalar es un tipo de magnitud física que se expresa por un solo número y tiene el mismo valor para todos los observadores. Se dice también que es aquella que solo
Tema 2 Análisis Dinámico de Sistemas 2º Ing. Telecomunicación. Octubre de 2003 Análisis Dinámico de Sistemas (2º Teleco, EPSIG) 1 de 30
Tema 2 Análisis Dinámico de Sistemas 2º Ing. Telecomunicación Octubre de 2003 Análisis Dinámico de Sistemas (2º Teleco, EPSIG) 1 de 30 Ecuaciones Diferenciales y Dinámica definición de la RAE Modelo: (definición
TEMA 1: SISTEMAS MODELADOS POR ECUACIONES DIFERENCIALES EN INGENIERÍA QUÍMICA. CLASIFICACIÓN. GENERALIDADES.
TEMA 1: SISTEMAS MODELADOS POR ECUACIONES DIFERENCIALES EN INGENIERÍA QUÍMICA. CLASIFICACIÓN. GENERALIDADES. 1. INTRODUCCIÓN. PLANTEAMIENTO DE PROBLEMAS EN INGENIERÍA QUÍMICA 2. PROBLEMAS EXPRESADOS MEDIANTE
CAPITULO 6. Análisis Dimensional y Semejanza Dinámica
CAPITULO 6. Análisis Dimensional y Semejanza Dinámica Debido a que son pocos los flujos reales que pueden ser resueltos con exactitud sólo mediante métodos analíticos, el desarrollo de la mecánica de fluidos
Estudio de fallas asimétricas
Departamento de Ingeniería Eléctrica Universidad Nacional de Mar del Plata Área Electrotecnia Estudio de fallas asimétricas Autor: Ingeniero Gustavo L. Ferro Prof. Adjunto Electrotecnia EDICION 2012 1.
ESCUELA: UNIVERSIDAD DEL ISTMO
1.-IDENTIFICACIÓN ESCUELA: UNIVERSIDAD DEL ISTMO CLAVE: 3034 GRADO: ING. EN COMPUTACIÓN, TERCER SEMESTRE TIPO DE TEÓRICA / PRÁCTICA ANTECEDENTE CURRICULAR: 304.- OBJETIVO GENERAL Proporcionar al alumno
La principal particularidad de esta magnitud es lo amplitud del rango de medidas de interés para la ciencia y la ingeniería.
Sensores de Distancia SENSORES DE DISTANCIA La principal particularidad de esta magnitud es lo amplitud del rango de medidas de interés para la ciencia y la ingeniería. Sensores de Distancia SENSORES DE
Física III. Carrera: Ingeniería Naval NAT Participantes. Comité de Consolidación de la carrera de Ingeniería Mecánica.
1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Física III Ingeniería Naval NAT - 0618 2-3-7 2.- HISTORIA DEL PROGRAMA Lugar y
DINÁMICA II - Aplicación de las Leyes de Newton
> INTRODUCCIÓN A EJERCICIOS DE FUERZAS Como ya vimos en el tema anterior, las fuerzas se producen en las interacciones entre los cuerpos. La fuerza es la magnitud física vectorial, que nos informa de esas
REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD BICENTENARIA DE ARAGUA SECRETARIA DIRECCIÓN DE ADMISIÓN Y CONTROL DE ESTUDIOS
FACULTAD: CARRERA: INGENIERIA INGENIERIA ELECTRICA AÑO: 94 UNIDAD CURRICULAR: CODIGO: REQUISITOS: TEORIA ELECTROMAGNETICA ELC-714 MAT-505/ELC-505 UNIDAD DE CREDITOS: 04 DENSIDAD DE HORARIO: 05 HORAS TEORICA:
Mecánica para Ingenieros: Cinemática. 1. La Mecánica como ciencia
Mecánica para Ingenieros: Cinemática 1. La Mecánica como ciencia La Mecánica como ciencia 1. Objeto de la Mecánica 2. Magnitudes físicas y unidades 3. Idealizaciones 4. Leyes de Newton 5. Partes de la
Física III. Carrera: MCT Participantes Representantes de las academias de Ingeniería Mecánica de. Academia de Ingeniería Mecánica.
1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Física III Ingeniería Mecánica MCT - 0514 2 3 7 2.- HISTORIA DEL PROGRAMA Lugar
LABORATORIO No. 3 MODELAMIENTO Y ANALISIS DINAMICO DE SISTEMAS ELECTRICOS
UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERIA INGENIERÍA ELECTRÓNICA 1 SISTEMAS DINAMICOS 1160601 LABORATORIO No. 3 MODELAMIENTO Y ANALISIS DINAMICO DE SISTEMAS ELECTRICOS INSTRUCCIONES
Examen de TEORIA DE MAQUINAS Junio 07 Nombre...
Examen de TEORIA DE MAQUINAS Junio 07 Nombre... La figura muestra un mecanismo biela-manivela. La manivela posee masa m y longitud L, la biela masa 3 m y longitud 3 L, y el bloque masa 2m. En la posición
Slide 1 / 71. Movimiento Armónico Simple
Slide 1 / 71 Movimiento Armónico Simple Slide 2 / 71 MAS y Movimiento Circular Hay una profunda conexión entre el Movimiento armónico simple (MAS) y el Movimiento Circular Uniforme (MCU). Movimiento armónico
FACULTAD: INGENIERIAS Y ARQUITECTURA PROGRAMA: INGENIERÍA INDUSTRIAL DEPARTAMENTO DE: INGENIERIA MECÁNICA, INDUSTRIAL Y MECATRONICA
Página 1 de 5 FACULTAD: INGENIERIAS Y ARQUITECTURA PROGRAMA: INGENIERÍA INDUSTRIAL DEPARTAMENTO DE: INGENIERIA MECÁNICA, INDUSTRIAL Y MECATRONICA CURSO: ELECTROMAGNETISMO CODIGO: 157009 AREA: CIENCIAS
MODELOS MATEMÁTICOS 2010
GUIA DE ECUACIONES DIFERENCIALES COMO MODELOS MATEMÁTICOS La mayoría de los problemas físicos tiene que ver con relaciones entre las cantidades variables en cuestión. Para resolver los problemas físicos
Física: Dinámica Conceptos básicos y Problemas
Física: Dinámica Conceptos básicos y Problemas Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Mecánica Cinemática Descripción del movimiento. Cómo se mueve? Dinámica Causas del movimiento. Por
ESCUELA SUPERIOR POLITECNICA DEL LITORAL PROGRAMA DE ESTUDIOS
TEORÍA ELECTROMAGNÉTICA 1 UNIDAD ACADÉMICA: CARRERA: ESPECIALIZACIÓN: ÁREA: TIPO DE MATERIA: EJE DE FORMACIÓN: Facultad de Ingeniería en Electricidad y Computación Ingeniería en Electricidad, Ingeniería
La Autoexcitación en el Generador DC
La Autoexcitación en el Generador DC Jorge Hans Alayo Gamarra julio de 2008 1. Introducción La invención del proceso de la autoexcitación en las máquinas eléctricas, acreditada a Wener Von Siemens hace
UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERÍA ELECTRÓNICA E INFORMÁTICA SÍLABO
SÍLABO ASIGNATURA: FÍSICA GENERAL II CÓDIGO: 3A0004 I. DATOS GENERALES 1.1 Departamento Académico : Ingeniería Electrónica e Informática 1.2 Escuela Profesional : Ingeniería Informática 1.3 Ciclos de Estudios
CORRIENTE CONTINUA I : RESISTENCIA INTERNA DE UNA FUENTE
eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA
DEPARTAMENTO DE INGENIERÍA QUÍMICA. Laboratorio de Ingeniería Química BALANCE DE ENERGÍA EN ESTADO NO ESTACIONARIO
DEPARAMENO DE INGENIERÍA QUÍMICA Laboratorio de Ingeniería Química BALANCE DE ENERGÍA EN ESADO NO ESACIONARIO 1. INRODUCCIÓN El sistema al que se va a plantear el balance de energía calorífica consiste
Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial
Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial PRIMERA LEY DE NEWTON. Todo cuerpo continuará en su estado de reposo o de velocidad constante en línea recta, a menos que una
3. TRANSFORMADORES. Su misión es aumentar o reducir el voltaje de la corriente manteniendo la potencia. n 2 V 1. n 1 V 2
3. TRANSFORMADORES Un transformador son dos arrollamientos (bobina) de hilo conductor, magnéticamente acoplados a través de un núcleo de hierro común (dulce). Un arrollamiento (primario) está unido a una
TEMA 5: Motores de Corriente Continua.
Esquema: TEMA 5: Motores de Corriente Continua. TEMA 5: Motores de Corriente Continua....1 1.- Introducción...1 2.- Ley de Faraday...2 3.- Constitución de una Máquina Eléctrica...2 4.- Principio de un
CAPITULO XI EL VATIMETRO. El vatímetro es un instrumento capaz de medir la potencia promedio consumida en un circuito
CAPIULO XI EL VAIMERO. INRODUCCION. El vatímetro es un instrumento capaz de medir la potencia promedio consumida en un circuito Según la definición de potencia, un vatímetro debe ser un instrumento que
1. Concepto de amplificación de señales en los circuitos de control Amplificadores estáticos Amplificadores magnéticos...
Contenido 1. Concepto de amplificación de señales en los circuitos de control.... 2 2. Amplificadores estáticos.... 2 2.1. Amplificadores magnéticos... 2 2.2. Amplificadores electrónicos.... 3 3. Amplificadores
MOVIMIENTO ARMÓNICO SIMPLE
MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica
Controlador PID con anti-windup
Laboratorio de Control de Procesos Industriales Práctica 1 Controlador PID con anti-windup 1 de noviembre de 2008 Introducción 2 INTRODUCCIÓN REGULADORES PID La idea básica del controlador PID es simple
OLIMPIADA DE FÍSICA 2011 PRIMER EJERCICIO
OLIMPIADA DE FÍSICA 011 PRIMER EJERCICIO Con ayuda de una cuerda se hace girar un cuerpo de 1 kg en una circunferencia de 1 m de radio, situada en un plano vertical, cuyo centro está situado a 10,8 m del
(93.43) Física III ITBA Copyright: Ing. Daniel Palombo 2008
(93.43) Física III ITBA Copyright: Ing. Daniel Palombo 2008 Desde ApuntesITBA nos hemos tomado el trabajo de escanear y recopilar este material, con el afán de brindarles a los futuros ingenieros del ITBA
Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas.
Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. 1.- Determine la velocidad con que se propagación de una onda a través de una cuerda sometida ala tensión F, como muestra la figura. Para ello considere
UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO
UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO 7: REGLAS DE KIRCHHOFF Comprobar experimentalmente que en un
Movimiento armónico simple
Slide 1 / 53 Slide 2 / 53 M.A.S. y movimiento circular Movimiento armónico simple Existe una conexión muy estrecha entre el movimiento armónico simple (M.A.S.) y el movimiento circular uniforme (M.C.U.).
Física I. Carrera: SCM Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos.
1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Física I Ingeniería en Sistemas Computacionales SCM - 0409 3-2-8 2.- HISTORIA DEL
Ingeniería. Instrumentos de Procesos Industriales. Instrumentos de medición de presión. Introducción
Ingeniería Instrumentos de Procesos Industriales Instrumentos de medición de presión Introducción Junto con la temperatura, la presión es la variable más comúnmente medida en plantas de proceso. Su persistencia
Facultad de Ingeniería. Escuela de Eléctrica. Asignatura CONVERSIÓNDE LA
Tema: PRINCIPIOS DE LAS MAQUINAS DE CORRIENTE CONTINUA. I. OBJETIVOS. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura CONVERSIÓNDE LA ENERGIAELECTROMECÁNICAII. Que el estudiante: Identifique la
UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADEMICO SUBPROGRAMA DE DISEÑO ACADÉMICO AREA INGENIERÍA MENCIÓN INGENIERÍA DE SISTEMAS PLAN DE CURSO
I. IDENTIFICACIÓN UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADEMICO SUBPROGRAMA DE DISEÑO ACADÉMICO AREA INGENIERÍA MENCIÓN INGENIERÍA DE SISTEMAS PLAN DE CURSO Nombre FÍSICA GENERAL II Código 326
Universidad de Oriente Núcleo de Bolívar Unidad de cursos básicos Matemáticas IV. María Palma Roselvis Flores
Universidad de Oriente Núcleo de Bolívar Unidad de cursos básicos Matemáticas IV Profesor: Cristian Castillo Bachilleres: Yessica Flores María Palma Roselvis Flores Ciudad Bolívar; Marzo de 2010 Movimiento
DINÁMICA ESTRUCTURAL. Diagramas de bloques
DINÁMICA ESTRUCTURAL Diagramas de bloques QUÉ ES UN DIAGRAMA DE BLOQUES? Definición de diagrama de bloques: Es una representación gráfica de las funciones que lleva a cabo cada componente y el flujo de
TÉCNICO SUPERIOR UNIVERSITARIO EN ENERGÍAS RENOVABLES ÁREA ENERGÍA SOLAR EN COMPETENCIAS PROFESIONALES ASIGNATURA DE FÍSICA
TÉCNICO SUPERIOR UNIVERSITARIO EN ENERGÍAS RENOVABLES ÁREA ENERGÍA SOLAR EN COMPETENCIAS PROFESIONALES ASIGNATURA DE FÍSICA 1. Competencias Plantear y solucionar problemas con base en los principios y
COLEGIO DE LA SAGRADA FAMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE FÍSICA II PERIODO ACADEMICO
1 COLEGIO DE LA SAGRADA AMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE ÍSICA II PERIODO ACADEMICO MECANICA CLASICA DINAMICA: UERZA LAS LEYES DE NEWTON Y CONSECUENCIAS DE LAS LEYES DE
Práctica 4 Control de posición y velocidad de un motor de corriente continua
Práctica 4 Control de posición y velocidad de un motor de corriente continua Maqueta de control de posición y velocidad Practicas de Regulación Automática Maqueta de control de posición y velocidad Caja
INDICE Capitulo 1. El concepto del circuito magnético Capitulo 2. Excitación de estructuras ferromagnéticas con corriente directa
INDICE Capitulo 1. El concepto del circuito magnético 1-1. introducción 1 1-2. algunas leyes básicas de electrostática 3 1-3. algunas leyes básicas de magnetostática 8 1-4. otras conclusiones útiles en
Medida de magnitudes mecánicas
Medida de magnitudes mecánicas Introducción Sensores potenciométricos Galgas extensiométricas Sensores piezoeléctricos Sensores capacitivos Sensores inductivos Sensores basados en efecto Hall Sensores
El modelo semiclásico de las propiedades de transporte: Objetivo
El modelo semiclásico de las propiedades de transporte: Objetivo En el estudio de las propiedades de transporte se usa una aproximación que se basa en los principios usado para el estudio de los electrones
DIAGRAMAS DE BLOQUES. Figura 1 Elementos de un diagrama de bloques
DIAGRAMAS DE BOQUES 1. EEMENTOS DE UN DIAGRAMA DE BOQUES Un diagrama de bloques de un sistema es una representación gráfica de las funciones realizadas por cada componente y del flujo de las señales. os
Mecánica de Sistemas y Fenómenos Ondulatorios Práctico 4
Práctico 4 Ejercicio 1 Considere el sistema de la figura, formado por masas puntuales m unidas entre sí por resortes de constante K y longitud natural a. lamemos y n al desplazamiento de la n-ésima masa
DESMONTAJE, MONTAJE Y ANÁLISIS DE
PRÁCTICAS DE NEUMÁTICA Y OLEOHIDRÁULICA UNIVERSIDAD CARLOS III ESCUELA POLITÉCNICA SUPERIOR ÁREA DE INGENIERÍA MECÁNICA PRÁCTICA N o 6 DESMONTAJE, MONTAJE Y ANÁLISIS DE ELEMENTOS HIDRÁULICOS TITULACIÓN:
Procesos de Fabricación I. Guía 1 1 SISTEMAS DE CONTROL HIDRÁULICO Y NEUMÁTICO
Procesos de Fabricación I. Guía 1 1 SISTEMAS DE CONTROL HIDRÁULICO Y NEUMÁTICO Sistemas de Control Hidráulico y Neumático. Guía 2 1 Tema: UTILIZACIÓN DE SOFTWARE PARA DISEÑO Y SIMULACIÓN DE CIRCUITOS NEUMÁTICOS.
Física GUINV007F2-A16V1. Guía: Toda acción tiene una reacción
ísica GUINV0072-A16V1 Guía: Toda acción tiene una reacción ísica - Segundo Medio Tiempo estimado: 15 minutos Sección 1 Observando y reflexionando Actividad A Relacionándonos con la ísica Junto con tu compañero(a),
5692 Electrotecnia para Ingeniería I. Horas trabajo adicional estudiante. Totales teoría 16 práctica IEA IM IMA IME IMT CB CB CB
A) CURSO Clave Asignatura 5692 Electrotecnia para Ingeniería I Horas de teoría por semana Horas de práctica por semana Horas trabajo adicional estudiante Créditos Horas Totales 4 1 4 9 64 teoría 16 práctica
LABORATORIO DE ELECTROMAGNETISMO SUPERFICIES EQUIPOTENCIALES
No 3 LABORATORIO DE ELECTROMAGNETISMO DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Dibujar líneas de campo a través del mapeo de líneas equipotenciales.
Resumen de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante
Resumen de Física Cinemática, Antonio Hernandez D.F.I.S.T.S. La Mecánica se ocupa de las relaciones entre los movimientos de los sistemas materiales y las causas que los producen. Se divide en tres partes:
Javier Junquera. Movimiento de rotación
Javier Junquera Movimiento de rotación Bibliografía Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 10 Física, Volumen 1 R. P. Feynman, R. B.
Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Mecánica de los Fluidos. Carrea de Ingeniería Civil
Universidad Nacional de Córdoba Facultad de Ciencias Exactas Físicas y Naturales Cátedra de Mecánica de los Fluidos Carrea de Ingeniería Civil FLUJO COMPRESIBLE DR. ING. CARLOS MARCELO GARCÍA 2011 A modo
UNIDAD 12.- Estadística. Tablas y gráficos (tema12 del libro)
UNIDAD 12.- Estadística. Tablas y gráficos (tema12 del libro) 1. ESTADÍSTICA: CLASES Y CONCEPTOS BÁSICOS En sus orígenes históricos, la Estadística estuvo ligada a cuestiones de Estado (recuentos, censos,
Momento angular o cinético
Momento angular o cinético Definición de momento angular o cinético Consideremos una partícula de masa m, con un vector de posición r y que se mueve con una cantidad de movimiento p = mv z L p O r y x
Física III (sección 3) ( ) Ondas, Óptica y Física Moderna
Física III (sección 3) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid M. Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil, Ingeniería
UNIVERSIDAD DEL CARIBE UNICARIBE. Escuela de Educación. Programa de Asignatura
UNIVERSIDAD DEL CARIBE UNICARIBE Escuela de Educación Programa de Asignatura Nombre de la asignatura : Física y Laboratorio de Física IV Carga académica : 4 créditos Modalidad : Semipresencial Clave :
CONTROL PARA LEVITADOR MAGNÉTICO Control Análogo. Presentado Por: Oscar Alejandro Torres Cruz. Álvaro Mauricio Rojas España
CONTROL PARA LEVITADOR MAGNÉTICO Control Análogo Presentado Por: Oscar Alejandro Torres Cruz Álvaro Mauricio Rojas España Nelson Fabián Gómez Valbuena Diego Felipe Franco Vásquez Presentado a: Ing. Javier
Controladores de Potencia Máquina de Corriente Continua
Máquina de Corriente Continua 17 de febrero de 2012 USB Principio de Funcionamiento Figura 1: Principio de funcionamiento de las máquinas eléctricas rotativas USB 1 Figura 2: Esquema del circuito magnético
Comprobar experimentalmente la ley de Ohm y las reglas de Kirchhoff. Determinar el valor de resistencias.
38 6. LEY DE OHM. REGLAS DE KIRCHHOFF Objetivo Comprobar experimentalmente la ley de Ohm y las reglas de Kirchhoff. Determinar el valor de resistencias. Material Tablero de conexiones, fuente de tensión
Física: Momento de Inercia y Aceleración Angular
Física: Momento de Inercia y Aceleración Angular Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Momento de Torsión (Torque) La capacidad de un fuerza de hacer girar un objeto se define como torque.
