MODELOS MATEMÁTICOS 2010
|
|
|
- Sandra Giménez Iglesias
- hace 9 años
- Vistas:
Transcripción
1 GUIA DE ECUACIONES DIFERENCIALES COMO MODELOS MATEMÁTICOS La mayoría de los problemas físicos tiene que ver con relaciones entre las cantidades variables en cuestión. Para resolver los problemas físicos o de la vida real en necesario formular el modelo matemático para el problema. Un modelo matemático debe ser tan simple, que se pueda resolver y además, debe representar la situación real de manera que la solución anuncia comportamiento del problema real con bastante exactitud. 1. Dinámica poblacional: Mientras más gente haya en el tiempo t, más gente habrá en el futuro. Enunciado de la ecuación: La rapidez a la que crece la población de un país en cierto tiempo es proporcional a la población total del país en ese momento P(t) es la población respecto al tiempo k es una constante 2. Desintegración radiactiva: Los átomos se desintegran o transmutan en átomos de otras sustancias. Enunciado de la ecuación: La rapidez a la que se desintegran los nucleos de una sustancia es proporcional a la cantidad de la sustancia restante en el tiempo A(t) la cantidad de sustancia restante en el tiempo k es una constante de proporcionalidad, en este caso, es negativa, ya que, A va bajando. I.T.M Página 1
2 3. Ley de enfriamiento o calentamiento de Newton: Enunciado de la ecuación: La rapidez a la que cambia la temperatura de un cuerpo es proporcional a la diferencia entre la temperatura del cuerpo y la temperatura circundante ( ) ( ) T(t) temperatura de un cuerpo en el tiempo t Ta temperatura del medio circundante k constante de proporcionalidad, k<0. 4. Propagación de una enfermedad: Una enfermedad contagiosa, se disemina en una comunidad por medio de la gente que entra en contacto con otras personas. Enunciado de la ecuación: La rapidez a la que se disemina la enfermedad es proporcional al numero de encuentros o interacciones entre las personas que están contagiadas y las que no (tener en cuenta que el numero de interacciones es conjuntamente proporcional al número de personas que no se han contagiado y las que si, es decir proporcional al producto) x(t) es el numero de personas infectadas y(t) es el numero de personas que no se han contagiado k constante de proporcionalidad 5. Reacciones químicas de primer orden: Las moléculas de sustancia A se descomponen en moléculas más pequeñas Enunciado de la ecuación: la velocidad a la que toma lugar esta descomposición es proporcional a la cantidad de la primera sustancia que no ha experimentado conversión x(t) la sustancia en el tiempo k constante de proporcionalidad I.T.M Página 2
3 Reacciones químicas de segundo orden: Una molecula de la sustancia A se combina con una molécula de sustancia B, para formar una molecula de la sustancia C. Ecuación: ( )( ) x(t)la cantidad de sustancia C que se ha formado en el tiempo α La cantidad de la sustancia A que había al comienzo β La cantidad de la sustancia B que había al comienzo k constante de proporcionalidad 6. Mezclas: El mezclado de 2 soluciones de diferente concentración da a lugar a una ecuación diferencial de primer orden para la cantidad de sal contenida en la mezcla. Problema ejemplo: Un tanque contiene 300 galones de salmuera (agua-sal), otra solución de salmuera se bombea hacia el tanque a una rapidez de 3 galones por minuto; la concentración de sal en este flujo de entrada es 2 libras por galón. - Enunciado de la ecuación: Cuando la solución en el tanque está bien agitada, se bombea a la misma rapidez que la solución entrante - Ecuación: ( ) ( ) Fe flujo de entrada (es el producto de la concentración de la sal y la rapidez de entrada del líquido) En el ejemplo sería: ( ) ( ) Fs flujo de salida (concentración de sal (la cantidad de sal en el tanque / el numero de galones constantes en el tanque) por la rapidez de salida del líquido) ( ( ) ) ( ) ( ) ( ) 7. Drenado de un depósito: ley de Torricelli Enunciado de la ecuación: la velocidad del flujo de salida de agua por un agujero terminado en punta en el fondo de un depósito lleno hasta una profundidad h es la I.T.M Página 3
4 misma que la velocidad que adquiriría un cuerpo al caer libremente desde una altura h. Ecuación - Volumen de agua en el deposito en el instante t: - Altura del agua en el instante t: V(t) = Aw.h V(t) es el volumen de agua dentro del tanque en el instante t Ao Area del orificio por el que sale el agua Aw Es el area que mantiene la superficie del agua h(t) altura del agua en el instante t 8. Circuitos en serie: Segunda ley de Kirchhoff. Un circuito que tiene un inductor, un resistor y un capacitor. Enunciado de la ecuación: El voltaje impreso en un circuito cerrado debe ser igual a la suma de las caídas del voltaje. (i = dq/dt) Ecuación: i(t)la corriente en un circuito después que se cierra un conmutador I.T.M Página 4
5 q(t) la carga en un capacitor en el tiempo L inductancia Rresistencia C capacitancia 9. Caida libre: Segunda ley de newton. Enunciado de la ecuación: Cuando la fuerza neta que actúa en un cuerpo no es cero, entonces la fuerza neta es proporcional a la aceleración: F = ma (m masa del cuerpo) Cuál es la posición s(t) de una roca que es lanzada de un edificio, respecto al suelo? La aceleración es la segunda derivada de la posición. g gravedad 10. Caida de los cuerpos y resistencia del aire: F 1 +F 2 = mg kv (peso = F 1 y resistencia del aire = F 2 ) Enunciado de la ecuación: la aceleración es la derivada de la velocidad. v(t) velocidad en el tiempo (si se quiere poner en términos de la posición, la velocidad es la primera derivada de la posición) 11. Cadena corrediza: Enunciado de la ecuación: Peso de la cadena: ( ) ( ) Masa de la cadena: Fuerza neta: ( ) ( ) Puesto que a = d 2 x/dt 2 ma=f Ecuación: I.T.M Página 5
6 12. Cables colgantes: Se va a examinar la parte de un cable entre su punto mínimo y un punto arbitrario P 2. Tres fuerzas actúan sobre el cable: las tensiones T 1 y T 2 que son tangentes al cable en P 1, y P 2 y la porción W de la carga vertical total entre los puntos P 1 y P 2. Enunciado de la ecuación: dy/dx = tan θ Bibliografía. ZILL G. DENNIS. Ecuaciones diferenciales con problemas de valores en la frontera.. Sexta edición. Editorial CENGACE Learning México, D.F. ZILL G. DENNIS. Ecuaciones diferenciales con problemas de modelado. Editorial. Octava edición. CENGACE Learning México, D.F. TRENCH, William. Ecuaciones diferenciales con problemas de valores en la frontera. Editorial THOMSON I.T.M Página 6
Aplicaciones de Ecuaciones Diferenciales Ordinarias
Luis Eduardo López M. Docente Tiempo Completo Departamento de Ciencias Básicas Programa de Ingeniería Electrónica Facultad de Ingeniería Institución Universitaria CESMAG Periodo B de 2015 Contenido 1 Ecuaciones
AMPLIACIÓN DE MATEMÁTICAS Ingeniería Técnica Industrial. Especialidad en Mecánica Boletín n o 1 (Aplicaciones).
AMPLIACIÓN DE MATEMÁTICAS Ingeniería Técnica Industrial. Especialidad en Mecánica Boletín n o 1 (Aplicaciones). 1. La policía descubre el cuerpo de una profesora de ecuaciones diferenciales. Para resolver
Problemas de enfriamiento
Problemas de enfriamiento De acuerdo con la ley de enfriamiento de Newton, la tasa de cambio de la temperatura T de un cuerpo respecto del tiempo, en un instante t, en un medio de temperatura constante
ECUACIONES DIFERENCIALES
ECUACIONES DIFERENCIALES INGENIERÍA (NIVEL LICENCIATURA) Curso Básico - Primavera 2017 Omar De la Peña-Seaman Instituto de Física (IFUAP) Benemérita Universidad Autónoma de Puebla (BUAP) 1 / Omar De la
Ecuaciones Diferenciales Ordinarias Aplicaciones
Ecuaciones Diferenciales Ordinarias Aplicaciones Karina Malla Buchhorsts Departamento de Matemáticas UCN marzo de 013 Índice 1. Aplicaciones: Mecánica. Aplicaciones: razón de cambio 5.1. Mezclas....................................................
ECUACIONES DIFERENCIALES SEPARABLES
ECUACIONES DIFERENCIALES SEPARABLES Objetivos 1. Modelar situaciones mediante el uso de ecuaciones diferenciales de variables separables. 2. Asociar los resultados del tratamiento matemático del modelo
CURSO DE MATEMÁTICA. Repartido Teórico 4
CURSO DE MATEMÁTICA. Repartido Teórico 4 Mariana Pereira Noviembre, 2007 1. Ecuaciones Diferenciales Una ecuación diferencial es una ecuación donde la incógnita es una fución de una variable, y la ecuación
UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V _sN. CURSO: Matemática Intermedia 3
UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-114-2-V-2-00-2017_sN CURSO: Matemática Intermedia 3 SEMESTRE: Segundo CÓDIGO DEL CURSO: 114 TIPO DE EXAMEN:
Universidad Nacional Autónoma de Honduras (UNAH) Facultad de Ciencias Escuela de Matemática Guía de Estudio Primer Parcial
Universidad Nacional Autónoma de Honduras (UNAH) Facultad de Ciencias Escuela de Matemática Guía de Estudio Primer Parcial Determine la solución de las siguientes ecuaciones diferenciales (1 al 60): 3
ECUACIONES LINEALES DE PRIMER ORDEN
ECUACIONES LINEALES DE PRIMER ORDEN Un tanque de 500 litros contiene inicialmente 2 libras de sal disueltas en 20 litros de agua. Suponga que cada minuto entran al tanque 3 litros de agua salada, que contienen
Matemática IV Taller, Ecuaciones de orden 1. dy dx = y xy2 2. Determine la solución general de la ecuación. (y 4x)dx + (y x)dy = 0.
Matemática IV - 2000953 Taller, Ecuaciones de orden 1 1. Resuelva R: y 2 x = ln y. dy dx = y 3, y(0) = 1. 1 2xy2 2. Determine la solución general de la ecuación (y 4x)dx + (y x)dy = 0. 3. Una persona tiene
Ecuaciones diferenciales
Ecuaciones diferenciales 1. Hallar las isoclinas y esbozar las soluciones relativas a las siguientes ecuaciones diferenciales (a) y = x 2 + y 2. (b) y = y/x 2. (c) y = y x. (d) y = y/x. (e) y = x/y. 2.
PREGUNTAS DE OPCION MULTIPLE (Deben presentar su respectiva justificación, caso contrario no tendrán validez) (Del 1 al 11, 3 puntos c/u)
ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS PRIMERA EVALUACION DE FISICA GENERAL I II TERMINO 2011-2012 Nombre: Paralelo: 01 Ing. Francisca Flores N. PREGUNTAS DE OPCION MULTIPLE
Ecuaciones Diferenciales Ordinarias I
UG Aplicaciones de las ecuaciones diferenciales Universidad de Guanajuato Sesión 47 APLICACIONES BIOLÓGICAS Crecimiento Biológico: Un problema fundamental en la biología es el crecimiento, sea este el
Resolución de circuitos RLC mediante la aplicación de Transformadas de Laplace
Resolución de circuitos RLC mediante la aplicación de Transformadas de Laplace Cristian Iván Eterovich Estudiante de Ingeniería Electricista/Electrónica/en Sistemas de Computación Universidad Nacional
E.T.S. Minas: Métodos Matemáticos Ejercicios Tema 7 Ecuaciones diferenciales de primer orden
E.T.S. Minas: Métodos Matemáticos Ejercicios Tema 7 Ecuaciones diferenciales de primer orden Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña
Lista de ejercicios # 4
UNIVERSIDAD DE COSTA RICA MA-5 FACULTAD DE CIENCIAS Ecuaciones Diferenciales para Ingeniería ESCUELA DE MATEMÁTICA Primer Ciclo del 5 Lista de ejercicios # 4 Sistemas de ecuaciones diferenciales. EPII-II-
Ecuaciones diferenciales ordinarias
Tema 9 Ecuaciones diferenciales ordinarias Versión: 13 de mayo de 29 9.1 Introducción El objetivo de este tema es exponer muy brevemente algunos de los conceptos básicos relacionados con las ecuaciones
Ecuaciones Diferenciales Tema 1. Parte 1: Ecuaciones Diferenciales
Ecuaciones Diferenciales Tema 1. Parte 1: Ecuaciones Diferenciales Ester Simó Mezquita Matemática Aplicada IV 1 1. Qué es una Ecuación Diferencial Ordinaria? 2. Solución de una EDO 3. Tipos de EDO 4. Solución
Ecuaciones diferenciales ordinarias de primer orden: problemas propuestos
Ecuaciones diferenciales ordinarias de primer orden: problemas propuestos BENITO J. GONZÁLEZ RODRÍGUEZ ([email protected]) DOMINGO HERNÁNDEZ ABREU ([email protected]) MATEO M. JIMÉNEZ PAIZ ([email protected]) M.
PROBLEMARIO DE ECUACIONES DIFERENCIALES
PROBLEMARIO DE ECUACIONES DIFERENCIALES PARA LA CARRERA DE COMUNICACIONES Y ELECTRÓNICA DE LA ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELECTRICA DEL INSTITUTO POLITÉCNICO NACIONAL ELABORADO POR EL LIC.
dq dt = ε R q 2. Cuál es la función incógnita en dicha ecuación? Qué significado geométrico tiene dq
Circuito en serie RC C El circuito de la Figura, formado por una resistencia y un capacitor conectados en serie a una fuente, se conoce como circuito en serie RC. Recordando que la capacidad de un capacitor
PRACTICA TEMA 3. Variable Independiente
Ejercicio 1. PRACTICA TEMA 3 a Defina ecuación diferencial. Dé un ejemplo b Dada una ecuación diferencial de primer orden y primer grado definida implícitamente por g(x,y,y') = 0, exprese en forma analítica
2 o Bachillerato. Conceptos básicos
Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos
Determinación de la constante de enfriamiento de un líquido.
Determinación de la constante de enfriamiento de un líquido. Laboratorio de Física: 1210 Unidad 3 Temas de interés. 1. Medidas directa e indirectas. 2. Regresión lineal. 3. Análisis gráfico mediante cambio
Hojas de problemas de interpolación y cuadratura numérica. Ampliación de Matemáticas.
Hojas de problemas de interpolación y cuadratura numérica. Ampliación de Matemáticas. 1.- El polinomio p 3 (x) = 2 (x + 1) + x(x + 1) 2x(x + 1)(x 1) interpola a los primeros cuatro datos de la tabla x
Ejercicios de Ampliación de Ecuaciones Diferenciales. Capítulo I
Ejercicios de Ampliación de Ecuaciones Diferenciales. Capítulo I 1. Resuelva las EDs a) x = x 2 1. b) x = x(x 1)(x + 1). c) x = 1 + x 2. d) x = 3x 2/3. 2. Resuelva la ED 2tx (t 2 + x 2 ) = x(x 2 + 2t 2
UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V
UNIVERSIDD DE SN CRLOS DE GUTEML FCULTD DE INGENIERÍ DEPRTMENTO DE MTEMÁTIC CLVE-114-1-V-01-2-00-2017 CURSO: Matemática Intermedia 3 SEMESTRE: Segundo CÓDIGO DEL CURSO: 114 TIPO DE EXMEN: Primer examen
Aplicaciones de E.D de Orden 1
Aplicaciones de E.D de Orden 1 Greivin Hernández G. 26 de agosto de 2016 1. Ejercicios 1.1. Segunda Ley de Newton Definición: Se define el momento de un objeto como el producto de su masa por su velocidad,
ECUACIONES DIFERENCIALES
ANÁLISIS MATEMÁTICO II Todas las especialidades ECUACIONES DIFERENCIALES Equipo de Cátedra Profesor Asociado Ordinario: Ing. Humberto O. Riccomi Profesora Adjunta: Lic. María Elena Schivo Profesora Adjunta:
Crecimiento y decaimiento exponencial
Crecimiento y decaimiento exponencial En general, si y (t) es el valor de una cantidad y en el tiempo t y si la razón de cambio de y con respecto a t es proporcional a su tamaño y (t) en cualquier tiempo,
ECUACIONES DIFERENCIALES CARLOS RUZ LEIVA
ECUACIONES DIFERENCIALES CARLOS RUZ LEIVA Definición de ecuación diferencial Una ecuación que relaciona una función desconocida y una o más de sus derivadas se llama ecuación diferencial. Instituto de
es un ejemplo de una ecuación diferencial de tercer orden, mientras que
Ecuaciones diferenciales de primer orden Los cursos básicos de cálculo deferencial e integral tienen como objetivo principal que el estudiantes resuelva ecuaciones diferenciales. En este módulo repasaremos
W. Bolton, Año 2001 Ingeniería de Control. Cap. 2
UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO SEMANA 8 CURSO: CONTROL AUTOMATICO PROFESOR: MSC. CESAR LOPEZ AGUILAR INGENIERO EN ENERGIA-INGENIERO MECANICO ELECTRICISTA 1.BLOQUES
Ecuaciones Diferenciales Ordinarias
Ecuaciones Diferenciales Ordinarias (Ecuaciones Homogéneas y aplicaciones) Julio López [email protected] Depto Ingeniería Matemática, Universidad de Chile Otoño 2011, Resumen clases Julio López EDO
UNIVERSIDAD DE ORIENTE NÚCLEO DE BOLÍVAR DEPARTAMENTO DE CIENCIAS ÁREA DE MATEMATICA CATEDRA MATEMATICA 4
UNIVERSIDAD DE ORIENTE NÚCLEO DE BOLÍVAR DEPARTAMENTO DE CIENCIAS ÁREA DE MATEMATICA CATEDRA MATEMATICA 4 APLICACIONES DE LAS MATEMATICAS A LOS CIRCUITOS ELECTRICOS (RC, RL, RLC) Profesor: Cristian Castillo
W. Bolton, Año 2001 Ingeniería de Control. Cap. 2
UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO SEMANA 7 CURSO: CONTROL AUTOMATICO PROFESOR: MSC. CESAR LOPEZ AGUILAR INGENIERO EN ENERGIA-INGENIERO MECANICO ELECT 1. DEFINICION
CINEMÁTICA. Mecánica de Fluidos Avanzada UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL DEPARTAMENTO DE HIDRÁULICA E HIDROLOGÍA
CINEMÁTICA Mecánica de Fluidos Avanzada UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL DEPARTAMENTO DE HIDRÁULICA E HIDROLOGÍA CAMPO DE FLUJO Es cualquier región en el espacio donde hay
Ejercicios de Ampliación de Ecuaciones Diferenciales. Capítulo I
Ejercicios de Ampliación de Ecuaciones Diferenciales. Capítulo I 1. Resuelva las EDs a) x = x 2 1. b) x = x(x 1)(x + 1). c) x = 1 + x 2. d) x = 3x 2/3. 2. Resuelva la ED 2tx (t 2 + x 2 ) = x(x 2 + 2t 2
Trayectorias ortogonales
Trayectorias ortogonales En ingeniería se presenta a menudo el problema geométrico de encontrar una familia de curvas (trayectorias ortogonales) que intersequen ortogonalmente en cada punto a una familia
4.3 Problemas de aplicación 349
4. Problemas de aplicación 49 4. Problemas de aplicación Ejemplo 4.. Circuito Eléctrico. En la figura 4.., se muestra un circuito Eléctrico de mallas en el cual se manejan corrientes, una en cada malla.
CLAVE V
CLAVE-114-2-V-2-00-2015 UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTA DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA SEMESTRE: PRIMERO CÓDIGO DEL CURSO: 114 CURSO: MATEMÁTICA INTERMEDIA 3 JORNADA: TIPO DE EXAMEN:
PRÁCTICA N 3 ECUACIONES DFERENCIALES
PRÁCTICA N 3 ECUACIONES DFERENCIALES 1. Utiliza el método de Euler para aproximar las soluciones de los problemas de valor inicial siguientes a.,, y b.,, y c.,, y d.,, y e. ( ) ( ),, y f.,, y 2. Las soluciones
Ecuaciones Diferenciales Ordinarias
Nivelación de Matemática MTHA UNLP EDO 1 Ecuaciones Diferenciales Ordinarias 1. Introducción Una ecuación diferencial ordinaria es una ecuación de la forma: F (x, y, y,..., y (n) ) = 0 que expresa una
Matemática Aplicada - Licenciatura de Farmacia - Curso 2005/ HOJA 5 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 5
Matemática Aplicada - Licenciatura de Farmacia - Curso 2005/2006 - HOJA 5 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 5 1) A continuación diremos de qué tipo son las ecuaciones diferenciales ordinarias (e.
Última modificación: 1 de agosto de
Contenido CAMPO ELÉCTRICO EN CONDICIONES ESTÁTICAS 1.- Naturaleza del electromagnetismo. 2.- Ley de Coulomb. 3.- Campo eléctrico de carga puntual. 4.- Campo eléctrico de línea de carga. 5.- Potencial eléctrico
UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA. CLAVE V _sM
Universidad de San Carlos SEGUNDO PARCIAL Departamento de Matemática Facultad de Ingeniería MATEMATICA INTERMEDIA 3 UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA
EXAMEN FINAL DE FÍSICA
EXAMEN FINAL DE FÍSICA 1 er parcial Lic. En Química 7 - febrero 00 CUESTIONES PROBLEMAS 1 3 4 5 Suma 1 Suma Total APELLIDOS.NOMBRE.GRUPO. Cuestiones (1 punto cada una) 1. Qué energía hay que proporcionar
Curso de Física I Introducción a la mecánica
Curso de Física I Introducción a la mecánica Prof. Jesús Hernández Trujillo Facultad de Química, UNAM Introducción a la mecánica/jesús HT p. 1 Campo de estudio de la Física Definición: La Física es la
UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V
UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-114-5-V-2-00-2013 CURSO: Matemática Intermedia III SEMESTRE: Segundo CÓDIGO DEL CURSO: 114 TIPO DE EXAMEN:
Ejercicios Tema Resolver las siguientes ecuaciones autónomas: a) x (t) = 1. b) x (t)/x(t) = 2 c) x (t) = x(t) 1. d) x(t)x (t) = x(t) + 1
Ejercicios Tema 4 1. Resolver las siguientes ecuaciones autónomas: a) x (t) = 1 b) x (t)/ = 2 c) x (t) = 1 d) x (t) = + 1 a) = ± 2C + 2t b) = ±e 2t+C c) = ± e 2C+2t + 1 d) = ec+t e C+t ±1 2. Resolver los
Problemas con Valor Inicial P.V.I. Verónica Briceño V. Octubre 2013
Problemas con Valor Inicial Octubre 2013 Pregunta: Suponga que la función aceleración de un móvil es una función continua a(t), es posible determinar la posición, exacta, de este objeto en cualquier instante
SOLUCIÓN GENERAL Y SOLUCIÓN PARTICULAR DE UNA ECUACIÓN DIFERENCIAL
SOLUCIÓN GENERAL Y SOLUCIÓN PARTICULAR DE UNA ECUACIÓN DIFERENCIAL Propósito Al finalizar esta sección, quien imparte el curso habrá logrado que los estudiantes: Distingan la solución general de una solución
TEMA 5: BALANCES DE MATERIA EN RÉGIMEN NO ESTACIONARIO
TEMA 5: DE MATERIA EN RÉGIMEN NO ESTACIONARIO 1. NO ESTACIONARIOS Definición. Mecanismo general e importancia. Ejemplos 2. DE PROCESO Magnitud controlada. Naturalezas formal y temporal. Diferencia. Tiempos
Maestría en Ciencia y Tecnología Ambiental
Maestría en Ciencia y Tecnología Ambiental Temario: Química Propósito general: Proporcionar y estandarizar el conocimiento básico de química a los candidatos para ingresar al programa de Maestría en Ciencia
Laboratorio Nº 3 Aplicaciones de la EDO a la Mecánica, Circuitos Eléctricos y Mezclas
Universidad Diego Portales Segundo Semestre 007 Facultad de Ingeniería Instituto de iencias Básicas Asignatura: Ecuaciones Diferenciales Laboratorio Nº 3 Aplicaciones de la EDO a la Mecánica, ircuitos
Variables separables
Definición: Variables separables Si el segundo miembro de una ecuación expresada de la forma: puede expresar como una función que depende solamente de x, multiplicada por una función que depende solamente
F 28º 1200 N ESTÁTICA Y DINÁMICA
COLEGIO NUESTRO SEÑOR DE LA BUENA ESPERANZA Asignatura: ISICA 11º Profesor: Lic. EDUARDO DUARTE SUESCÚN TALLER DE ESTÁTICA SITUACIÓN PROBLEMA Cuando un barco de gran tamaño entra a un puerto o atraviesa
LABORATORIO DE ELECTRICIDAD Y MAGNETISMO CUESTIONARIO PREVIO PRÁCTICA PLANTEAMIENTO DE UNA RED ELÉCTRICA SENCILLA
CUESTIONARIO PREVIO PRÁCTICA PLANTEAMIENTO DE UNA RED ELÉCTRICA SENCILLA Instrucciones: Responder las siguientes preguntas. 1. Explicar cuál es la utilidad de resolver un sistema de ecuaciones 2. Explicar
CAPACITORES INDUCTORES. Mg. Amancio R. Rojas Flores
CAPACITORES E INDUCTORES Mg. Amancio R. Rojas Flores A diferencia de resistencias, que disipan la energía, condensadores e inductores no se disipan, pero almacenan energía, que puede ser recuperada en
Leyes de Newton o Principios de la dinámica
Leyes de Newton o Principios de la dinámica La dinámica se rige por tres principios fundamentales; enunciados por Isaac Newton en 1687 en su obra Philosophiae naturalis principia mathematica ; conocidos
Ecuaciones diferenciales
de primer orden 21 de noviembre de 2016 de primer orden Introducción Introducción a las ecuaciones diferenciales Las primeras ecuaciones diferenciales surgen al tratar de resolver ciertos problemas de
Introducción a la termodinámica
Introducción a la termodinámica Prof. Jesús Hernández Trujillo Fac. Química, UNAM 31 de enero de 2017 Fisicoquímica La termodinámica es una rama de la Fisicoquímica Fisicoquímica: El estudio de los principios
OPERACIONES UNITARIAS
OPERACIONES UNITARIAS UNIDAD I: MECÁNICA DE FLUIDOS INTRODUCCIÓN (CLASE TEÓRICA) DOCENTE: ING. PABLO GANDARILLA CLAURE [email protected] [email protected] Santa Cruz, noviembre de 2009 SUMARIO
ESTUDIO DEL MOVIMIENTO.
1. INTRODUCCIÓN. ESTUDIO DEL MOVIMIENTO. Un cuerpo está en movimiento cuando cambia de posición a lo largo del tiempo con respecto a un punto de referencia que consideramos fijo. Es un concepto relativo,
5 Aplicaciones de ED de segundo orden
CAPÍTULO 5 Aplicaciones de ED de segundo orden 5.3 Circuitos eléctricos Desde hace más de un siglo, la humanidad ha utilizado en su beneficio la energía eléctrica. Actualmente usamos diferentes aparatos
CINEMÁTICA: ESTUDIO DEL MOVIMIENTO. Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos.
CINEMÁTICA: ESTUDIO DEL MOVIMIENTO Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos. 1. Cuándo un cuerpo está en movimiento? Para hablar de reposo o movimiento
UNIDAD II Ecuaciones diferenciales con variables separables
UNIDAD II Ecuaciones diferenciales con variables separables UNIDAD ECUACIONES DIFERENCIALES CON VARIABLES SEPARABLES Ecuaciones diferenciales de primer orden y de primer grado. Una ecuación diferencial
UCV-INGENIERÍA ECUACIONES DIFERENCIALES (0256)
UCV-INGENIERÍA ECUACIONES DIFERENCIALES (056) EJERCICIOS PROPUESTOS SOBRE ECUACIONES DIFERENCIALES Tema : Introducción a las Ecuaciones diferenciales ordinarias de primer orden sus aplicaciones. Contenidos
Examen de Física-1, 1 Ingeniería Química Primer parcial. Diciembre de 2012 Problemas (Dos puntos por problema).
Examen de Física-1, 1 Ingeniería Química Primer parcial. Diciembre de 2012 Problemas (Dos puntos por problema). Problema 1: Un palo saltador de niño almacena energía en un resorte de constante k 2, 5 10
1 Control Óptimo. 1.1 Introducción Problema típico de control óptimo
1 Control Óptimo 1.1 Introducción El control óptimo es una rama del control moderno que se relaciona con el diseño de controladores para sistemas dinámicos tal que se minimice una función de medición que
Planificación Didáctica. Datos Generales de la Asignatura. Nombre de la Asignatura Física General I Periodo Académico I-2017
Facultad: Ciencias Departamento: Materia Condensada Carrera: Pendiente Planificación Didáctica Datos Generales de la Asignatura Nombre de la Asignatura Física General I Periodo Académico I-2017 Código
Dinámica de la partícula
Dinámica de la partícula DINÁMICA Definición de partícula libre: Es aquella que no está sujeta a interacción alguna. Es una aproximación a la realidad * Si están lo suficientemente alejadas * Si las interacciones
UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS Asignatura: FÍSICA II
UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS Asignatura: FÍSICA II LABORATORIO DE FÍSICA CICLO: AÑO: Laboratorio: 06 Laboratorio 06: DINÁMICA DE LOS FLUIDOS I. OBJETIVOS General Comprobar experimentalmente
Arranque y Parada de un CSTR. Caso isotérmico
Arranque y Parada de un CSTR. Caso isotérmico Alan Didier Pérez Ávila Un CSTR es un reactor ideal con agitación en el que se supone que la concentración en cualquier punto del reactor es la misma. Para
Unidad 5. Fluidos (Dinámica)
Unidad 5 Fluidos (Dinámica) Tipos de Movimiento (Flujos) Flujo Laminar o aerodinámico: el fluido se mueve de forma ordenada y suave, de manera que las capas vecinas se deslizan entre si, y cada partícula
La ecuación diferencial que expresa la profundidad como función del tiempo es dh dt. d2 2gh
Problemas de ecuaciones diferenciales ordinarias. (Cap. 7, Kuo) En los siguientes problemas, comparar la solución de Runge-Kutta con la solución en forma cerrada, o bien, comparar la solución de Runge-Kutta
Al finalizar esta sesión serás capaz de: Comprender el concepto de Fuerza, y su caracter vectorial.
SESIÓN 10 LEYES DEL MOVIMIENTO DE NEWTON I Al finalizar esta sesión serás capaz de: Comprender el concepto de Fuerza, y su caracter vectorial. Explicar las Leyes de Newton. Hasta el momento hemos descrito
El Péndulo Muelle Nicole Sophie Gómez Adenis. Universidad Autónoma de Madrid Grado en Física 4 de Abril de 2011
El Péndulo Muelle Nicole Sophie Gómez Adenis Universidad Autónoma de Madrid Grado en Física 4 de Abril de 2011 1. La Dinámica del Péndulo-Muelle: Básicamente se trata de un muelle con una masa suspendida
TRABAJO Y ENERGIA EN ROTACIÓN. Consideremos un cuerpo que gira alrededor de un eje tal como se muestra en la figura. La energía cinética de un
TRABAJO Y ENERGIA EN ROTACIÓN. Consideremos un cuerpo que gira alrededor de un eje tal como se muestra en la figura. La energía cinética de un elemento de masa dm que gira a una distancia r del eje de
Transferencia de Calor Cap. 1. Juan Manuel Rodriguez Prieto I.M., M.Sc., Ph.D.
Transferencia de Calor Cap. 1 Juan Manuel Rodriguez Prieto I.M., M.Sc., Ph.D. Conceptos básicos Termodinámica: estudia la cantidad de transferencia de calor medida que un sistema pasa por un proceso de
Parte 1: Errores de redondeo. 1. Calcule el error absoluto y el error relativo en las aproximaciones de p mediante p para:
Universidad de Antioquia Facultad de Ciencias Exactas y Naturales Departamento de Matemáticas Seccional Caucasia Taller N o de Análisis Numérico 16 de febrero de 010 Nota: El taller consta de 5 partes
Matemáticas Aplicadas MA101. Ecuaciones diferenciales y matrices en ingeniería
Matemáticas Aplicadas MA101 Semana 01 Elizabeth Villota Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería Ecuaciones diferenciales y matrices en ingeniería Contaminación de lagos y ríos
PRIMERA EVALUACIÓN. FÍSICA Junio 19 del 2014 (11h30-13h30)
PRIMERA EVALUACIÓN DE FÍSICA Junio 19 del 2014 (11h30-13h30) Como aspirante a la ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar" NOMBRE: FIRMA: VERSIÓN
PRIMERA EVALUACIÓN. FÍSICA Junio 19 del 2014 (08h30-10h30)
PRIMERA EVALUACIÓN DE FÍSICA Junio 19 del 2014 (08h30-10h30) Como aspirante a la ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar" NOMBRE: FIRMA: VERSIÓN
PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN C: QUÍMICA
PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DATOS DEL ASPIRANTE Apellidos: Nombre: CALIFICACIÓN PRUEBA OPCIÓN C: QUÍMICA D.N.I. o Pasaporte: Fecha de nacimiento: / / Instrucciones: Lee atentamente
