MOVIMIENTO ARMÓNICO SIMPLE.
|
|
|
- María Rosario Navarrete Juárez
- hace 8 años
- Vistas:
Transcripción
1 MOVIMIENTO ARMÓNICO SIMPLE. JUNIO Un cuerpo de masa m = 10 kg describe un movimiento armónico simple de amplitud A = 30 mm y con un periodo de T = 4 s. Calcula la energía cinética máxima de dicho cuerpo. Qué se puede decir de la energía potencial del cuerpo en el instante en que la energía cinética del cuerpo es máxima? Ec=1, J; Ep=0. SEPTIEMBRE Calcula los valores máximos de la velocidad y de la aceleración de un punto dotado de movimiento armónico simple de amplitud A = 10 cm y periodo T = 2 s. 0,314 m/s; 0,987 m/s 2. JUNIO Un cuerpo de masa m = 800 g describe un movimiento armónico simple con una elongación máxima de 30 cm y un periodo de T = 2 s. Calcula la energía cinética máxima. 0,355 m/s. SEPTIEMBRE Una partícula de masa m describe un movimiento armónico simple de amplitud A y frecuencia angular. Determina la energía cinética y la energía potencial en el instante en que la elongación es nula y en el instante en que es máxima. Si x= 0, Ec= ½ m 2A2 y Ep = 0; Si x = A, Ep= ½ m 2A2 y Ec = 0 JUNIO Un cuerpo dotado de un movimiento armónico simple de amplitud A = 10 cm, tarda t = 0,2 s en describir una oscilación completa. Si en el instante t = 0 s su velocidad era nula y su elongación positiva, determina: a.- La ecuación que representa el movimiento del cuerpo. x= 0,1 cos (10πt) b.- La velocidad del cuerpo en el instante t = 0,25 s. -3,14 m/s Una partícula realiza un movimiento armónico. Si la frecuencia disminuye a la mitad, manteniendo la amplitud constante, qué ocurre con el periodo, la velocidad máxima y la energía total? T= 2T o ; v máx = ½ v o máx ; E T = ¼ E To SEPTIEMBRE En qué posición o posiciones se igualan las energías cinética y potencial de un cuerpo que describe un movimiento armónico simple de amplitud A? x= 0,7071 A
2 y(mm) JUNIO Tenemos un cuerpo de masa m = 10 kg que realiza un movimiento armónico simple. La figura adjunta es la representación de su elongación (y/mm) en función del tiempo (t/s). Calcula: a.- La ecuación matemática del movimiento armónico y(t), con los valores numéricos correspondientes que se han de deducir de la gráfica. y= 4 sin /6(t+1) mm b.- La velocidad de la partícula en función del tiempo, y su valor concreto en t = 5 s. v= 4 /6 cos /6 (t+1) mm/s; v5s = -2,09 mm/s t/s SEPTIEMBRE Un cuerpo oscila con un movimiento armónico simple, cuya amplitud y periodo son respectivamente, A = 10 cm y T = 4 s. En el instante inicial, t = 0 s, la elongación vale x = 10 cm. Determina la elongación en el instante t = 1s. x= La gráfica adjunta muestra la energía potencial de un sistema provisto de un movimiento armónico simple de amplitud A = 9 cm, en función de su desplazamiento x respecto de la posición de equilibrio. Calcula la energía cinética del sistema para la posición de equilibrio x = 0 cm. Calcula la energía total del sistema para la posición x = 2 cm. 0,05 J en los dos casos SEPTIEMBRE Una partícula puntual realiza un movimiento armónico simple de amplitud A = 8 m que responde a la ecuación a = -16 x, donde x indica la posición de la partícula en metros y a es la aceleración del movimiento expresada en m/s 2. a.- Calcula la frecuencia y el valor máximo de la velocidad.
3 = 0,67 Hz; v máx.= 32 m/s b.- Calcula el tiempo invertido por la partícula para desplazarse desde la posición x 1 = 2 m hasta la posición x 2 = 4 m. 0,07 s. JUNIO Una partícula de masa m oscila con frecuencia angular ω según un movimiento armónico simple de amplitud A. Deduce la expresión que proporciona la energía mecánica de esta partícula en función de los parámetros anteriores. E m = ½ mω2a2. SEPTIEMBRE Una partícula efectúa un movimiento armónico simple, cuya ecuación es x(t)= 0,3 cos[2t+ /6], donde x se mide en m y t en s. a.- Determina la frecuencia, el periodo, la amplitud y la fase inicial del movimiento. = -1 Hz; T= s; A= 0,3 m; o = /6 rad b.- Calcula la aceleración y la velocidad en el instante t = 0 s. a= -1,04 m/s 2 ; v= -0,3 m/s. SEPTIEMBRE Una partícula de masa m = 2 kg efectúa un movimiento armónico simple de amplitud A = 1 cm. La elongación y la velocidad de la partícula en el instante inicial t = 0 s vale x o = 0,5 cm y v o = 1 cm/s, respectivamente. a.- Determina la fase inicial y la frecuencia del MAS. φ o = 0,52 rad; υ= 0,184 Hz b.- Calcula la energía total del MAS, así como la energía cinética y potencial en el instante t = 1,5 s. E T = 1, J; Ec= 5, J; E P = J. JUNIO Una masa m colgada de un muelle de constante elástica K y longitud L oscila armónicamente con una frecuencia f. La misma masa se cuelga de otro muelle con la misma constante elástica K y longitud doble 2L. Con qué frecuencia oscilará? Razona la respuesta. Con la misma. SEPTIEMBRE Una partícula oscila con un movimiento armónico simple a lo largo del eje X. La ecuación que describe el movimiento de la partícula es x = 4 cos(πt + π/4), donde x se expresa en metros y t en segundos. a.- Determina la amplitud, la frecuencia y el periodo del movimiento. A= 4 m; = 0,5 Hz; T = 2 s b.- Calcula la posición, la velocidad y la aceleración de la partícula en el instante t = 1 s.
4 x = -2,83 m; v = 8,89 m/s; a = 27,92 m/s 2. c.- Determina la velocidad y la aceleración máximas de la partícula. v máx = 12,57 m/s; a máx = 39,48 m/s 2 JUNIO Una partícula realiza un movimiento armónico simple. Si la frecuencia se duplica, manteniendo constante la amplitud, qué ocurre con el periodo, la velocidad máxima y la energía total? Razona la respuesta. T = T/2; v máx = 2 v máx ; E = 4 E Un cuerpo realiza un movimiento armónico simple. La amplitud del movimiento es A = 2 cm, cuyo periodo T = 200 ms y la elongación en el instante inicial es y(0) = +1 cm. a.- Escribe la ecuación de la elongación del movimiento en cualquier instante y (t). y = 2 sin (10пt + п/6); y = 2 cos (10пt - п/3) b.- Representa gráficamente esta elongación en función del tiempo. y (cm) t (s) SEPTIEMBRE Calcula los valores máximos de la posición, velocidad y aceleración de un punto que oscila según la función x = cos(2πt+φ0) metros, donde t se expresa en segundos. x máx = 1 m; v máx = 6,28 m/s; a máx = 2,47 m/s 2. JUNIO Una partícula realiza el movimiento armónico representado en la figura: a.- Calcula la amplitud, la frecuencia angular y la fase inicial de este movimiento. Escribe la ecuación del movimiento en función del tiempo.
5 A = 1 cm; ω = 2π rad/s; φ 0 = 0,41 rad; y = sin(2πt+0,41) (y = cos(2πt-1,16)) b.- Calcula la velocidad y aceleración de la partícula en t = 2 s. v 2s = 5,76 m/s, a 2s = -15,74 m/s Una partícula de masa m = 2 kg, describe un movimiento armónico simple cuya elongación viene expresada por la función x = 0,6 sin (24πt) metres, donde t se expresa en segundos. Calcula: a.- La constante elástica del oscilador y su energía mecánica total. k = N/m, E M =2046,6 J b.- El primer instante de tiempo en que la energía cinética y la energía potencial de la partícula son iguales. 0,01 s. SEPTIEMBRE Una persona de masa 60 kg que está sentada en el asiento de un vehículo, oscila verticalmente alrededor de su posición de equilibrio, comportándose como un oscilador armónico simple. Su posición inicial es y(0) = A cos(π/6) cm, donde A = 1,2 cm, y su velocidad inicial v y (0) = -2,4 sin(π/6) cm/s. Calcula, justificando brevemente: a.- La posición vertical de la persona en cualquier instante del tiempo, es decir, la función y (t). y = 1,2 cos (2t+ π /6) (y en cm, t en s) b.- La energía mecánica de dicho oscilador en cualquier instante del tiempo. 172,8 J JUNIO La gráfica adjunta representa la energía cinética, en función del tiempo, de un cuerpo sometido solamente a la fuerza de un muelle de constante elástica k = 100 N/m. Determina razonadamente el valor de la energía mecánica del cuerpo, de su energía potencial máxima y de la amplitud del movimiento. A = 0.2 m; E m = 2 J 24.- La velocidad de una masa puntual cuyo movimiento es armónico simple viene dada, en unidades del SI, por la expresión v(t) = π sen[π(t/2 + ¼)]. Calcula el periodo, la amplitud y la fase inicial del movimiento.
6 T = 4 s; A = 0.02 m; Fase inicial = π/4 JUNIO Un cuerpo dotado de movimiento armónico simple de amplitud A = 4 cm, tarda 0.1 s en describir una oscilación completa. Si en el instante t = 0 su velocidad es nula y su elongación es positiva, calcula: a.- La ecuación que representa el movimiento del cuerpo. x = 4 sen(20πt+π/2) b.- La velocidad del cuerpo en el instante t = 1 s. v = 0 cm/s c.- La aceleración del cuerpo en el instante t = 1 s. a = cm/s 2 JULIO Una partícula de masa m = 0.05 kg realiza un movimiento armónico simple con una amplitud A = 0.2 m y una frecuencia f = 2 Hz. Calcula el periodo, la velocidad máxima y la energía total. T = 0.5 s; v = 0.8π; E = J. JUNIO Un cuerpo de 2 Kg de masa realiza un movimiento armónico simple. La gráfica representa su elongación en función del tiempo, y (t). a.- Escribe la expresión de y (t) en general y particulariza sustituyendo los valores de la amplitud, frecuencia angular y la fase inicial obtenidos a partir de la gráfica. y = sen (t π/2) b.- Calcula la expresión de la velocidad del cuerpo v (t) y su valor para t = 3 s. 4 2 y (mm) t (s) v = π/6 cos(t π/2); v = m/s. JULIO Un bloque apoyado sobre una mesa sin rozamiento y acoplado a un muelle oscila entre las posiciones a y b de la figura. El tiempo que tarda en desplazarse entre a y b es de 2 s. Si en t = 0 el bloque se encuentra en la posición a, representa la gráfica de la posición en función del tiempo, x(t). Señala en dicha gráfica la amplitud A y el periodo del movimiento. Indica razonadamente sobre la gráfica el punto correspondiente a la posición del bloque cuando ha transcurrido un tiempo t = 1.5 periodos.
7 y = A sen (π/2 t + π/2)
PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso
PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso 2014-15 1) (P Jun94) La ecuación del movimiento de un impulso propagándose a lo largo de una cuerda viene dada por, y = 10 cos(2x-
MOVIMIENTO ARMÓNICO SIMPLE
MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica
Movimiento armónico simple Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de
Movimiento armónico simple 1.- 2015-Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de constante elástica k = 2 N m -1 que se encuentra fijo a una
10) Una masa de 1 kg cuelga de un resorte cuya constante elástica es k = 100 N/m, y puede oscilar libremente sin rozamiento. Desplazamos la masa 10
PROBLEMAS M.A.S. 1) Una partícula animada de M.A.S. inicia el movimiento en el extremo positivo de su trayectoria, y tarda 0,25 s en llegar al centro de la misma. La distancia entre ambas posiciones es
Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012.
2013-Modelo A. Pregunta 2.- Un objeto está unido a un muelle horizontal de constante elástica 2 10 4 Nm -1. Despreciando el rozamiento: a) Qué masa ha de tener el objeto si se desea que oscile con una
Problemas de Movimiento vibratorio. MAS 2º de bachillerato. Física
Problemas de Movimiento vibratorio. MAS º de bachillerato. Física 1. Un muelle se deforma 10 cm cuando se cuelga de él una masa de kg. Se separa otros 10 cm de la posición de equilibrio y se deja en libertad.
Problemas de M.A.S. La partícula se encuentra en el extremo opuesto al que estaba al iniciar el movimiento.
Problemas de M.A.S. 1.- Una partícula animada de m.a.s. inicia el movimiento en el extremo positivo de su trayectoria y tarda 0'5 s en llegar al centro de la misma. La distancia entre ambas posiciones
, donde ν 1 y ν 2 son las frecuencias m a las que oscilaría el bloque si se uniera solamente al resorte 1 o al resorte 2.
MAS. EJERCICIOS Ejercicio 1.-Un oscilador consta de un bloque de 512 g de masa unido a un resorte. En t = 0, se estira 34,7 cm respecto a la posición de equilibrio y se observa que repite su movimiento
EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS
INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin
PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE M.A.S. ONDAS José Mª Martín Hernández
MAS Estudio dinámico y cinemático 1. (90-J11) Una pequeña plataforma horizontal sufre un movimiento armónico simple en sentido vertical, de 3 cm de amplitud y cuya frecuencia aumenta progresivamente. Sobre
TEMA 5.- Vibraciones y ondas
TEMA 5.- Vibraciones y ondas CUESTIONES 41.- a) En un movimiento armónico simple, cuánto vale la elongación en el instante en el que la velocidad es la mitad de su valor máximo? Exprese el resultado en
Física 2º Bach. Ondas 16/11/10
Física º Bach. Ondas 16/11/10 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestiones 4 puntos (1 cada apartado o cuestión, teórica o práctica) No se
Problemas Movimiento Armónico Simple
Problemas Movimiento Armónico Simple 1. Una partícula describe un M.A.S de pulsación w=π rad/s. En un instante dado se activa el cronómetro. En ese momento la elongación que tiene un sentido de recorrido
Movimiento armónico simple. Movimiento armónico simple Cuestiones
Movimiento armónico simple Cuestiones (99-R) Una partícula describa un movimiento armónico simple de amplitud A y frecuencia f. a) Represente gráficamente la posición y la velocidad de la partícula en
Tema 1 Movimiento Armónico Simple
Tema Movimiento Armónico Simple. Conceptos de movimiento oscilatorio: el movimiento armónico simple (MAS).. Ecuación general del MAS..3 Cinemática del MAS..4 Dinámica del MAS..5 Energía del MAS..6 Aplicación
Ejercicios de M.A.S y Movimiento Ondulatorio de PAU
1. En el laboratorio del instituto medimos cinco veces el tiempo que un péndulo simple de 1m de longitud tarda en describir 45 oscilaciones de pequeña amplitud. Los resultados de la medición se muestran
Movimiento Armónico Simple
Movimiento Armónico Simple Ejercicio 1 Una partícula vibra con una frecuencia de 30Hz y una amplitud de 5,0 cm. Calcula la velocidad máxima y la aceleración máxima con que se mueve. En primer lugar atenderemos
Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012.
2013-Modelo B. Pregunta 2.- La función matemática que representa una onda transversal que avanza por una cuerda es y(x,t)=0,3 sen (100πt 0,4πx + Φ 0), donde todas las magnitudes están expresadas en unidades
Actividades del final de la unidad
Actividades del final de la unidad. Un cuerpo baja por un plano inclinado y sube, a continuación, por otro con igual inclinación, alcanzando en ambos la misma altura al deslizar sin rozamiento. Este movimiento,
ONDAS. m s. ; b) 3m; 40π. SOL: a) 100 Hz; 2 π
ONDAS. 1. Considere la siguiente ecuación de una onda : y ( x, t ) = A sen ( b t - c x ) ; a. qué representan los coeficientes A, b, c? ; cuáles son sus unidades? ; b. qué interpretación tendría que la
CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS
CÁTEDRA DE FÍSICA I Ing. Civil, Ing. Electromecánica, Ing. Eléctrica, Ing. Mecánica OSCILACIONES - PROBLEMAS RESUELTOS PROBLEMA Nº 1 Un cuerpo oscila con movimiento armónico simple a lo largo del eje x.
MOVIMIENTO ARMÓNICO PREGUNTAS
MOVIMIENTO ARMÓNICO PREGUNTAS 1. Qué ocurre con la energía mecánica del movimiento armónico amortiguado? 2. Marcar lo correspondiente: la energía de un sistema masa resorte es proporcional a : i. la amplitud
a) La pulsación o frecuencia angular, será: K = mω 2 = 0,2(8π) 2 = 126,3 N m b) Conocida la constante, se obtiene la amplitud: 2Em 2 KA2 A = 50 = 1
OPCIÓN A Cuestión 1.- Un sistema elástico, constituido por un cuerpo de masa 00 g unido a un muelle, realiza un movimiento armónico simple con un periodo de 0,5 s. Si la energía total del sistema es 8
Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A
Problemas de Ondas.- Una onda transversal sinusoidal, que se propaga de derecha a izquierda, tiene una longitud de onda de 0 m, una amplitud de 4 m y una velocidad de propagación de 00 m/s. Si el foco
EJERCICIOS ONDAS PAU
EJERCICIOS ONDAS PAU 1 Una masa m oscila en el extremo de un resorte vertical con una frecuencia de 1 Hz y una amplitud de 5 cm. Cuando se añade otra masa, de 300 g, la frecuencia de oscilación es de 0,5
(99-R) Un movimiento armónico simple viene descrito por la expresión:
Movimiento armónico simple Cuestiones (99-R) Una partícula describa un movimiento armónico simple de amplitud A y frecuencia f. a) Represente gráficamente la posición y la velocidad de la partícula en
Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre:
Física moderna 9/11/7 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: 1. Un muelle de constante k =, 1 3 N/m está apoyado en una superficie horizontal sin rozamiento. A 1, m hay un bucle vertical de
MOVIMIENTO ARMÓNICO SIMPLE
MOVIMIENTO ARMÓNICO SIMPLE Estudio del movimiento armónico simple. Desde el punto de vista dinámico, es el movimiento de una partícula que se mueve sobre una recta, sometida a la acción de una fuerza atractiva
Movimiento Armónico Simple
mailto:[email protected] 17/10/007 Física ªBachiller 6.- La ecuación de un movimiento armónico es: Movimiento Armónico Simple 1.- La ecuación de un movimiento armónico es: x = 50sen(10t+5). Calcular
INDICE. Introducción 1. Movimiento vibratorio armónico simple (MVAS) 1. Velocidad en el MVAS 2. Aceleración en el MVAS 2. Dinámica del MVAS 3
INDICE Introducción 1 Movimiento vibratorio armónico simple (MVAS) 1 Velocidad en el MVAS Aceleración en el MVAS Dinámica del MVAS 3 Aplicación al péndulo simple 4 Energía cinética en el MVAS 6 Energía
1.1. Movimiento armónico simple
Problemas resueltos 1.1. Movimiento armónico simple 1. Un muelle cuya constante de elasticidad es k está unido a una masa puntual de valor m. Separando la masa de la posición de equilibrio el sistema comienza
TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE
TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE Un movimiento periódico es aquel que describe una partícula cuando las variables posición, velocidad y aceleración de su movimiento toman los mismos valores después de
Movimientos periódicos PAU
01. Un muelle de masa despreciable y de longitud 5 cm cuelga del techo de una casa en un planeta diferente a la Tierra. Al colgar del muelle una masa de 50 g, la longitud final del muelle es 5,25 cm. Sabiendo
FÍSICA de 2º de BACHILLERATO VIBRACIONES Y ONDAS
FÍSICA de 2º de BACHILLERATO VIBRACIONES Y ONDAS EJERCICIOS RESUELTOS QUE HAN SIDO PROPUESTOS EN LOS EXÁMENES DE LAS PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS EN LA COMUNIDAD DE MADRID (1996 2013) DOMINGO
Solución: a) Las fuerzas gravitatorias son centrales, por tanto, el momento angular es constante: sen 90 º. v p
A Opción A A.1 Pregunta El planeta Marte, en su movimiento alrededor del Sol, describe una órbita elíptica. El punto de la órbita más cercano al Sol, perihelio, se encuentra a 06.7 10 6 km, mientras que
1. Una onda sonora armónica tiene una frecuencia de 1 Hz y una amplitud de 100
ONDAS 1. Una onda sonora armónica tiene una frecuencia de 1 Hz y una amplitud de 100 Å. a) Calcular la longitud de onda; b) Escribir la ecuación de onda correspondiente. (1 Å = 10-10 m; v sonido = 340
GUIA N o 1: ONDAS Física II
GUIA N o 1: ONDAS Física II Primer Cuatrimestre 2013 Docentes: Ing. Daniel Valdivia Dr. Alejandro Gronoskis Lic. Maria Ines Auliel Universidad Nacional de Tres de febrero Depto de Ingeniería Sede Caseros
Oscilaciones amortiguadas.
PROBLEMAS DE OSCILACIONES. Oscilaciones amortiguadas. Autor: José Antonio Diego Vives Documento bajo licencia Creative Commons 3.0, BY-SA (Atribución-CompartirIgual) Problema 1 Un oscilador armónico amortiguado,
Slide 1 / 47. Movimiento Armónico Simple Problemas de Práctica
Slide 1 / 47 Movimiento Armónico Simple Problemas de Práctica Slide 2 / 47 Preguntas de Multiopcion Slide 3 / 47 1 Un bloque con una masa M está unida a un resorte con un constante k. El bloque se somete
Movimientos vibratorio y ondulatorio.-
Movimientos vibratorio y ondulatorio.- 1. Una onda armónica, en un hilo tiene una amplitud de 0,015 m. una longitud de onda de 2,4 m. y una velocidad de 3,5 m/s. Determine: a) El período, la frecuencia
1. Escribe en el recuadro la letra correspondiente a cada elemento del movimiento oscilatorio.
COLEGIO JUVENTUDES UNIDAS Asignatura: undecimo Periodo: 1 Formulas EVALUACION DE COMPROBACION PRIMER PERIODO x = Acos (wt + φ) v = wasen(wt + φ) a = w 2 Acos(wt + φ) F = ma a = w 2 A v = wa w = 2π T, w
Estática y dinámica de un muelle vertical
Prácticas de laboratorio de Física I Estática y dinámica de un muelle vertical Curso 2010/11 1. Objetivos Determinación de la constante del muelle. Estudio de un muelle oscilante como ejemplo de movimiento
Repaso del 1º trimestre: ondas y gravitación 11/01/08. Nombre: Elige en cada bloque una de las dos opciones.
Repaso del 1º trimestre: ondas y gravitación 11/01/08 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Elige en cada bloque una de las dos opciones. Bloque 1. GRAVITACIÓN. Elige un problema: puntuación 3 puntos
Tema 6: Movimiento ondulatorio.
Tema 6: Movimiento ondulatorio. 1. Ondas: conceptos generales. 2. Estudio cualitativo de algunas ondas. Fenómenos ondulatorios más evidentes en cada una: a) Ondas en una cuerda b) Ondas en la superficie
PROBLEMAS DE MOVIMIENTO VIBRATORIO Y ONDULATORIO.
Problemas de Física. 2º de Bachillerato. I.E.L. Curso 2015-2016 1 PROBLEMAS DE MOVIMIENTO VIBRATORIO Y ONDULATORIO. ECUACION DEL MOVIMIENTO VIBRATORIO 1 Una partícula de masa m = 20g oscila armónicamente
1. Las gráficas nos informan
Nombre y apellidos: Puntuación: 1. Las gráficas nos informan Una partícula de 50 g de masa está realizando un movimiento armónico simple. La figura representa la elongación en función del tiempo. 0,6 0,5
Movimiento armónico simple.
1 Movimiento armónico simple. 1.1. Concepto de movimiento armónico simple: Su ecuación. Supongamos un muelle que cuelga verticalmente, y de cuyo extremo libre pende una masa m. Si tiramos de la masa y
dy v 4 cos 100 t 20 x v a 400 sen 100 t 20 x amax dt
Moimientos periódicos 01. Una onda transersal se propaga a lo largo de una cuerda horizontal, en el sentido negatio del eje de abscisas, siendo 10 cm la distancia mínima entre dos puntos que oscilan en
VIBRACIONES Y ONDAS 1. 2.
VIBRACIONES Y ONDAS 1. 2. 3. 4. Un objeto se encuentra sometido a un movimiento armónico simple en torno a un punto P. La magnitud del desplazamiento desde P es x. Cuál de las siguientes respuestas es
PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA)
PROBLEMAS DE ONDAS. Función de onda, energía. Autor: José Antonio Diego Vives Documento bajo licencia Creative Commons (BY-SA) Problema 1 Escribir la función de una onda armónica que avanza hacia x negativas,
Módulo 4: Oscilaciones
Módulo 4: Oscilaciones 1 Movimiento armónico simple Las vibraciones son un fenómento que podemos encontrar en muchas situaciones En este caso, en equilibrio, el muelle no ejerce ninguna fuerza sobre el
DEPARTAMENTO DE FÍSICA COLEGIO "LA ASUNCIÓN"
COLEGIO "LA ASUNCIÓN" 1(8) Ejercicio nº 1 La ecuación de una onda armónica es: Y = 0 02 sen (4πt πx) Estando x e y expresadas en metros y t en segundos: a) Halla la amplitud, la frecuencia, la longitud
Movimiento Oscilatorio
Movimiento Oscilatorio 1. Introducción.. El Movimiento Armónico Simple. a) Estudio cinemático. b) Estudio dinámico. c) Estudio energético. 3. Péndulos. a) Péndulo simple. b) Péndulo físico. 4. Oscilaciones
PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO
PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO 1. Una onda transversal se propaga en una cuerda según la ecuación (unidades en el S.I.) Calcular la velocidad de propagación de la onda y el estado de vibración
Soluciones. k = 2π λ = 2π 0,2 = 10πm 1. La velocidad de fase de una onda también es conocida como la velocidad de propagación: = λ T = 1,6m / s.
Ejercicio 1 Soluciones Una onda armónica que viaje en el sentido positivo del eje OX tiene una amplitud de 8,0 cm, una longitud de onda de 20 cm y una frecuencia de 8,0 Hz. El desplazamiento transversal
Más ejercicios y soluciones en fisicaymat.wordpress.com
OSCILACIONES Y ONDAS 1- Todos sabemos que fuera del campo gravitatorio de la Tierra los objetos pierden su peso y flotan libremente. Por ello, la masa de los astronautas en el espacio se mide con un aparato
PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA
PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA CURSO 2012-2013 CONVOCATORIA: JULIO MATERIA: FÍSICA De las dos opciones propuestas, sólo hay que desarrollar una opción
MOVIMIENTO ARMÓNICO SIMPLE
ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: FENÓMENOS ONDULATORIOS GUÍA: 1201 ESTUDIANTE: E-MAIL: FECHA: MOVIMIENTO ARMÓNICO SIMPLE En las preguntas 1 a 10, el enunciado es una afirmación seguida de la palabra
EJERCICIOS DE SELECTIVIDAD ONDAS
EJERCICIOS DE SELECTIVIDAD ONDAS 1. La ecuación de una onda armónica que se propaga por una cuerda es: y (x, t) = 0,08 cos (16 t - 10 x) (S.I.) a) Determine el sentido de propagación de la onda, su amplitud,
amax=aω 2 ; β=10logi/io; ω=2πf;t=1/f; κ=1/λ; τ=ln2/λ; P=1/f (m);e p= gdr; N=Noe λt ; 1/f =1/s +1/s; Fc=mv 2 /r; y(x,t)=asen(ωt±kx); W=qΔV; F=qvxB;
E=hf;p=mv;F=dp/dt;I=Q/t;Ec=mv 2 /2; TEMA 5: VIBRACIONES Y ONDAS F=KQq/r 2 ;L=rxp;x=Asen(ωt+φo);v=λf c 2 =1/εoµo;A=πr 2 ;T 2 =4π 2 /GMr 3 ;F=ma; L=dM/dtiopasdfghjklzxcvbvv=dr/dt; M=rxF;sspmoqqqqqqqqqqqp=h/λ;
Unidad 12: Oscilaciones
Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 12: Oscilaciones Movimiento armónico simple: x(t), v(t) y a(t) 10,0 x(t) a(t) 8,0 6,0
EJERCICIOS DE FÍSICA III. MSc. José Fernando Pinto Parra
Profesor: José Fernando Pinto Parra Ejercicios de Movimiento Armónico Simple y Ondas: 1. Calcula la amplitud, el periodo de oscilación y la fase de una partícula con movimiento armónico simple, si su ecuación
TEMA I.4. Descripción Matemática de una Onda. Dr. Juan Pablo Torres-Papaqui
TEMA I.4 Descripción Matemática de una Onda Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) [email protected] División de Ciencias Naturales y Exactas,
I.E.S. FRANCISCO GARCIA PAVÓN. DEPARTAMENTO DE FÍSICA Y QUÍMICA CURSO CURSO: B2CT FECHA: 16/11/2011
FÍSICA Y QUÍMICA CURSO 0-0 NOMBRE: SOLUCIONADO CURSO: BCT FECHA: 6//0 FÍSICA TEMA. M.A.S. TEMA. MOVIMIENTOS ONDULATORIOS. NORMAS GENERALES - Escriba a bolígrafo. - No utilice ni típex ni lápiz. - Si se
Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía
Física y Química 1º Bachillerato LOMCE Bloque 3: Trabajo y Energía Trabajo y Energía 1 El Trabajo Mecánico El trabajo mecánico, realizado por una fuerza que actúa sobre un cuerpo que experimenta un desplazamiento,
1.6. MOVIMIENTO CIRCULAR
1.6. MOVIMIENTO CIRCULAR 1.6.1. Si un móvil animado de movimiento circular uniforme 0 describe un arco de 60 siendo el radio de 2 m, habrá recorrido una longitud de: 2π 3π a) m b) m c) 12 m 3 2 12 d) m
MOVIMIENTO ONDULATORIO
MOVIMIENTO ONDULATORIO 2001 1.- Un objeto de 0,2 kg, unido al extremo de un resorte, efectúa oscilaciones armónicas de 0,1 π s de período y su energía cinética máxima es de 0,5 J. a) Escriba la ecuación
Ejercicios de M.A.S y Movimiento Ondulatorio de PAU
1. En el laboratorio del instituto medimos cinco veces el tiempo que un péndulo simple de 1m de longitud tarda en describir 45 oscilaciones de pequeña amplitud. Los resultados de la medición se muestran
Olimpiadas de Física Córdoba 2010
E n el interior encontrarás las pruebas que componen esta fase local de las olimpiadas de Física 2012. Están separadas en tres bloques. Uno relativo a dinámica y campo gravitatorio (obligatorio) y otros
1. Se aplica un M.A.S. a una determinada masa sobre un resorte. Cómo se denomina el máximo desplazamiento desde el punto de balance?
Física de PSI - movimiento armónico simple (M.A.S.) Preguntas de múltiple opción 1. Se aplica un M.A.S. a una determinada masa sobre un resorte. Cómo se denomina el máximo desplazamiento desde el punto
PROBLEMAS Física 2º Bachillerato VIBRACIONES Y ONDAS
PROBLEMAS Física 2º Bachillerato VIBRACIONES Y ONDAS 1. Justifica si las siguientes cuestiones son verdaderas o falsas: a) La amplitud de un movimiento vibratorio es igual a la elongación de la partícula.
Districte universitari de Catalunya
SERIE 3 PAU. Curso 2003-2004 FÍSICA Districte universitari de Catalunya Resuelva el problema P1 y responda a las cuestiones C1 y C2. Escoja una de las opciones (A o B) y resuelva el problema P2 y responda
BEAT RAMON LLULL CURS INCA
COL LEGI FÍSICA BEAT RAMON LLULL CURS 2007-2008 INCA 1. Escriba la expresión matemática de una onda armónica unidimensional como una función de x (distancia) y t (tiempo) y que contenga las magnitudes
Ejercicios resueltos
Ejercicios resueltos Boletín 3 Movimiento armónico simple Ejercicio Una partícula que vibra a lo largo de un segmento de 0 cm de longitud tiene en el instante inicial su máxima velocidad que es de 0 cm/s.
ECUACIÓN DEL M.A.S. v( t) = dx. a( t) = dv. x( 0) = 0.26 m v( 0) = 0.3 m / s
ECUACIÓN DEL M.A.S. Una partícula tiene un desplazamiento x dado por: x ( t ) = 0.3cos t + π 6 en donde x se mide en metros y t en segundos. a) Cuáles son la frecuencia, el periodo, la amplitud, la frecuencia
EXAMEN FÍSICA 2º BACHILLERATO TEMA 2: CAMPO ELECTROMAGNÉTICO
INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin
Ejercicios de Vibraciones y Ondas. A) M.A.S y PÉNDULO
Ejercicios de Vibraciones y Ondas A) M.A.S y PÉNDULO 1. Si se duplica la energía mecánica de un oscilador armónico, explica qué efecto tiene: a) En la amplitud y la frecuencia de las oscilaciones. b) En
Ejercicios de M.A.S y Movimiento Ondulatorio de PAU
1. En el laboratorio del instituto medimos cinco veces el tiempo que un péndulo simple de 1m de longitud tarda en describir 45 oscilaciones de pequeña amplitud. Los resultados de la medición se muestran
Problemas Resueltos Primera Parte
IES Rey Fernando VI San Fernando de Henares Departamento de Física y Química Problemas Resueltos Primera Parte Movimiento Armónico Simple Movimiento Ondulatorio El Sonido Profesor : Jesús Millán Crespo
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA TERCERA EVALUACIÓN DE FÍSICA A SEPTIEMBRE 17 DE 2014 SOLUCIÓN Pregunta 1 (8 puntos) P y R señalan
UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE
UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE OBJETIVOS DEL APRENDIZAJE: ESTUDIAR LAS OSCILACIONES DEL PÉNDULO Y DETERMINAR LAS SIMPLIFICACIONES
(97-R) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro?
Movimiento ondulatorio Cuestiones (96-E) a) Explique la periodicidad espacial y temporal de las ondas y su interdependencia. b) Una onda de amplitud A, frecuencia f, y longitud de onda λ, se propaga por
Ejercicio nº 1 Los vectores de posición y velocidad de un móvil en función del tiempo son:
Ejercicio nº 1 Los vectores de posición y velocidad de un móvil en función del tiempo son: R 2 = (20 + 10t)i + (100 4t )j y V = 10i 8t j Calcula: a) osición y velocidad en el instante inicial y a los 4
CANTABRIA / JUNIO 02. LOGSE / FÍSICA / EXAMEN COMPLETO
CANTABRIA / JUNIO 0. LOGSE / FÍSICA / EXAMEN COMPLETO El alumno elegirá tres de las cinco cuestiones propuestas, así como sólo una de las dos opciones de problemas CUESTIONES ( puntos cada una) A. Se considera
Departamento de Física y Química
1 PAU Física, modelo 2011/2012 OPCIÓN A Pregunta 1.- Se ha descubierto un planeta esférico de 4100 km de radio y con una aceleración de la gravedad en su superficie de 7,2 m s -2. Calcule la masa del planeta.
Opción B ANDALUCÍA CONVOCATORIA JUNIO GM T m s (3R T ) 2 Despejando la velocidad orbital: m s v 0 (3R T ) F g F c
Física 1 Física SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: Tomás Caballero Rodríguez Opción A a) I 1 B B 1 F 1, F, 1 Vemos que la lente divergente desvía los rayos paralelos al eje óptico y que los rayos que
Departamento de Física y Química. PAU Física, modelo 2012/2013 OPCIÓN A
1 PAU Física, modelo 2012/2013 OPCIÓN A Pregunta 1.- Un cierto planeta esférico tiene una masa M = 1,25 10 23 kg y un radio R = 1,5 10 6 m. Desde su superficie se lanza verticalmente hacia arriba un objeto,
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA Tema 1 (16 puntos) Dos muchachos juegan en una pendiente en la forma que se indica en la figura.
EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com
VIBRACIONES Y ONDAS 1- La ecuación de una onda en una cuerda es: yx,t0,02sen8x96t S.I. a) Indique el significado físico de las magnitudes que aparecen en esa ecuación y calcule el periodo, la longitud
EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com
DINÁMICA Y ENERGÍA 1- Un bloque de 5 kg se encuentra inicialmente en reposo en la parte superior de un plano inclinado de 10 m de longitud, que presenta un coeficiente de rozamiento µ=0,2 (ignore la diferencia
ANDALUCÍA / JUNIO 04. LOGSE / FÍSICA / VIBRACIONES Y ONDAS
ANDALUCÍA / JUNIO 04. LOGSE / FÍSICA / VIBRACIONES Y ONDAS OPCIÓN A. Considere la siguiente ecuación de una onda : y ( x, t ) A sen ( b t - c x ) ; a) qué representan los coeficientes A, b, c? ; cuáles
MOVIMIENTO ARMÓNICO SIMPLE
MOVIMIENTO ARMÓNICO SIMPLE 1.- La ecuación del movimiento de un móvil viene expresada por: x = 4 sen(8t + 2) Halla la amplitud, el período, la frecuencia y la fase. Sol.: 4 ; π/4 seg; 4/ π s -1 ; n = 2
FÍSICA. rapidez, en m/s, cuando pase por la B) 3 C) 4 D) 6 E) 7
A B FÍSICA REPASO 03: ENERGÍA. CANTIDAD DE MOVIMIENTO. MAS. ONDAS. 1. Determine la veracidad (V) o falsedad (F) de las siguientes proposiciones: I. Una fuerza de fricción siempre disminuye la energía mecánica
CONTESTAR: 1 ó 2; 3 ó 4; 6 ó 7; 8 ó 9 ó 10; 5 ó 11
NOMBRE APELLIDOS FÍSICA y QUÍMICA 1º DE BACHILLERATO NA 1DA GLOBAL 1ª EVALUACIÓN 015-16 CONTESTAR: 1 ó ; 3 ó 4; 6 ó 7; 8 ó 9 ó 10; 5 ó 11 1- Sobre un cuerpo cuya masa es m = 5,0 kg, actúan una fuerza hacia
Departamento de Física y Química. PAU Física. Modelo 2009/2010. Primera parte
1 PAU Física. Modelo 2009/2010 Primera parte Cuestión 1. Cuál es el periodo de un satélite artiicial que gira alrededor de la Tierra en una órbita circular cuyo radio es un cuarto del radio de la órbita
Problemas Resueltos de Física 2. Alumno. Titular: Ing. Daniel Omar Valdivia Adjunto: Lic. Auliel María Inés
Problemas Resueltos de Física 2 Alumno Titular: Ing. Daniel Omar Valdivia Adjunto: Lic. Auliel María Inés 25 de Abril de 2013 Índice general 1. Movimientos Periódicos 2 1.1. Superposición de Movimientos
PAAU (LOXSE) Xuño 2004
PAAU (LOXSE) Xuño 004 Código: FÍSICA Elegir y desarrollar una de las dos opciones propuestas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado) Cuestiones 4 puntos (1 cada cuestión, teórica o práctica)
