TERCER PARCIAL RESUELTO (29 DE NOVIEMBRE DE 2006)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TERCER PARCIAL RESUELTO (29 DE NOVIEMBRE DE 2006)"

Transcripción

1 DIVISIÓN DE CIENCIAS FÍSICAS Y MAEMÁICAS DPO. ERMODINÁMICA Y FENÓMENOS DE RANSFERENCIA MÉODOS APROXIMADOS EN ING. QUÍMICA F-1313 ERCER PARCIAL RESUELO (9 DE NOVIEMBRE DE 006) Esta guía fue elaborada por: Prof. Aurelio Stammitti Scarpone con la ayuda de: Br. María M. Camacho A. Queda terminantemente prohibida la reproducción parcial o total de esta guía sin la aprobación del Prof. Aurelio Stammitti Scarpone.

2 Dpto. ermodinámica y Fenómenos de ransferencia Métodos Aproximados den Ingeniería Química (F 1313) Ejercicio 1 ERCER PARCIAL (Septiembre Diciembre 006) Se desea estudiar el comportamiento de una reacción de Isomerización en fase líquida ( A B ) en un reactor tipo Flujo Pistón Isotérmico relleno de un catalizador sólido que funciona a una temperatura constante. La ecuación que modela al reactor es: dca Ea Q = ra( CA, ) ; ra( CA, ) = k0.exp.( γ A. CA) dv R. con la condición inicial CA (0) = 10mol y Q = 10 lt lt, donde s α k = s, Ea = 10000cal, R = 1,987cal y α = 1, 0. Se sabe que la actividad del mol mol. K catalizador γ A cae con el tiempo, por lo tanto el equipo se ha dividido en dos secciones, cada una a temperatura diferente: Sección 1: 0 V 50 lt ; 1 = 370 K ; γ A 1 = 0,85 Sección : 50 < V 100 lt ; = 70 K ; γ A = 0, 0 Calcule el perfil de concentración C A a lo largo de todo el equipo ( 0 V 100 ) usando un método de integración de cuarto orden con un incremento de V=1,5. Solución Este problema se resuelve por Runge Kutta de to Orden debido a que nos dicen que usemos un método de integración de cuarto orden y este método es más fácil de aplicar que el AB-AM por cuestión de tiempo. Ahora, si observamos bien lo que nos dicen vemos que este problema consta de dos partes o secciones; por lo que hay que resolver el ejercicio usando dos condiciones diferentes. La primera parte consiste en hallar las concentraciones de A para la primera mitad del reactor a una temperatura 1 y la segunda, en hallar dichas concentraciones para la otra mitad a una sabiendo que las condiciones finales de la parte a) van a ser las iniciales de la parte b). Enero Marzo 008 Pág. 1

3 Dpto. ermodinámica y Fenómenos de ransferencia Métodos Aproximados den Ingeniería Química (F 1313) Visto eso, observemos como queda la EDO que tenemos que resolver: dca k 0 Ea =.exp.( γ A. CA) dv Q R. α Parte a) Sección 1 Aquí nos encontramos en la primera sección del reactor por lo que al sustituir los valores apropiados nuestra EDO queda finalmente como: dc dv A =.exp.(0,85. CA ) 10 (1,987).(370) 1,0 Con los valores iniciales: V = 0, C A (0)=10 mol/l y V = 1,5. i V C A k 1 k k 3 k ,373-1,77-1,8-1, ,5 8,719-1,19-1,111-1,116-1, ,60-1,038-0,966-0,971-0, ,5 6,635-0,90-0, , ,791-0,787-0,73-0,736-0, ,5 5,057-0,685-0,638-0,61-0, ,17-0,597-0,556-0,558-0,5 7 87,5 3,86-0,5-0,8-0,87-0, , Donde los números resaltados en azul indican el comportamiento que hubiese seguido el reactor de haber seguido a las mismas condiciones en todo el equipo. Las resaltadas en verde son los valores a la salida de la primera sección del reactor (V = 50 lt), que serán la entrada de la siguiente sección. Parte b) Sección Aquí nos encontramos en la segunda sección del reactor por lo que se sustituyen los valores dados para esta parte y la EDO queda finalmente como: Enero Marzo 008 Pág.

4 Dpto. ermodinámica y Fenómenos de ransferencia Métodos Aproximados den Ingeniería Química (F 1313) dc dv A =.exp.(0,0. CA ) 10 (1,987).(70) 1,0 Con los valores iniciales (sección anterior): V = 50 lt, C A (50)=5,791 mol/l y V = 1,5. i V C A k 1 k k 3 k ,791-6,586 -,79 -,97-0, ,5 1,956 -,177-0,95-1,639-0,3 75 0,673-0,73-0,39-0,551-0, ,5 0,36-0,5-0,116-0,189-0, ,08 Ejercicio El fenómeno llamado Flujo de Hartmann ocurre cuando un metal en estado líquido fluye en presencia de un campo magnético transversal. Para un metal líquido que fluye entre dos placas paralelas, las ecuaciones que permiten calcular el perfil de velocidad y de temperatura son: p u u 0 = + µ σ B u ; 0= k + µ x y y y con B el campo magnético y las condiciones: y = 0 ; u = 0 ; = 700 º C y = L ; u = 0 ; = 800 º C Con un total de cinco (5) nodos, calcule el perfil de velocidades y de temperatura para aluminio con p = 1000 x y un número de Hartmann 1/ σ Ha = B L = 100 ρ v y L = 0,10m. ρ Propiedades del aluminio: = 00, σ =,1 10 Ω., = 6 10, = 00 kg m m v m s k W m K Enero Marzo 008 Pág. 3

5 Solución UNIVERSIDAD SIMÓN BOLÍVAR Dpto. ermodinámica y Fenómenos de ransferencia Métodos Aproximados den Ingeniería Química (F 1313) Parte a) Cálculo del perfil de velocidades al y como se puede ver, el perfil de velocidades viene dado por la ecuación: 0 p x u y = + µ σ B u donde: p x, µ, σ y B son valores conocidos. Aunque el valor de µ no es apreciable a primera vista, se puede calcular por medio de la siguiente fórmula: v= µ µ = v ρ µ = 0, 001 kg m s ρ Y por medio del número de Hartmann se obtiene el valor de B : Ha B = B= 1870,85 1/ σ L. ρ. v Por lo que la ecuación diferencial a resolver es de la forma: u 0, u = 0 y con: a = 1000 b = 10 µ = 0,001 Como ya se tiene la ecuación planteada, se puede empezar a resolver el problema usando cinco nodos totales, que nos indican que se tienen tres nodos internos y dos nodos de frontera. Procedimiento: 1.- Determinar la distancia que hay entre nodo y nodo, es decir, el delta ( y) de separación entre ellos. Enero Marzo 008 Pág.

6 Dpto. ermodinámica y Fenómenos de ransferencia Métodos Aproximados den Ingeniería Química (F 1313).- Plantear las ecuaciones de los nodos internos. 3.- Ver las condiciones de borde y en base a eso plantear las ecuaciones de los nodos frontera..- Armar el sistema de ecuaciones lineal en forma matricial. 5.- Resolver el sistema. Paso 1: y = L f N L i 1 con N : nodos totales L f y L i : longitud final e inicial (0,10 0) m y = y = 0,05m 5 1 Paso : Recordemos que para los nodos internos de la forma u y se emplea la siguiente expresión de diferencias centradas: u u + u du i+ 1 i i 1 = dy y Nodo 1: µ µ µ u 0 + b u 1+ u = a y y y Nodo : µ µ µ u 1+ b u + u 3 = a y y y Nodo 3: µ µ µ u + b u 3+ u = a y y y µ donde:,30 = y µ b = 1, 608. y y Paso 3: Para plantear las ecuaciones de los nodos frontera hay que ver la forma de las condiciones de borde. En este caso, las mismas son del tipo de valores constantes: Enero Marzo 008 Pág. 5

7 Dpto. ermodinámica y Fenómenos de ransferencia Métodos Aproximados den Ingeniería Química (F 1313) uy ( = 0) = u0 = 0 uy ( = L) = u = 0 Paso : Se construye el sistema lineal para resolver el perfil de velocidades: u0 0,30 1,608, u ,30 1,608,30 0. u = ,30 1,608,30 u u 0 Paso 5: u0 0 u 1 0, u = 0, u3 0, u 0 Solución del perfil de velocidades Parte b) Cálculo del perfil de temperatura al y como se puede ver, el perfil de velocidades viene dado por la ecuación: u 0 = k + µ y y donde: µ, k son valores conocidos. Sin embargo, en la ecuación aparece el término ( u y), el cual es un término no lineal, pero se puede calcular por medio de la fórmula de diferencias centradas para los nodos internos, ya que tenemos los valores de u del perfil de velocidades calculado anteriormente. Enero Marzo 008 Pág. 6

8 Dpto. ermodinámica y Fenómenos de ransferencia Métodos Aproximados den Ingeniería Química (F 1313) Seguimos el mismo procedimiento de la Parte a: Paso 1: (0,10 0) m y = y = 0,05m 5 1 Paso : La ecuación para uno nodo interno i cualquiera sería: + = + µ y y i i+ 1 i i 1 0 k Reagrupando y escribiendo para cada nodo: Nodo 1: Nodo : Nodo 3: k k k u 0 1 µ + = y y y y 1 k k k u 1 3 µ + = y y y y k k k u 3 µ + = y y y y 3 k donde: y = k y = y Ahora necesitamos evaluar los términos de ( u y) para cada nodo. Ya que conocemos los valores de u en cada nodo, podemos evaluar su derivada por medio de una expresión de diferencias finitas, y como son nodos internos, podemos usar una fórmula centrada: du dy i u u = y i+ 1 i 1 u u0 Nodo 1: = = 13, y y y 1 1 u3 u1 Nodo : = = 0( u3 = u1) y y y u u Nodo 3: = = 13, y y y 3 3 Enero Marzo 008 Pág. 7

9 Dpto. ermodinámica y Fenómenos de ransferencia Métodos Aproximados den Ingeniería Química (F 1313) Paso 3: Para plantear las ecuaciones de los nodos frontera hay que ver la forma de las condiciones de borde y como las mismas son valores constantes: ( y = 0) = 0 = 973,15 K ( y = L) = = 1073,15K Paso : , , = , ,15 Paso 5: 0 973, ,15 = 103, , ,15 Solución del perfil de emperaturas. Noten que estos resultados dependen a su vez de los resultados del perfil de velocidades. Enero Marzo 008 Pág. 8

Ley de enfriamiento de Newton considerando reservorios finitos

Ley de enfriamiento de Newton considerando reservorios finitos Ley de enfriamiento de Newton considerando reservorios finitos María ecilia Molas, Florencia Rodriguez Riou y Débora Leibovich Facultad de Ingeniería, iencias Exactas y Naturales Universidad Favaloro,.

Más detalles

ECUACIONES DIFERENCIALES Problemas de Valor Frontera

ECUACIONES DIFERENCIALES Problemas de Valor Frontera DIVISIÓN DE CIENCIAS FÍSICAS Y MATEMÁTICAS DPTO. TERMODINÁMICA Y FENÓMENOS DE TRANSFERENCIA MÉTODOS APROXIMADOS EN ING. QUÍMICA TF-33 ECUACIONES DIFERENCIALES Problemas de Valor Frotera Esta guía fue elaborada

Más detalles

REACTORES HOMOGENEOS. Dr. Rogelio Cuevas García 1

REACTORES HOMOGENEOS. Dr. Rogelio Cuevas García 1 Ingeniería de Reactores Obtención de las ecuaciones de diseño para reactores ideales Dr. Rogelio Cuevas García 1 Ingeniería de Reactores REACTORES IDEALES INTRODUCCIÓN BALANCE DE MATERIA ECUACIONES DE

Más detalles

Laboratorio Nº 4 Ecuaciones diferenciales de orden n. Ecuación lineal homogénea. Soluciones linealmente independientes

Laboratorio Nº 4 Ecuaciones diferenciales de orden n. Ecuación lineal homogénea. Soluciones linealmente independientes Universidad Diego Portales Segundo Semestre 2007 Facultad de Ingeniería Instituto de Ciencias Básicas Asignatura: Ecuaciones Diferenciales Laboratorio Nº 4 Ecuaciones diferenciales de orden n. Ecuación

Más detalles

5.- Describir la solubilidad del Carbono en el Hierro en función de la temperatura y de sus distintos estados alotrópicos.

5.- Describir la solubilidad del Carbono en el Hierro en función de la temperatura y de sus distintos estados alotrópicos. DIAGRAMA HIERRO-CARBONO: 1.- Haciendo uso del diagrama Fe-C, verificar el enfriamiento lento ( en condiciones próximas al equilibrio) de las siguientes aleaciones: a) Acero de 0.17% de C b) Acero de 0.30%

Más detalles

Capítulo 3 El Método de los Elementos de Contorno y la Formulación Hipersingular.

Capítulo 3 El Método de los Elementos de Contorno y la Formulación Hipersingular. Capítulo 3 El Método de los Elementos de Contorno y la Formulación Hipersingular. 3.1. Introducción El Método de los Elementos de Contorno (MEC) se ha implantado firmemente en numerosos campos de la ingeniería

Más detalles

TEMA 3: CINÉTICA HOMOGÉNEA. REACCIONES SIMPLES CQA-3/1

TEMA 3: CINÉTICA HOMOGÉNEA. REACCIONES SIMPLES CQA-3/1 TEMA 3: CINÉTICA HOMOGÉNEA. REACCIONES SIMPLES CQA-3/1 CARACTERÍSTICAS DE LAS REACCIONES HOMOGÉNEAS Todas las sustancias reaccionantes se encuentran en una sola fase Velocidad de reacción: Objetivo principal

Más detalles

UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO SEMANA 9 IMPEDANCIA EN SERIE DE LINEAS DE TRANSMISION : RESISTENCIA

UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO SEMANA 9 IMPEDANCIA EN SERIE DE LINEAS DE TRANSMISION : RESISTENCIA UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO SEMANA 9 CURSO: SISTEMAS ELECTRICOS DE POTENCIA PROFESOR : MSC. CESAR LOPEZ AGUILAR INGENIERO EN ENERGIA INGENIERO MECANICO ELECTRICISTA

Más detalles

Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación

Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación Profesor: Jaime Álvarez Maldonado Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación DIFERENCIAS FINITAS Ayudante: Rodrigo Torres Aguirre El método

Más detalles

Sistemas de ecuaciones lineales dependientes de un parámetro

Sistemas de ecuaciones lineales dependientes de un parámetro Vamos a hacer uso del Teorema de Rouché-Frobenius para resolver sistemas de ecuaciones lineales de primer grado. En particular, dedicaremos este artículo a resolver sistemas de ecuaciones lineales que

Más detalles

SEGUNDO DE BACHILLERATO QUÍMICA. a A + b B c C + d D

SEGUNDO DE BACHILLERATO QUÍMICA. a A + b B c C + d D TEMA 5. CINÉTICA QUÍMICA a A + b B c C + d D 1 d[a] 1 d[b] 1 d[c] 1 d[d] mol v = = = + = + a dt b dt c dt d dt L s El signo negativo en la expresión de velocidad es debido a que los reactivos desaparecen,

Más detalles

GUIA DE EJERCICIOS (Equilibrio Químico y Cinética Química Empírica)

GUIA DE EJERCICIOS (Equilibrio Químico y Cinética Química Empírica) Universidad de Santiago de Chile Departamento de Ingeniería Química GUIA DE EJERCICIOS (Equilibrio Químico y Cinética Química Empírica) Autor: Prof. Julio Romero 1. Describa aplicando el principio de Le

Más detalles

Cálculo. Primer curso de Ingenieros de Telecomunicación. Curso Examen de Septiembre. 6 de Septiembre de 2002.

Cálculo. Primer curso de Ingenieros de Telecomunicación. Curso Examen de Septiembre. 6 de Septiembre de 2002. Cálculo. Primer curso de Ingenieros de Telecomunicación. Curso -. Examen de Septiembre. 6 de Septiembre de. Primera parte Ejercicio. Un canal abierto cuya sección es un trapecio isósceles de bases horizontales,

Más detalles

Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Mecánica de los Fluidos. Carrea de Ingeniería Civil

Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Mecánica de los Fluidos. Carrea de Ingeniería Civil Universidad Nacional de Córdoba Facultad de Ciencias Exactas Físicas y Naturales Cátedra de Mecánica de los Fluidos Carrea de Ingeniería Civil FLUJO COMPRESIBLE DR. ING. CARLOS MARCELO GARCÍA 2011 A modo

Más detalles

Estática de Vigas. 20 de mayo de 2006

Estática de Vigas. 20 de mayo de 2006 Estática de Vigas 0 de mayo de 006 Los elementos estructurales que vamos a estudiar en este capítulo estarán sometidos a fuerzas o distribuciones aplicadas lateral o transversalmente a sus ejes y el objetivo

Más detalles

ECUACIONES DIFERENCIALES GUIA DE EJERCICIOS NUMERO 1

ECUACIONES DIFERENCIALES GUIA DE EJERCICIOS NUMERO 1 ECUACIONES DIFERENCIALES GUIA DE EJERCICIOS NUMERO 1 ECUACIONES DIFERENCIALES GENERAL. INTRODUCCION. 1.- En las siguientes ecuaciones diferenciales, determine orden del diferencial si es una ecuación diferencial

Más detalles

UNIDAD 7: CINÉTICA DE REACCIÓN GUIA DE PROBLEMAS

UNIDAD 7: CINÉTICA DE REACCIÓN GUIA DE PROBLEMAS ASIGNAURA : Ingeniería de Procesos III (ICL 34) UNIDAD 7: CINÉICA DE REACCIÓN GUIA DE PROBLEMAS. Con los siguientes datos experimentales que describen la pérdida de caroteno en zanahorias a 35 C: iempo

Más detalles

MÉTODOS DE INTEGRACION

MÉTODOS DE INTEGRACION MÉTODOS DE INTEGRACION En este tema se continúa con los métodos de integración iniciados en el capítulo anterior, en el que a partir del concepto de primitiva y de las derivadas de las funciones elementales

Más detalles

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 3: Solución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña

Más detalles

Lección 4. Ecuaciones diferenciales. 1. Ecuaciones diferenciales de primer orden. Trayectorias ortogonales.

Lección 4. Ecuaciones diferenciales. 1. Ecuaciones diferenciales de primer orden. Trayectorias ortogonales. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0.. Ecuaciones diferenciales de primer orden. Traectorias ortogonales. Muchas aplicaciones problemas de la ciencia, la ingeniería la economía se formulan en términos

Más detalles

2 Métodos de solución de ED de primer orden

2 Métodos de solución de ED de primer orden CAPÍTULO Métodos de solución de ED de primer orden.4 Ecuaciones diferenciales de Bernoulli Una ecuación diferencial ordinaria de primer orden de la forma a 0.x/y 0 C a.x/y D f.x/y r ; con r 0; : se denomina

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

CAPACITORES INDUCTORES. Mg. Amancio R. Rojas Flores

CAPACITORES INDUCTORES. Mg. Amancio R. Rojas Flores CAPACITORES E INDUCTORES Mg. Amancio R. Rojas Flores A diferencia de resistencias, que disipan la energía, condensadores e inductores no se disipan, pero almacenan energía, que puede ser recuperada en

Más detalles

TEMA 1: SISTEMAS MODELADOS POR ECUACIONES DIFERENCIALES EN INGENIERÍA QUÍMICA. CLASIFICACIÓN. GENERALIDADES.

TEMA 1: SISTEMAS MODELADOS POR ECUACIONES DIFERENCIALES EN INGENIERÍA QUÍMICA. CLASIFICACIÓN. GENERALIDADES. TEMA 1: SISTEMAS MODELADOS POR ECUACIONES DIFERENCIALES EN INGENIERÍA QUÍMICA. CLASIFICACIÓN. GENERALIDADES. 1. INTRODUCCIÓN. PLANTEAMIENTO DE PROBLEMAS EN INGENIERÍA QUÍMICA 2. PROBLEMAS EXPRESADOS MEDIANTE

Más detalles

Ecuaciones en Derivadas Parciales y Análisis Numérico. Prácticas

Ecuaciones en Derivadas Parciales y Análisis Numérico. Prácticas Ecuaciones en Derivadas Parciales y Análisis Numérico Prácticas Capítulo 2. Ecuaciones diferenciales ordinarias (EDOs). 2.1 Resolución de una ecuación diferencial ordinaria. Vamos a resolver numéricamente

Más detalles

JUNIO Opción A

JUNIO Opción A Junio 010 (Prueba Específica) JUNIO 010 Opción A 1.- Discute y resuelve según los distintos valores del parámetro a el siguiente sistema de ecuaciones: a x + a y + az 1 x + a y + z 0.- Una panadería se

Más detalles

5.3 Estructura térmica de la litósfera oceánica

5.3 Estructura térmica de la litósfera oceánica 513314 Geofísica de la Tierra Sólida 165 5.3 Estructura térmica de la litósfera oceánica 5.3.1 Introducción La estructura térmica de la litósfera oceánica esta restringida por las observaciones de: 1.

Más detalles

Introducción a Ecuaciones Diferenciales

Introducción a Ecuaciones Diferenciales Introducción a Ecuaciones Diferenciales Temas Ecuaciones diferenciales que se resuelven directamente aplicando integración. Problemas con condiciones iniciales y soluciones particulares. Problemas aplicados.

Más detalles

BJT 1. V γ V BE +V CC =12V. R C =0,6kΩ I C. R B =43kΩ V I I B I E. Figura 1 Figura 2

BJT 1. V γ V BE +V CC =12V. R C =0,6kΩ I C. R B =43kΩ V I I B I E. Figura 1 Figura 2 J 1. n este ejercicio se trata de estudiar el funcionamiento del transistor de la figura 1 para distintos valores de la tensión V I. Para simplificar el análisis se supondrá que la característica de entrada

Más detalles

ADAPTACIÓN AL GRADO DE INGENIERÍA QUÍMICA

ADAPTACIÓN AL GRADO DE INGENIERÍA QUÍMICA ADAPACIÓN AL GRADO DE INGENIERÍA QUÍMICA GRADO EN INGENIERIA QUÍMICA (PLAN 44) INGENIERÍA ÉCNICA INDUSRIAL ESPECIALIDAD QUÍMICA INDUSRIAL (PLAN ) 485 ASIGNAURAS Expresión Gráfica en la IPO ECS FB 7 ASIGNAURAS

Más detalles

Equilibrio Químico. CI4102 Ingeniería Ambiental Profesor Marcelo Olivares A.

Equilibrio Químico. CI4102 Ingeniería Ambiental Profesor Marcelo Olivares A. Equilibrio Químico CI4102 Ingeniería Ambiental Profesor Marcelo Olivares A. Introducción Las reacciones químicas que se ha considerado hasta este punto se denominan irreversibles debido a que ellas proceden

Más detalles

Unidad 5 Equilibrio. 1. Razone el efecto que provocará en la síntesis de amoniaco:

Unidad 5 Equilibrio. 1. Razone el efecto que provocará en la síntesis de amoniaco: Unidad 5 Equilibrio OPCIÓN A. Razone el efecto que provocará en la síntesis de amoniaco: N (g) + 3H (g) NH 3 (g) H º 9,4 kj a) Un aumento de la presión en el reactor. Un aumento de la presión origina que

Más detalles

Capítulo 14: Equilibrio químico

Capítulo 14: Equilibrio químico Capítulo 14: Equilibrio químico Dr. Alberto Santana Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Química QUIM 3002 Química general II, Cap. 14: Eq. químico p.1 Concepto

Más detalles

2.4 Ecuaciones diferenciales de Bernoulli

2.4 Ecuaciones diferenciales de Bernoulli .4 Ecuaciones diferenciales de Bernoulli 3 Ejercicios.3. Ecuaciones diferenciales lineales. Soluciones en la página 4 Resolver las siguientes ecuaciones diferenciales lineales.. y 0 C 00y D 0.. x 0 0x

Más detalles

UD Trigonometría Ejercicios Resueltos y Propuestos Col La Presentación

UD Trigonometría Ejercicios Resueltos y Propuestos Col La Presentación En este documento se da una relación de los tipos de ejercicios que nos podemos encontrar en el tema de Trigonometría de º de Bachillerato. En todo el documento se sigue el mismo esquema: Enunciado tipo

Más detalles

MÉTODOS NUMÉRICOS PARA INGENIERÍA ERROR GUIÓN PARA EL TEMA CONCEPTOS BÁSICOS

MÉTODOS NUMÉRICOS PARA INGENIERÍA ERROR GUIÓN PARA EL TEMA CONCEPTOS BÁSICOS ERROR GUIÓN PARA EL TEMA CONCEPTOS BÁSICOS REPASO de conceptos de dígito significativo y de orden, para números en notación decimal. Para señalar la diferencia entre el concepto de dígito significativo

Más detalles

FÍSICA II. Guía De Problemas Nº3: Dilatación

FÍSICA II. Guía De Problemas Nº3: Dilatación Universidad Nacional del Nordeste Facultad de Ingeniería Departamento de Físico-Química/átedra Física II FÍSIA II Guía De Problemas Nº3: Dilatación PROBLEMAS RESUELTOS Una regla de acero de aproximadamente

Más detalles

Preparatoria Sor Juana Inés de la Cruz Cálculo Diferencial Tutorial: Optimización Ing. Jonathan Quiroga Tinoco

Preparatoria Sor Juana Inés de la Cruz Cálculo Diferencial Tutorial: Optimización Ing. Jonathan Quiroga Tinoco Preparatoria Sor Juana Inés de la Cruz 1 Cálculo Diferencial Tutorial: Optimización Ing. Jonathan Quiroga Tinoco Grupo: Físico Matemático, Químico Biológico y Económico Administrativo Diciembre de 2014

Más detalles

Métodos numéricos para Ecuaciones Diferenciales Ordinarias

Métodos numéricos para Ecuaciones Diferenciales Ordinarias Métodos numéricos para Ecuaciones Diferenciales Ordinarias Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Barcelona) http://www-lacan.upc.es

Más detalles

MATEMÁTICAS. TEMA 1 Sistemas de Ecuaciones. Método de Gauss.

MATEMÁTICAS. TEMA 1 Sistemas de Ecuaciones. Método de Gauss. MATEMÁTICAS TEMA Sistemas de Ecuaciones. Método de Gauss. ÍNDICE. Introducción. 2. Ecuaciones lineales.. Sistemas de ecuaciones lineales. 4. Sistemas de ecuaciones escalonado ó en forma triangular.. Métodos

Más detalles

Problemas Resueltos de Estequiometria

Problemas Resueltos de Estequiometria Problemas Resueltos de Estequiometria En primer lugar se debe determinar Cuáles son los datos y qué es lo que preguntan? Los datos son el volumen final real en condiciones normales del dióxido de nitrógeno

Más detalles

Si se incrementa el número de elementos en los cuales se ha dividido la placa y simultáneamente se disminuye el tamaño de cada elemento se obtiene

Si se incrementa el número de elementos en los cuales se ha dividido la placa y simultáneamente se disminuye el tamaño de cada elemento se obtiene Capítulo 5 Fuerzas distribuidas. Centroides y centros de gravedad Introducción La acción de la Tierra sobre un cuerpo rígido debe representarse por un gran número de pequeñas fuerzas distribuidas sobre

Más detalles

Formulario PSU Parte común y optativa de Física

Formulario PSU Parte común y optativa de Física Formulario PSU Parte común y optativa de Física I) Ondas: Sonido y Luz Frecuencia ( f ) f = oscilaciones Vector/, Unidad de medida f 1/s = 1 Hz Periodo ( T ) T = oscilaciones f = 1 T T Segundo ( s ) Longitud

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago

Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago Guía dinámica. En general, los problemas de dinámica se resuelven aplicando 3 pasos: 1º Dibuje un diagrama de cuerpo libre para cada cuerpo involucrado en el sistema. Es decir, identifique todas las fuerzas

Más detalles

1 Ecuaciones diferenciales

1 Ecuaciones diferenciales 1 Ecuaciones diferenciales La solución a una ecuación algebraica es un número, o un conjunto de números que satisfacen la ecuación. Por ejemplo las soluciónes de x 2 4x + 3 = 0 son x 0 = 1 y x 1 = 3. Las

Más detalles

PROBLEMARIO No. 2. Veinte problemas con respuesta sobre los Temas 3 y 4 [Trabajo y Calor. Primera Ley de la Termodinámica]

PROBLEMARIO No. 2. Veinte problemas con respuesta sobre los Temas 3 y 4 [Trabajo y Calor. Primera Ley de la Termodinámica] Universidad Simón olívar Departamento de Termodinámica y Fenómenos de Transferencia -Junio-007 TF - Termodinámica I Prof. Carlos Castillo PROLEMARIO No. Veinte problemas con respuesta sobre los Temas y

Más detalles

Materia: Matemáticas de 4to año. Tema: Logaritmos naturales y base 10. Marco Teórico

Materia: Matemáticas de 4to año. Tema: Logaritmos naturales y base 10. Marco Teórico Materia: Matemáticas de 4to año Tema: Logaritmos naturales y base 10 Marco Teórico Aunque una función de registro puede tener cualquier número positivo como base, en realidad sólo hay dos bases que se

Más detalles

TUBO DE KUNDT ONDAS ESTACIONARIAS

TUBO DE KUNDT ONDAS ESTACIONARIAS TUBO DE KUNDT ONDAS ESTACIONARIAS 1. OBJETIVO Estudio de ondas acústicas y su propagación en el interior del tubo de Kundt. Cálculo de la velocidad del sonido. 2.- FUNDAMENTO TEÓRICO La resultante de dos

Más detalles

Derivada de una función en un punto. Función derivada. Diferencial de una función en un punto. dy = f (x) dx. Derivada de la función inversa

Derivada de una función en un punto. Función derivada. Diferencial de una función en un punto. dy = f (x) dx. Derivada de la función inversa Derivada de una función en un punto Las tres expresiones son equivalentes. En definitiva, la derivada de una función en un punto se obtiene como el límite del cociente incremental: el incremento del valor

Más detalles

Volumen de Sólidos de Revolución

Volumen de Sólidos de Revolución 60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido

Más detalles

Ejercicios relacionados con líquidos y sólidos

Ejercicios relacionados con líquidos y sólidos Ejercicios relacionados con líquidos y sólidos. La presión de vapor del etanol es de 35,3 mmhg a 40 o C y 542,5 mmhg a 70 o C. Calcular el calor molar de vaporización y la presión del etanol a 50 o C.

Más detalles

V B. g (1) V B ) g, (2) +ρ B. =( m H. m H (3) ρ 1. ρ B. Aplicando al aire la ecuación de estado de los gases perfectos, en la forma.

V B. g (1) V B ) g, (2) +ρ B. =( m H. m H (3) ρ 1. ρ B. Aplicando al aire la ecuación de estado de los gases perfectos, en la forma. Un globo de aire caliente de volumen =, m 3 está abierto por su parte inferior. La masa de la envoltura es =,87 kg y el volumen de la misma se considera despreciable. La temperatura inicial del aire es

Más detalles

UNIVERSIDAD AUTONOMA JUAN MISAEL SARACHO FACULTAD DE CIENCIAS Y TECNOLOGIA CARRERA DE INGENIERIA CIVIL FISICA I CIV 121 DOCENTE: ING. JOEL PACO S.

UNIVERSIDAD AUTONOMA JUAN MISAEL SARACHO FACULTAD DE CIENCIAS Y TECNOLOGIA CARRERA DE INGENIERIA CIVIL FISICA I CIV 121 DOCENTE: ING. JOEL PACO S. UNIVERSIDAD AUTONOMA JUAN MISAEL SARACHO FACULTAD DE CIENCIAS Y TECNOLOGIA CARRERA DE INGENIERIA CIVIL FISICA I CIV 121 DOCENTE: ING. JOEL PACO S. PONDERACION DE EVALUACION EXAMENES ( 60 % ) - 1 era Evaluación

Más detalles

UNIVERSIDAD DISTRITAL FJDC FAC. TECNOLÓGICA INGENIERÍA EN TELECOMUNICACIONES MEDIOS DE TRANSMISIÓN "GUÍAS DE ONDA Y RESONADORES"

UNIVERSIDAD DISTRITAL FJDC FAC. TECNOLÓGICA INGENIERÍA EN TELECOMUNICACIONES MEDIOS DE TRANSMISIÓN GUÍAS DE ONDA Y RESONADORES UNIVERSIDAD DISTRITAL FJDC FAC. TECNOLÓGICA INGENIERÍA EN TELECOMUNICACIONES MEDIOS DE TRANSMISIÓN "GUÍAS DE ONDA Y RESONADORES" Prof. Francisco J. Zamora Propagación de ondas electromagnéticas en guías

Más detalles

Magnitudes y Unidades. Cálculo Vectorial.

Magnitudes y Unidades. Cálculo Vectorial. Magnitudes y Unidades. Cálculo Vectorial. 1. Se tiene las expresiones siguientes, x es posición en el eje X, en m, v la velocidad en m/s y t el tiempo transcurrido, en s. Cuáles son las dimensiones y unidades

Más detalles

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales.

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Unidad V Aplicaciones de la derivada 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Una tangente a una curva es una recta que toca la curva en un solo punto y tiene la misma

Más detalles

CINÉTICA QUÍMICA. Dr. Hugo Cerecetto. Prof. Titular de Química

CINÉTICA QUÍMICA. Dr. Hugo Cerecetto. Prof. Titular de Química CINÉTICA QUÍMICA Dr. Hugo Cerecetto Prof. Titular de Química Temario 2) La reacción química: - Nociones de Termoquímica y Termodinámica. Conceptos de entalpía y entropía de reacción. Energía libre. Espontaneidad

Más detalles

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos.

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. PAU Madrid. Matemáticas II. Año 22. Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. Se considera una varilla AB de longitud 1. El extremo A de esta varilla recorre completamente la circunferencia

Más detalles

ÁNGULOS, FUNCIONES TRIGONOMÉTRICAS ORIENTADOR: ESTUDIANTE: FECHA:

ÁNGULOS, FUNCIONES TRIGONOMÉTRICAS ORIENTADOR: ESTUDIANTE:   FECHA: DEPARTAMENTO DE MATEMÁTICAS ÁREA DE MATEMÁTICAS TEMA: PERÍODO: ORIENTADOR: ESTUDIANTE: E-MAIL: FECHA: ÁNGULOS, FUNCIONES TRIGONOMÉTRICAS SEGUNDO EJES TEMÁTICOS La recta numérica Suma de números enteros

Más detalles

Republica Bolivariana de Venezuela. Ministerio del Poder Popular para la Educación Superior

Republica Bolivariana de Venezuela. Ministerio del Poder Popular para la Educación Superior Republica Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Superior Universidad Nacional Experimental Politécnica de la Fuerza Armada Núcleo Zulia Autor: Ing. Marlon Arteaga 1 1.

Más detalles

GUÍA DE EJERCICIOS GASES

GUÍA DE EJERCICIOS GASES GUÍA DE EJERCICIOS GASES Área Química Resultados de aprendizaje Aplicar conceptos básicos de gases en la resolución de ejercicios. Desarrollar pensamiento lógico y sistemático en la resolución de problemas.

Más detalles

Cinética. 1. Introducción Cantidad de movimiento Teorema del centro de masas... 2

Cinética. 1. Introducción Cantidad de movimiento Teorema del centro de masas... 2 Índice Cinética 1. Introducción. Cantidad de movimiento.1. Teorema del centro de masas................................ 3. Momento cinético 3 3.1. Teorema de König relativo al momento cinético.....................

Más detalles

DEPARTAMENTO DE MATEMATICAS Y FISICA Matemáticas Discreta

DEPARTAMENTO DE MATEMATICAS Y FISICA Matemáticas Discreta DEPARTAMENTO DE MATEMATICAS Y FISICA Matemáticas Discreta SUCESIONES Y RELACIONES DE RECURRENCIA Esta última sección la dedicamos a presentar el concepto de recurrencia, que esta muy ligado al axioma de

Más detalles

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA)

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA) PROBLEMAS DE ONDAS. Función de onda, energía. Autor: José Antonio Diego Vives Documento bajo licencia Creative Commons (BY-SA) Problema 1 Escribir la función de una onda armónica que avanza hacia x negativas,

Más detalles

Ecuaciones diferenciales de primer orden

Ecuaciones diferenciales de primer orden Tema 8 Ecuaciones diferenciales de primer orden Las ecuaciones diferenciales tuvieron un origen de carácter puramente matemático, pues nacieron con el cálculo infinitesimal. El destino inmediato de esta

Más detalles

Sistem as de ecuaciones lineales

Sistem as de ecuaciones lineales Sistem as de ecuaciones lineales. Concepto, clasificación y notación Un sistema de m ecuaciones lineales con n incógnitas se puede escribir del siguiente modo: a x + a 2 x 2 + a 3 x 3 + + a n x n = b a

Más detalles

QUÉ ES LA TEMPERATURA?

QUÉ ES LA TEMPERATURA? 1 QUÉ ES LA TEMPERATURA? Nosotros experimentamos la temperatura todos los días. Cuando estamos en verano, generalmente decimos Hace calor! y en invierno Hace mucho frío!. Los términos que frecuentemente

Más detalles

Metal Cu Al Peso específico 8,9 g/cm 3 2,7 g/cm 3 Peso atómico 64 g/mol 27 g/mol Número de electrones libres 1 e - /átomo 3 e - /átomo

Metal Cu Al Peso específico 8,9 g/cm 3 2,7 g/cm 3 Peso atómico 64 g/mol 27 g/mol Número de electrones libres 1 e - /átomo 3 e - /átomo 1. La densidad específica del tungsteno es de 18,8 g/cm 3 y su peso atómico es 184. La concentración de electrones libres es 1,23 x 10 23 /cm 3.Calcular el número de electrones libres por átomo. 2. Dadas

Más detalles

Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes

Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes CNM-108 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles

Aplicaciones de Sistemas de Ecuaciones Lineales

Aplicaciones de Sistemas de Ecuaciones Lineales Aplicaciones de Sistemas de Ecuaciones Lineales Departamento de Matemáticas, CCIR/ITESM 10 de enero de 2011 Índice 3.1. Introducción............................................... 1 3.2. Objetivo.................................................

Más detalles

Método de diferencias finitas para ecuaciones diferenciales parciales elípticas. (Parte II)

Método de diferencias finitas para ecuaciones diferenciales parciales elípticas. (Parte II) Método de diferencias finitas para ecuaciones diferenciales parciales elípticas (Parte II) Métodos numéricos para sistemas lineales Solución numérica de EDPs requiere resolver sistemas de ecuaciones lineales

Más detalles

LABORATORIO No. 3 MODELAMIENTO Y ANALISIS DINAMICO DE SISTEMAS ELECTRICOS

LABORATORIO No. 3 MODELAMIENTO Y ANALISIS DINAMICO DE SISTEMAS ELECTRICOS UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERIA INGENIERÍA ELECTRÓNICA 1 SISTEMAS DINAMICOS 1160601 LABORATORIO No. 3 MODELAMIENTO Y ANALISIS DINAMICO DE SISTEMAS ELECTRICOS INSTRUCCIONES

Más detalles

TERMODINÁMICA 1. En la fermentación de la glucosa (C6H12O6) se obtiene etanol (C2H5OH) y CO2. Si la entalpía de combustión de la glucosa es de 15.

TERMODINÁMICA 1. En la fermentación de la glucosa (C6H12O6) se obtiene etanol (C2H5OH) y CO2. Si la entalpía de combustión de la glucosa es de 15. TERMODINÁMICA 1. En la fermentación de la glucosa (C6H12O6) se obtiene etanol (C2H5OH) y CO2. Si la entalpía de combustión de la glucosa es de 15.63 kj/g y la del etanol es de 29.72 kj/g, a) Calcular la

Más detalles

MAGNITUDES. INTRODUCCIÓN AL ANÁLISIS DIMENSIONAL

MAGNITUDES. INTRODUCCIÓN AL ANÁLISIS DIMENSIONAL MGNITUDES. INTRODUCCIÓN L NÁLISIS DIMENSIONL IES La Magdalena. vilés. sturias Magnitud es todo aquello que puede ser medido. Por eemplo una longitud, la temperatura, la intensidad de corriente, la fuerza

Más detalles

UNIDAD 6.- PROGRAMACIÓN LINEAL

UNIDAD 6.- PROGRAMACIÓN LINEAL UNIDAD 6.- PROGRAMACIÓN LINEAL 1. INECUACIONES LINEALES CON DOS INCÓGNITAS Una inecuación de primer grado con dos incógnitas es una inecuación que en forma reducida se puede expresar de la siguiente forma:

Más detalles

Ecuaciones diferenciales de primer orden: Aplicaciones a la Ingeniería Química

Ecuaciones diferenciales de primer orden: Aplicaciones a la Ingeniería Química Lección 7 Ecuaciones diferenciales de primer orden: Aplicaciones a la Ingeniería Química 1 Ecuaciones Diferenciales en Cinética Química Ecuación estequiométrica: o a A b B = p P q Q 0 = a A b B... p P

Más detalles

9 Geodinamos numéricos. p. 1

9 Geodinamos numéricos. p. 1 9 Geodinamos numéricos p. 1 9.1.1 Las ecuaciones del núcleo Esta sección presenta las ecuaciones para un núcleo girando, con convección, fuerzas de flotabilidad, y un sistema magnetohidrodinámica, que

Más detalles

EJERCICIOS UNIDADES 1, 2 Y 3

EJERCICIOS UNIDADES 1, 2 Y 3 EJERCICIOS UNIDADES 1, Y 3 Nota: En adelante utilizaremos la abreviación ED para ecuación diferencial. TEMAS A EVALUAR Unidad 1 o Clasificación de las ecuaciones diferenciales o Problemas de valor inicial

Más detalles

UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL ROSARIO. Integración IV. Trabajo práctico Nº 8: Diseño y simulación de sistemas de bombeo con HYSYS

UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL ROSARIO. Integración IV. Trabajo práctico Nº 8: Diseño y simulación de sistemas de bombeo con HYSYS UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL ROSARIO Integración IV Trabajo práctico Nº 8: Diseño y simulación de sistemas de bombeo con HYSYS 1. Sistemas de bombeo Bomba centrífuga La operación

Más detalles

CENTRIFUGACIÓN. Fundamentos. Teoría de la centrifugación

CENTRIFUGACIÓN. Fundamentos. Teoría de la centrifugación CENTRIFUGACIÓN Fundamentos. Teoría de la centrifugación Fuerzas intervinientes Tipos de centrífugas Tubular De discos Filtración centrífuga 1 SEDIMENTACIÓN Se basa en la diferencia de densidades entre

Más detalles

ELECTRODINAMICA. Nombre: Curso:

ELECTRODINAMICA. Nombre: Curso: 1 ELECTRODINAMICA Nombre: Curso: Introducción: En esta sesión se estudiara los efectos de las cargas eléctricas en movimiento en diferentes tipos de conductores, dando origen al concepto de resistencia

Más detalles

ECUACIÓN DE OSCILACIONES. Tomado del texto de Ecuaciones Diferenciales de los Profesores. Norman Mercado. Luis Ignacio Ordoñéz

ECUACIÓN DE OSCILACIONES. Tomado del texto de Ecuaciones Diferenciales de los Profesores. Norman Mercado. Luis Ignacio Ordoñéz ECUACIÓN DE OSCILACIONES Tomado del texto de Ecuaciones Diferenciales de los Profesores Norman Mercado Luis Ignacio Ordoñéz Muchos de los sistemas de ingeniería están regidos por una ecuación diferencial

Más detalles

SISTEMA DE ECUACIONES LINEALES. Ecuación lineal con dos incógnitas Una ecuación de primer grado se denomina ecuación lineal.

SISTEMA DE ECUACIONES LINEALES. Ecuación lineal con dos incógnitas Una ecuación de primer grado se denomina ecuación lineal. Liceo A 10 Manuel Barros Borgoño Departamento de Matemática SISTEMA DE ECUACIONES LINEALES Ecuación lineal con dos incógnitas Una ecuación de primer grado se denomina ecuación lineal. Una ecuación lineal

Más detalles

Expresiones Regulares y Derivadas Formales

Expresiones Regulares y Derivadas Formales y Derivadas Formales Las Derivadas Sucesivas. Universidad de Cantabria Esquema 1 2 3 Derivadas Sucesivas Recordemos que los lenguajes de los prefijos dan información sobre los lenguajes. Derivadas Sucesivas

Más detalles

1. Usando la definición correspondiente demostrar que la función. z = f(x, y) = 3x xy 2

1. Usando la definición correspondiente demostrar que la función. z = f(x, y) = 3x xy 2 1. Usando la definición correspondiente demostrar que la función es diferenciable en todo R 2. z = f(x, y = 3x xy 2 Se debe verificar que para todo (a, b en R 2, existen funciones, de = x y k = y, ɛ 1

Más detalles

Circuitos con fuentes independientes de corriente y resistencias, circuitos R, I

Circuitos con fuentes independientes de corriente y resistencias, circuitos R, I MÉTODO DE LOS NUDOS Es un método general de análisis de circuitos que se basa en determinar los voltajes de todos los nodos del circuito respecto a un nodo de referencia. Conocidos estos voltajes se pueden

Más detalles

Módulo 7: Fuentes del campo magnético

Módulo 7: Fuentes del campo magnético 7/04/03 Módulo 7: Fuentes del campo magnético Campo magnético creado por cargas puntuales en movimiento Cuando una carga puntual q se mueve con velocidad v, se produce un campo magnético B en el espacio

Más detalles

Análisis Dimensional y Modelos a Escala

Análisis Dimensional y Modelos a Escala Análisis Dimensional y Modelos a Escala Santiago López 1. Análisis Dimensional Es interesante saber que las unidades de una cantidad física pueden ser explotadas para estudiar su relación con otras cantidades

Más detalles

Modelización por medio de sistemas

Modelización por medio de sistemas SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES. Modelización por medio de sistemas d y dy Ecuaciones autónomas de segundo orden: = f ( y, ) Una variable independiente. Una variable dependiente. La variable

Más detalles

Presentación 3 SISTEMAS DE ECUACIONES LINEALES CON DOS VARIABLES

Presentación 3 SISTEMAS DE ECUACIONES LINEALES CON DOS VARIABLES Presentación 3 SISTEMAS DE ECUACIONES LINEALES CON DOS VARIABLES Sistemas de Ecuaciones Lineales Muchos problemas en administración y economía envuelven dos o mas ecuaciones en uno o más variables. Decimos

Más detalles

DILATACIÓN PREGUNTAS PROBLEMAS

DILATACIÓN PREGUNTAS PROBLEMAS DILATACIÓN 1. Qué es la temperatura? PREGUNTAS PROBLEMAS 1. Dos barras idénticas de fierro (α = 12 x 10-6 /Cº) de 1m de longitud, fijas en uno de sus extremos se encuentran a una temperatura de 20ºC si

Más detalles

TEMA II.5. Viscosidad. Dr. Juan Pablo Torres-Papaqui. Departamento de Astronomía Universidad de Guanajuato DA-UG (México)

TEMA II.5. Viscosidad. Dr. Juan Pablo Torres-Papaqui. Departamento de Astronomía Universidad de Guanajuato DA-UG (México) TEMA II.5 Viscosidad Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas, Campus Guanajuato,

Más detalles

EJEMPLOS DE APLICACIÓN DE LA INTEGRACIÓN APROXIMADA DE LAS ECUACIONES DIFERENCIALES DE EQUILIBRIO

EJEMPLOS DE APLICACIÓN DE LA INTEGRACIÓN APROXIMADA DE LAS ECUACIONES DIFERENCIALES DE EQUILIBRIO EJEMPLOS DE APLICACIÓN DE LA INTEGRACIÓN APROXIMADA DE LAS ECUACIONES DIFERENCIALES DE EQUILIBRIO 1. Objetivo El objetivo de esta aplicación es ilustrar cómo se pueden integrar las ecuaciones diferenciales

Más detalles

TEMA I.2. Movimiento Ondulatorio Simple. Dr. Juan Pablo Torres-Papaqui

TEMA I.2. Movimiento Ondulatorio Simple. Dr. Juan Pablo Torres-Papaqui TEMA I.2 Movimiento Ondulatorio Simple Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas,

Más detalles

Universidad de Antioquia

Universidad de Antioquia Polinomios Facultad de Ciencias Eactas Naturales Instituto de Matemáticas Grupo de Semilleros de Matemáticas (Semática) Matemáticas Operativas Taller 8 202 Los polinomios forman una clase mu importante

Más detalles

3. Cambio de variables en integrales dobles.

3. Cambio de variables en integrales dobles. GADO DE INGENIEÍA AEOESPACIAL. CUSO. Lección. Integrales múltiples. 3. Cambio de variables en integrales dobles. Para calcular integrales dobles eiste, además del teorema de Fubini, otra herramienta fundamental

Más detalles

Ecuaciones Lineales en Dos Variables

Ecuaciones Lineales en Dos Variables Ecuaciones Lineales en Dos Variables Una ecuación lineal en dos variables tiene la forma general a + b + c = 0; donde a, b, c representan números reales las tres no pueden ser iguales a cero a la misma

Más detalles

CINÉTICA QUÍMICA 1 0,10 0,10 0, ,20 0,10 0, ,30 0,10 0, ,10 0,20 0, ,10 0,30 0,001

CINÉTICA QUÍMICA 1 0,10 0,10 0, ,20 0,10 0, ,30 0,10 0, ,10 0,20 0, ,10 0,30 0,001 CINÉTICA QUÍMICA 1.- A 25 C la constante de velocidad de la reacción de descomposición de pentóxido de dinitrógeno, N 2 O 5, es 6,65 10-4 s -1 Qué tiempo transcurrirá para que se descomponga la mitad de

Más detalles