CAPACITORES [ ] [ ] DISPOSITIVOS ELECTRONICOS F C = EL CAPACITOR COMO COMPONENTE ELECTRÓNICO. C = f (A; d; K)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CAPACITORES [ ] [ ] DISPOSITIVOS ELECTRONICOS F C = EL CAPACITOR COMO COMPONENTE ELECTRÓNICO. C = f (A; d; K)"

Transcripción

1 DISPOSITIVOS ELECTRONICOS EL CAPACITOR COMO COMPONENTE ELECTRÓNICO Un capacitor es esencialmente un arreglo de dos conductores separados por un dieléctrico. Se define: La capacitancia (o capacidad) a la relación: [ ] [ ] Q Coul C [ F] = V Volts Universidad Nacional de Misiones Mgter. Ing. Victor Hugo Kurtz 2017 Fi-UNaM 2 Armadura (electrodo) Dieléctrico Para dos placas paralelas (donde A>>d) La capacidad es función de: A = El área de las placas. d = Distancia que las separa (inversa). K = Constante dieléctrica (es función del material del dieléctrico). > Armadura (electrodo) Dieléctrico C = f (A; d; K) En unidades del sistema ESEGS 2 K A [ ] [ cm ] F C = 11,31 d [ cm] La capacidad es directamente proporcional a la constante dieléctrica K y al área de las placas e inversamente proporcional a la distancia que las separa. > Fi-UNaM Fi-UNaM 4 C K A d K es función de: Temperatura. La tensión. El símbolo del capacitor, según normas DIN e IRAM es: Existen otros símbolos como: Frecuencia. La constante dieléctrica K depende del material del dieléctrico Fi-UNaM Fi-UNaM 6

2 ELECTROLITICOS (POLARIZADOS) 2017 Fi-UNaM Fi-UNaM 8 ELECTROLITICOS (POLARIZADOS) Los (condensadores) ELECTROLITICOS de aluminio se construyen a partir de dos tiras de aluminio, una de las cuales está cubierta de una capa aislante de óxido, y un papel empapado en electrolito entre ellas. La tira aislada por el óxido es el ánodo, mientras el líquido electrolito y la segunda tira actúan como cátodo. > ELECTROLITICOS (POLARIZADOS) los capacitores electrolíticos se han desarrollado para lograr grandes capacidades en dimensiones físicas reducidas. Cuando se fabrica el capacitor electrolítico, se arrollan dos láminas de aluminio, separadas por un papel absorbente impregnado con el electrolito. > 2017 Fi-UNaM Fi-UNaM 10 ELECTROLITICOS (POLARIZADOS) ELECTROLITICOS (POLARIZADOS) 2017 Fi-UNaM Fi-UNaM 12

3 DE TANTALIO CERAMICOS 2017 Fi-UNaM Fi-UNaM 14 CERAMICOS MULTICAPA POLIESTER 2017 Fi-UNaM Fi-UNaM 16 POLIESTER POLIESTER 2017 Fi-UNaM Fi-UNaM 18

4 POLIESTER POLIESTER MULTICAPA 2017 Fi-UNaM Fi-UNaM 20 POLIESTER POLIESTER 2017 Fi-UNaM Fi-UNaM 22 POLIESTER POLIESTER MULTICAPA 2017 Fi-UNaM Fi-UNaM 24

5 POLIESTER CARÁCTERÍSTICAS TÉCNICAS DE LOS Principales Características Valor capacitivo. Tolerancia. Tensión máxima de trabajo. Coeficiente de temperatura. Tangente de delta 2017 Fi-UNaM Fi-UNaM 26 Valor Capacitivo La capacitancia o capacidad se mide en Faradio [F]. Como el faradio es una unidad excesivamente grande, por lo que en la práctica se usan los sub-múltiplos: Microfaradio. Nanofaradio. Picofaradio. > Conversiones Micro Faradio 1 μf o MF = 10-6 F Nano Faradio 1 nf = ó 10-9 F F F Pico Faradio F 1pF= F > Fi-UNaM Fi-UNaM 28 Indicación de Capacitores Indicación de Capacitores Color 1ra y 2da banda 3era banda Tolerancia Tensión 1era y 2da cifra significativa Factor multiplicador para C > 10 pf para C < 10 pf Negro X 1 + / - 20% + / - 1 pf Marrón 1 X 10 + / - 1% + / pf 100 V Rojo 2 X / - 2% + / pf 250 V Naranja 3 X 10 3 Amarillo 4 X V Verde 5 X / - 5% + / pf Azul 6 X V Violeta 7 Gris 8 Blanco 9 + / - 10% TECNO. ELECTRONICAS Y DISPO. y ELECTRONICOS DISPOSITIVOS 2017 Fi-UNaM Fi-UNaM 29 TECNO. ELECTRONICAS Y DISPO. y ELECTRONICOS DISPOSITIVOS 2017 Fi-UNaM Fi-UNaM 30

6 Indicación de Capacitores Valores Normalizados E3, 6 y 12 TECNO. ELECTRONICAS Y DISPO. y ELECTRONICOS DISPOSITIVOS 2017 Fi-UNaM Fi-UNaM 31 TECNO. ELECTRONICAS Y DISPO. y ELECTRONICOS DISPOSITIVOS 2017 Fi-UNaM Fi-UNaM 32 Tolerancia. La tolerancia es la dispersión que presenta el valor nomina del componente y se expresa en % ±. (tanto por ciento). Ejemplo de una tolerancia del ± 20% Valor nominal Tolerancia - Tolerancia Asimétrica En capacitores del tipo electrolítico la tolerancia negativa puede diferir de la positiva, Ej. 10% +50%., esto es, no se simétrica, respecto del valor nominal. Valor nominal -10% +50% Fi-UNaM Fi-UNaM 34 Tolerancia Gama de Tolerancia de los Capacitores Tipo de Capacitor Gama de Tolerancia Mica 0,5 % a 20 % Papel 5 %; 10%; 20% Poliestireno (Styroflex) ± 1 pf (< 50 pf) 2,5 %; 5 %; 10% Película de poliéster 5 %; 10%; 20% Poliéster metalizado 5 %; 10%; 20% Policarbonato metalizado 5 %; 10%; 20% Cerámico (Grupo I) 5 %; 10%; 20% Cerámico (Grupo II) Electrolítico de aluminio Electrolíticos de tantalio ( %) ( %) ± 20 % ( %) ( %) ( %) ( %) ( %) ± 20 % % 2017 Fi-UNaM Fi-UNaM 36

7 TENSIONES Tensión máxima de trabajo: También denominada tensión nominal o tensión de servicio. Es el valor máximo de tensión admisible en los terminales del capacitor. V m áx 2 V ef TENSIONES Tensión de prueba: La tensión de prueba, es mayor que la nominal. Si la tensión aplicada sobrepasa a la tensión de prueba puede ocurrir que se perfore el dieléctrico. La perforación del dieléctrico produce un corto circuito entre sus armaduras Existen capacitores denominados, Autoregenerativo: Son aquellos que se regeneran (cicatrizan) luego de una ruptura del dieléctrico. > 2017 Fi-UNaM Fi-UNaM 38 TENSIONES TENSIONES Tensión de prueba: (Continuación) La temperatura influye en la rigidez dieléctrica (disminuye la rigidez). Por cada 10ºC de temperatura por encima de la máxima admisible. Disminuye la vida útil del capacitor a la mitad. > 2017 Fi-UNaM Fi-UNaM 40 INDICACIONES Tipo de Capacitores Mica Capacitores Tipo Dieléctrico Armadura Mica Styroflex Poliestireno Aluminio Poliéster Poliéster Aluminio Aluminio o depósito de plata Gama de valores Gama de tensiones máximas de trabajo V CC 2 pf a 22 nf V 10 pf a 4,7 nf V 4,7 pf a 22 nf V 4,7 nf a 1, V 1 nf a 470 nf V Poliéster metalizado Poliéster 47 nf a 10 μf V Aluminio depositado al vacío 10 nf a 2,2 μf V 10 nf a 470nF V 2017 Fi-UNaM Fi-UNaM 42

8 Tipo de Capacitores Tipo de Capacitores Capacitores Tipo Dieléctrico Armadura Policarbonato metalizado Cerámico Grupo I Cerámico Grupo II Policarbonato Cerámica Titanato de bario Aluminio depositado al vacío Depósito de plata Depósito de plata Gama de valores Gama de tensiones máximas de trabajo V CC 47 nf a 10 μf V 10 nf a 2,2 μf V 10 nf a 470 nf V 0,56 pf a 560 pf V 0,47 pf a 330 pf V 4,7 nf a 470 nf V 220 pf a 22 nf V 100 pf a 10 nf V 470 pf a 10 nf 1000 V Capacitores Tipo Dieléctrico Armadura Electrolítico de aluminio Electrolítico de tantalio Óxido de aluminio Óxido de tantalio Aluminio Positivo: tantalio Negativo: metalizado Gama de valores 100 a μf 4 10 V 2,2 a 4700 μf V 0,47 a 2200 μf V 2,2 a 220 μf 200 a 450 V 2,2 a 100 μf 3 10 V 220 nf a 22 μf V Gama de tensiones máximas de trabajo V CC 2017 Fi-UNaM Fi-UNaM 44 Coeficiente de temperatura: La influencia de la temperatura sobre el dieléctrico de un capacitor, y por consiguiente sobre la capacidad del mismo, se expresa a través del Coeficiente de Temperatura (T k ). ΔC = T K C ΔT ΔC = Variación de la capacidad. ΔT k = Variación de la temperatura. C = Capacidad del capacitor a 20ºC (en pf) > Coeficiente de temperatura: Los materiales dieléctricos pueden poseer un coeficiente de temperatura Positivo la capacidad aumenta con la temperatura (PTC). Negativo la capacidad disminuye con la temperatura (NTC). Nulo > 2017 Fi-UNaM Fi-UNaM 46 Coeficiente de temperatura de Capacitores TIPO Coeficiente de temperatura entre 20º y 35ºC. ( 0 / 00. Cº) Mica 0,1 0 / 00 Poliestireno (Styroflex) -0,15 0 / 00 Película de poliéster +0,3 0 / 00 Poliéster metalizado +0,3 0 / 00 Policarbonato metalizado +0,3 0 / 00 Electrolítico aluminio I +1 0 / 00 Electrolítico aluminio II +5 0 / 00 Coeficiente de temperatura de Capacitores En los capacitores denominados cerámicos se utiliza la notación: [ppm/ºc] (ppm partes por millón). P Positivo. N Negativo. NPO Nulo. > Electrolítico de tántalio +1 0 / Fi-UNaM Fi-UNaM 48

9 Coeficiente de temperatura de Capacitores Cerámicos Designación Coeficiente de temperatura P P PN 0 0 N N N N N N N N N Tangente de delta En los capacitores, además de las corrientes de carga, circula una pequeña corriente de fuga en fase con la tensión aplicada. Esta pérdida se debe a que el dieléctrico no es perfecto (la resistencia de aislamiento no es infinita) y equivale a poner en paralelo, al capacitor ideal, una resistencia pura. > 2017 Fi-UNaM Fi-UNaM 50 Tangente de delta Del circuito de un capacitor puro, en paralelo con un resistor puro, se obtiene la relación, denominada tangente de delta. I R I C Tangente de delta IR Corriente de fuga Por lo tanto tgδ = Caso ideal IR = 0 I I R C I R tg δ = = 0 I COEFICIENTE DE PÉRDIDA DE UN CAPACITOR tgδ C I C I R V El factor tgδ, es especificado por el fabricante para una cierta Frecuencia y temperatura. > 2017 Fi-UNaM Fi-UNaM 52 FACTORES QUE INFLUYEN EN LA CAPACITANCIA Factor de potencia de los capacitores El factor de potencia de un capacitor al que se le aplica una tensión de alterna o continua pulsante, es la razón entre la potencia real disipada por el capacitor y la potencia reactiva que se le aplica. La potencia real disipada es la energía que se convierte en calor en: Los terminales. Los electrodos. El dieléctrico. > Factor de potencia de los capacitores El factor de potencia engloba todas las pérdidas en el capacitor. Las pérdidas por fuga en el dieléctrico Las pérdidas por absorción. Las pérdidas óhmicas en los conductores y electrodos. > 2017 Fi-UNaM Fi-UNaM 54

10 Perdida en los Capacitores Las pérdidas se pueden expresar (despreciando L) como: D 1 1 = = + ω R C Q ω R C 1 Q = factor de mérito. > 2 FACTORES QUE INFLUYEN EN LA CAPACITANCIA Efecto de la frecuencia Como los capacitores están arrollados, presentan una inductancia residual asociada con los terminales y electrodos. Circuito equivalente simplificado. L R 1 C R 2 C = capacitor geométrico R1 = chicotes y electrodos R2 = dieléctrico L = inductor chicotes y electrodo > 2017 Fi-UNaM Fi-UNaM 56 Frecuencia de Autorresonancia La inductancia residual en serie con el capacitor, se comporta como un circuito resonante serie. Por debajo de la frecuencia de resonancia presenta una reactacia capacitiva. La resonancia se presenta cuando XL = XC > VARIABLES 2017 Fi-UNaM Fi-UNaM 58 VARIABLES VARIABLES 2017 Fi-UNaM Fi-UNaM 60

11 VARIABLES VARIABLES 2017 Fi-UNaM Fi-UNaM 62 VARIABLES VARIABLES 2017 Fi-UNaM Fi-UNaM 64 Sistema de Conexión PE Tipos X e Y 2017 Fi-UNaM Fi-UNaM 66

12 Sistema de Conexión PE Sistema de Conexión PE 2017 Fi-UNaM Fi-UNaM 68 X e Y X e Y En FILTROS EMI 2017 Fi-UNaM Fi-UNaM 70 X e Y X e Y Los capacitores que actúan en filtrado de línea se clasifican como tipo "X. Los capacitores de filtro que se conectan entre el vivo, F o Ph (fase) y tierra PE y los que se conectan entre N (neutro) y tierra PE, se clasifican como tipo Y. > 2017 Fi-UNaM Fi-UNaM 72

13 X Y En caso de falla de un capacitor X En caso de falla de un capacitor Y Si el capacitor "se abre", entonces será como si no estuviera. Esto no plantea ningún peligro para el usuario del equipo, pero no cumple su función. En caso que se ponga en corto, esto hará actuar la protección (fusible o disyuntor), sin posible riesgo para el usuario. > Si el capacitor "se abre", entonces será como si no estuviera. Esto no plantea ningún peligro para el usuario del equipo, pero no cumple su función. En caso que se ponga en corto, la línea queda directamente conectada a la tierra de protección (PE), esto es de alto riesgo para el usuario. > 2017 Fi-UNaM Fi-UNaM 74 Y En caso de falla de un capacitor Y En caso que se ponga en corto, la línea queda directamente conectada a la tierra de protección (PE), esto es de alto riesgo para el usuario. Los capacitores deben ser ensayados con las normas aplicables a cada región/país para calificar en su uso como Capacitores Y. Son especiales para que no queden en cortocircuito > X e Y 2017 Fi-UNaM Fi-UNaM 76 USO DE LOS USO DE LOS Filtros. Fuentes de alimentación. Adaptación de impedancias, haciéndolas resonar a una frecuencia dada con otros componentes. Filtro de corriente continúa. Baterías, por su condición de almacenar energía. Memorias, por la misma cualidad. > 2017 Fi-UNaM Fi-UNaM 78

14 USO DE LOS (Cont.) Demodular AM, junto con un diodo. Osciladores de todos los tipos. El flash de las cámaras fotográficas. Tubos fluorescentes. Compensación del factor de potencia. Arranque de motores monofásicos de fase partida. Mantener corriente en el circuito y evitar caídas de tensión. > USO DE LOS (Cont.) Temporización. Base de tiempo. Almacenamiento de energía instantánea > 2017 Fi-UNaM Fi-UNaM 80 FIN 2017 Fi-UNaM Fi-UNaM 82

Por definición: La capacitancia (o capacidad) se define a la relación: F C =

Por definición: La capacitancia (o capacidad) se define a la relación: F C = APATORES Un capacitor: onsiste, esencialmente, en dos conductores separados por un dieléctrico. Por definición: La capacitancia (o capacidad) se define a la relación: [ ] [ ] Q oul [ F] = olts Dieléctrico

Más detalles

Laboratorio de Caracterización de Dispositivos Electrónicos PRÁCTICA 2: Caracterización de Componentes Pasivos

Laboratorio de Caracterización de Dispositivos Electrónicos PRÁCTICA 2: Caracterización de Componentes Pasivos Laboratorio de Caracterización de Dispositivos Electrónicos PRÁCTICA 2: Caracterización de Componentes Pasivos 1 Objetivos de la Práctica 1. Identificación de componentes pasivos: (resistores fijos, variables

Más detalles

Sistemas y Circuitos Eléctricos 1 GSE Juan Carlos García Cazcarra

Sistemas y Circuitos Eléctricos 1 GSE Juan Carlos García Cazcarra Unidad Didáctica 2: Condensadores y Resistencias. 1.- Condensadores Es un aparato constituido por dos conductores llamados armaduras, separados por un aislante (dieléctrico) que se cargan con igual cantidad

Más detalles

Componentes Electrónicos

Componentes Electrónicos Componentes Electrónicos Resistores: Modernamente los resistores de baja disipación, de 1/8 Watt y hasta ¼ Watt se construyen en dos tipos básicos : Carbón depositado Metal depositado ( conocidos como

Más detalles

FISI 3143: Laborarorio de Electrónica 1 Dept. Física y Electrónica, UPR Humacao Prof. Idalia Ramos, Ago Capacitores

FISI 3143: Laborarorio de Electrónica 1 Dept. Física y Electrónica, UPR Humacao Prof. Idalia Ramos, Ago Capacitores Capacitores El capacitor es el segundo componente eléctrico pasivo que estudiaremos en el laboratorio. El capacitor básico es un componente electrónico construido con dos placas paralelas conductoras separadas

Más detalles

Este es un manual de referencia de resitencias y condensadores y colores del valor para la Iniciar en la Electrónica. Resistencias

Este es un manual de referencia de resitencias y condensadores y colores del valor para la Iniciar en la Electrónica. Resistencias Este es un manual de referencia de resitencias y condensadores y colores del valor para la Iniciar en la Electrónica. Resistencias Condensadores Algunos condensadores tienen una codificación que es un

Más detalles

Condensadores plásticos (Plastic film capacitors)

Condensadores plásticos (Plastic film capacitors) Condensadores plásticos (Plastic film capacitors) CURIOSIDAD: Condensador "MULTICAPA" fabricación casera con vasos de Polietileno Condensadores plásticos (Plastic film capacitors) Poliéster metalizado

Más detalles

COMPONENTES PASIVOS RESISTENCIAS CONDENSADORES INDUCTORES O RESISTORES O CAPACITORES O BOBINAS

COMPONENTES PASIVOS RESISTENCIAS CONDENSADORES INDUCTORES O RESISTORES O CAPACITORES O BOBINAS EC1281 LABORATORIO DE MEDICIONES ELÉCTRICAS PRELABORATORIO Nº 9 COMPONENTES PASIVOS RESISTENCIAS CONDENSADORES INDUCTORES O RESISTORES O CAPACITORES O BOBINAS RESISTENCIAS O RESISTORES DEFINICIÓN * Una

Más detalles

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA DE INGENIERÍA ELÉCTRICA LABORATORIO #4

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA DE INGENIERÍA ELÉCTRICA LABORATORIO #4 UNIVERSIDAD POLITÉCNICA DE EL SALVADOR FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA DE INGENIERÍA ELÉCTRICA LABORATORIO #4 CIRCUITOS CAPACITIVOS MATERIA: ELECTRICIDAD Y MAGNETISMO 1. 2. 3. ALUMNOS CARNET

Más detalles

M A Y O A C T U A L I Z A D A

M A Y O A C T U A L I Z A D A U N I V E R S I D A D N A C I O N A L E X P E R I M E N T A L F R A N C I S C O D E M I R A N D A C O M P L E J O A C A D É M I C O E L S A B I N O Á R E A D E T E C N O L O G Í A D E P A R T A M E N T

Más detalles

CAPACITORES INDUCTORES. Mg. Amancio R. Rojas Flores

CAPACITORES INDUCTORES. Mg. Amancio R. Rojas Flores CAPACITORES E INDUCTORES Mg. Amancio R. Rojas Flores A diferencia de resistencias, que disipan la energía, condensadores e inductores no se disipan, pero almacenan energía, que puede ser recuperada en

Más detalles

INDICE SECCION PAGINA. Indice Introducción Que es un condensador y. como funciona? Tipos de Condensadores... 6

INDICE SECCION PAGINA. Indice Introducción Que es un condensador y. como funciona? Tipos de Condensadores... 6 INDICE SECCION PAGINA Indice........ 1 Introducción....... 2 Que es un condensador y como funciona?...... 3 Tipos de Condensadores.... 6 Condensadores en serie.... 7 Ejemplares de Condensadores... 8 Conclusión.......

Más detalles

DETERMINAR LA CAPACITANCIA DE UN CONDENSADOR

DETERMINAR LA CAPACITANCIA DE UN CONDENSADOR DETERMINAR LA CAPACITANCIA DE UN CONDENSADOR OBJETIVOS: Comprobar el valor del condensador dado sus valores nominales. Tener cuidado con los instrumentos y equipos de laboratorio, por el valor de su magnitud.

Más detalles

COMPONENTES ELECTRÓNICOS

COMPONENTES ELECTRÓNICOS UD 5.- COMPONENTES ELECTRÓNICOS 1. RESISTENCIA FIJA O RESISTOR 2. RESISTENCIAS VARIABLES 3. EL RELÉ 4. EL CONDENSADOR 5. EL DIODO 6. EL TRANSISTOR 7. MEDICIÓN CON POLÍMETRO 1. RESISTENCIA FIJA O RESISTOR

Más detalles

Capacitores de película de sulfuro de polifenileno (PPS) para montaje superficial

Capacitores de película de sulfuro de polifenileno (PPS) para montaje superficial CAPACITORES INTRODUCCIÓN Los capacitores son componentes eléctricos y electrónicos capaces de almacenar energía eléctrica, la cantidad de energía almacenada dependerá de las características del mismo componente.

Más detalles

CAPACITANCIA Introducción

CAPACITANCIA Introducción CAPACITANCIA Introducción Además de los resistores, los capacitores y los inductores son otros dos elementos importantes que se encuentran en los circuitos eléctricos y electrónicos. Estos dispositivos,

Más detalles

Seleccione la alternativa correcta

Seleccione la alternativa correcta ITEM I Seleccione la alternativa correcta La corriente eléctrica se define como: a) Variación de carga con respecto al tiempo. b) La energía necesaria para producir desplazamiento de cargas en una región.

Más detalles

COMPONENTES ELECTRÓNICOS

COMPONENTES ELECTRÓNICOS UD 2.- COMPONENTES ELECTRÓNICOS 2.1. RESISTENCIA FIJA O RESISTOR 2.2. RESISTENCIAS VARIABLES 2.3. EL RELÉ 2.4. EL CONDENSADOR 2.5. EL DIODO 2.6. EL TRANSISTOR 2.7. MONTAJES BÁSICOS CON COMPONENTES ELECTRÓNICOS

Más detalles

ELEMENTOS DE UN CIRCUITO Unidad 1. Conceptos básicos de electricidad

ELEMENTOS DE UN CIRCUITO Unidad 1. Conceptos básicos de electricidad ELEMENTOS DE UN CIRCUITO Unidad 1. Conceptos básicos de electricidad Qué elementos componen un circuito eléctrico? En esta unidad identificaremos los elementos fundamentales de un circuito eléctrico, nomenclatura

Más detalles

Capacitores y capacitancia

Capacitores y capacitancia Capacitores y capacitancia Un capacitor es básicamente dos superficies conductoras separadas por un dieléctrico, o aisaldor. La capacitancia de un elemento es su habilidad para almacenar carga eléctrica

Más detalles

Laboratorio de Electricidad PRACTICA - 2 USO DEL MULTÍMETRO ELECTRÓNICO COMO ÓHMETRO Y COMO AMPERÍMETRO, PARA MEDIR LA CORRIENTE CONTINUA

Laboratorio de Electricidad PRACTICA - 2 USO DEL MULTÍMETRO ELECTRÓNICO COMO ÓHMETRO Y COMO AMPERÍMETRO, PARA MEDIR LA CORRIENTE CONTINUA PRACTICA - 2 USO DEL MULTÍMETRO ELECTRÓNICO COMO ÓHMETRO Y COMO AMPERÍMETRO, PARA MEDIR LA CORRIENTE CONTINUA I - Finalidades 1.- Estudiar el código de color de las resistencias. 2.- Utilización del multímetro

Más detalles

TEMA 4 CONDENSADORES

TEMA 4 CONDENSADORES TEMA 4 CONDENSADORES CONDENSADORES Un condensador es un componente que tiene la capacidad de almacenar cargas eléctricas y suministrarlas en un momento apropiado durante un espacio de tiempo muy corto.

Más detalles

AMBITO PRÁCTICO: 4º ESO CURSO

AMBITO PRÁCTICO: 4º ESO CURSO AMBITO PRÁCTICO: 4º ESO CURSO 2.010-2.011 CONOCIMIENTOS PRELIMINARES Y DE REPASO: ELECTRICIDAD-ELECTRÓNICA IES EMILIO PEREZ PIÑERO Profesor: Alfonso-Cruz Reina Fernández ELECTRICIDAD-ELECTRÓNICA BÁSICA

Más detalles

MULTICAP S.R.L. Adm. y Ventas: Murature 5275 (C1407FCO) Ciudad Autónoma de Buenos Aires -Argentina

MULTICAP S.R.L. Adm. y Ventas: Murature 5275 (C1407FCO) Ciudad Autónoma de Buenos Aires -Argentina CATÁLOGO DIGITAL MULTICAP S.R.L. Adm. y Ventas: Murature 27 (C17FCO) Ciudad Autónoma de Buenos Aires -Argentina Tel./Fax: ( 11) 6-76 / -211 // Email: multicapsrl@speedy.com.ar // Web: www.multicapacitores.com.ar

Más detalles

CAPACITORES (parte 1)

CAPACITORES (parte 1) CAPACTORES (parte 1) Un dispositivo que sea capaz de almacenar cargas eléctricas es llamado capacitor. Cuando se aplica una tensión de corriente continua a un capacitor, la corriente empieza a circular

Más detalles

Condensadores. Tipos de Condensadores

Condensadores. Tipos de Condensadores Condensadores Básicamente un condensador es un dispositivo capaz de almacenar energía en forma de campo eléctrico. Está formado por dos armaduras metálicas paralelas (generalmente de aluminio) separadas

Más detalles

Tipos de dieléctricos para capacitores. Tipos de dieléctricos para capacitores

Tipos de dieléctricos para capacitores. Tipos de dieléctricos para capacitores 2º Capacitores Todo empezo en 1746, donde, Pieter van Musschenbroek, que trabajaba en la Universidad de Leiden, efectuó un experimento para comprobar si una botella llena de agua podía conservar cargas

Más detalles

CURSO: Circuitos Eléctricos UNIDAD IV: CORRIENTE ALTERNA - TEORÍA

CURSO: Circuitos Eléctricos UNIDAD IV: CORRIENTE ALTERNA - TEORÍA www.ceduvirt.com CURSO: Circuitos Eléctricos UNIDAD IV: CORRIENTE ALTERNA - TEORÍA EJEMPLO 1: Cinco ciclos de una señal ocurren en un tiempo de 25 msg. Hallar el periodo y la frecuencia. Solución Si

Más detalles

Corriente continua : Condensadores y circuitos RC

Corriente continua : Condensadores y circuitos RC Corriente continua : Condensadores y circuitos RC Marcos Flores Carrasco Departamento de Física mflorescarra@ing.uchile.cl Tópicos introducción Condensadores Energia electroestática Capacidad Asociación

Más detalles

Ejercicios de ELECTRÓNICA ANALÓGICA

Ejercicios de ELECTRÓNICA ANALÓGICA 1. Calcula el valor de las siguientes resistencias y su tolerancia: Código de colores Valor en Ω Tolerancia Rojo, rojo, rojo, plata Verde, amarillo, verde, oro Violeta, naranja, gris, plata Marrón, azul,

Más detalles

Estudio de fallas asimétricas

Estudio de fallas asimétricas Departamento de Ingeniería Eléctrica Universidad Nacional de Mar del Plata Área Electrotecnia Estudio de fallas asimétricas Autor: Ingeniero Gustavo L. Ferro Prof. Adjunto Electrotecnia EDICION 2012 1.

Más detalles

CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO

CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO PROBLEMAS PROPUESTOS 1:.Se coloca una bobina de 200 vueltas y 0,1 m de radio perpendicular a un campo magnético uniforme de 0,2 T. Encontrar la fem inducida

Más detalles

Resistencias comerciales (parte 2) Las resistencias comerciales pueden ser divididas en dos grandes grupos: Fijas y Variables

Resistencias comerciales (parte 2) Las resistencias comerciales pueden ser divididas en dos grandes grupos: Fijas y Variables Resistencias comerciales (parte 2) Las resistencias comerciales pueden ser divididas en dos grandes grupos: Fijas y Variables 1. Las fijas denominadas de composición utilizan polvo de carbón como material

Más detalles

valor (ohm) 0.47 ohm 0R47 1.13 ohm 1R13 100 ohm 100R 1000 ohm 1k 4700 ohm 4k7 5360 ohm 5k36 1,270,000 1M27

valor (ohm) 0.47 ohm 0R47 1.13 ohm 1R13 100 ohm 100R 1000 ohm 1k 4700 ohm 4k7 5360 ohm 5k36 1,270,000 1M27 Página 1 de 14 Resistencias Definiciones Tolerancia Tabla de valores normalizados. Series E Código de colores de 4 y 5 bandas. Valores típicos para Tolerancias del 5% y 10% Valores típicos para Tolerancias

Más detalles

MATERIALES DE APLICACIÓN EN ELECTRÓNICA: CAPACITORES

MATERIALES DE APLICACIÓN EN ELECTRÓNICA: CAPACITORES APUNTE DE ESTUDIO MATERIALES DE APLICACIÓN EN ELECTRÓNICA: CAPACITORES CONTENIDO CAPACITORES 1.1 Generalidades 1.2 Parámetros de importancia 1.3 Clasificación 1.3.1 Capacitores de papel metalizado (o de

Más detalles

ALTERNA (III) TRIFÁSICA: Problemas de aplicación

ALTERNA (III) TRIFÁSICA: Problemas de aplicación ALTERNA (III) TRIFÁSICA: Problemas de aplicación 1º.- Determinar la tensión compuesta que corresponde a un sistema trifásico que posee una tensión simple de 127 V. Solución: 220 V 2º.- Si la tensión de

Más detalles

Sistema Integrador Ciencia y tecnología CIRCUITOS ELECTRICOS

Sistema Integrador Ciencia y tecnología CIRCUITOS ELECTRICOS Sistema Integrador Ciencia y tecnología CIRCUITOS ELECTRICOS FUNDAMENTOS La electricidad La electricidad es un fenómeno físico cuyo origen se encuentra en las cargas eléctricas y cuya energía se manifiesta

Más detalles

RESISTORES Tipos de Resistores:

RESISTORES Tipos de Resistores: RESISTORES 2016 Tipos de Resistores: Teoría de Circuitos Por su composición o fabricación: De hilo bobinado (wirewound) Carbón prensado (carbon composition) Película de carbón (carbon film) Película óxido

Más detalles

TEMA 3: ELECTRICIDAD Y ELECTRÓNICA

TEMA 3: ELECTRICIDAD Y ELECTRÓNICA TEMA 3: ELECTRICIDAD Y ELECTRÓNICA Francisco Raposo Tecnología 3ºESO 1. INTRODUCCIÓN. LA CARGA ELÉCTRICA Los materiales están formados por átomos que se componen a su vez de: - Electrones: son carga eléctrica

Más detalles

Componentes Pasivos. CATEDRA: Mediciones Electricas I Y II. Facultad de Ciencias Exactas y Tecnología UNIVERSIDAD NACINAL DE TUCUMÁN

Componentes Pasivos. CATEDRA: Mediciones Electricas I Y II. Facultad de Ciencias Exactas y Tecnología UNIVERSIDAD NACINAL DE TUCUMÁN Componentes Pasivos CATEDRA: Mediciones Electricas I Y II Facultad de Ciencias Exactas y Tecnología UNIVERSIDAD NACINAL DE TUCUMÁN Año 2011 Resistencias Resistencia es la oposición que presenta un conductor

Más detalles

Electrónica: Electrotecnia y medidas. UNIDAD 3. Componentes Pasivos

Electrónica: Electrotecnia y medidas. UNIDAD 3. Componentes Pasivos Electrónica: Electrotecnia y medidas. UNIDAD 3 Componentes Pasivos Tabla de Contenido Presentación. La Resistencia. Valores Normalizados de Resistencias. Termistores. Resistencias Variables. Condensadores.

Más detalles

RESISTENCIAS NO LINEALES INTRODUCCIÓN

RESISTENCIAS NO LINEALES INTRODUCCIÓN RESISTENCIAS NO LINEALES INTRODUCCIÓN Existen resistencias cuyo valor óhmico no es constante, sino que dependen de una magnitud no mecánica externa a ellas, como la temperatura, la tensión o la intensidad

Más detalles

CURSO: CIRCUITOS Y MAQUINAS ELECTRICAS Profesor del Curso : Ms.Sc. César L. López Aguilar Ingeniero Mecánico Electricista CIP 67424

CURSO: CIRCUITOS Y MAQUINAS ELECTRICAS Profesor del Curso : Ms.Sc. César L. López Aguilar Ingeniero Mecánico Electricista CIP 67424 21/11/2013 UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA AGROINDUSTRIAL MODULO SEMANA 8 CURSO: CIRCUITOS Y MAQUINAS ELECTRICAS Profesor del Curso : Ms.Sc. César L. López Aguilar Ingeniero Mecánico

Más detalles

UNIDAD DIDÁCTICA: ELECTRICIDAD Y ELECTRÓNICA.

UNIDAD DIDÁCTICA: ELECTRICIDAD Y ELECTRÓNICA. UNIDAD DIDÁCTICA: ELECTRICIDAD Y ELECTRÓNICA. 1. LA CARGA ELÉCTRICA. Los cuerpos están hechos por átomos, y los átomos, a su vez, están formados por electrones, protones y neutrones. Los protones y los

Más detalles

No 10 LABORATORIO DE ELECTROMAGNETISMO CARGA Y DESCARGA DE CONDENSADORES. Objetivos

No 10 LABORATORIO DE ELECTROMAGNETISMO CARGA Y DESCARGA DE CONDENSADORES. Objetivos No 10 LABORATORIO DE ELECTROMAGNETISMO DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Determinar la constante de tiempo RC, utilizando valores calculados

Más detalles

FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser

FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser Objetivos: Estudiar el comportamiento de distintos elementos (resistores,

Más detalles

b) Frecuencia nominal. La frecuencia (medida en Hz) del sistema de potencia para el cual el banco del capacitor es diseñado.

b) Frecuencia nominal. La frecuencia (medida en Hz) del sistema de potencia para el cual el banco del capacitor es diseñado. 4. Características de los capacitores Como ya se menciono anteriormente los elementos de compensación son necesarios para la adecuada operación de sistemas eléctricos de potencia. Estos pueden clasificarse

Más detalles

9. En la siguiente conexión: a) V L = V f b) V f = V L / 3 c) I L = I f / 3 d) ninguna de las anteriores es cierta. b) V f 3= V L c) I f = I L / 3

9. En la siguiente conexión: a) V L = V f b) V f = V L / 3 c) I L = I f / 3 d) ninguna de las anteriores es cierta. b) V f 3= V L c) I f = I L / 3 1. Un alternador a) es una maquina rotativa de corriente continua b) es una máquina estática de corriente alterna c) es una máquina rotativa de corriente alterna d) ninguna de las anteriores es correcta

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS MATERIA: ELECTROTECNIA OFICIALES DE GRADO (MODELO DE EXAMEN) Curso 2013-2014 INSTRUCCIONES GENERALES Y

Más detalles

1.2 Elementos Básicos

1.2 Elementos Básicos 1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos. 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos: Thevenin y Norton. 1.6 Fuentes reales dependientes.

Más detalles

Desarrollo y Construcción de Prototipos Electrónicos

Desarrollo y Construcción de Prototipos Electrónicos Desarrollo y Construcción de Prototipos Electrónicos U.D. 0.2.- Identificación normalizada de resistencias y condensadores Tema 0.2.2.- Código de colores y valores normales de condensadores Tipos de condensadores

Más detalles

ESTUDIO DE CIRCUITOS ELÉCTRICOS EN CORRIENTE CONTINUA

ESTUDIO DE CIRCUITOS ELÉCTRICOS EN CORRIENTE CONTINUA ESTUDIO DE CIRCUITOS ELÉCTRICOS EN CORRIENTE CONTINUA OBJETIO Aprender a utilizar equipos eléctricos en corriente continua, estudiar la distribución de corriente y energía en un circuito eléctrico, hacer

Más detalles

Analógicos. Digitales. Tratan señales digitales, que son aquellas que solo pueden tener dos valores, uno máximo y otro mínimo.

Analógicos. Digitales. Tratan señales digitales, que son aquellas que solo pueden tener dos valores, uno máximo y otro mínimo. Electrónica Los circuitos electrónicos se clasifican en: Analógicos: La electrónica estudia el diseño de circuitos que permiten generar, modificar o tratar una señal eléctrica. Analógicos Digitales Tratan

Más detalles

Las resistencias disipan la energía, los capacitores e inductores la almacenan. Un capacitor es un elemento pasivo diseñado para almacenar energía en

Las resistencias disipan la energía, los capacitores e inductores la almacenan. Un capacitor es un elemento pasivo diseñado para almacenar energía en CAPACITORES Las resistencias disipan la energía, los capacitores e inductores la almacenan. Un capacitor es un elemento pasivo diseñado para almacenar energía en su campo eléctrico. Construcción Están

Más detalles

Energía almacenada en un capacitor (parte 2) W = 0,5. C. V 2

Energía almacenada en un capacitor (parte 2) W = 0,5. C. V 2 Energía almacenada en un capacitor (parte 2) Para cargar un capacitor debe realizarse un trabajo para transportar electrones de una placa a la otra. Como dicho trabajo se desarrolla en un tiempo dado,

Más detalles

INSTITUTO POLITÉCNICO NACIONAL CECyT 13 RICARDO FLORES MAGÓN LABORATORIO DE FÍSICA GENERAL II CIRCUITOS. Nombre: Grupo Calif

INSTITUTO POLITÉCNICO NACIONAL CECyT 13 RICARDO FLORES MAGÓN LABORATORIO DE FÍSICA GENERAL II CIRCUITOS. Nombre: Grupo Calif INSTITUTO POLITÉCNICO NACIONAL CECyT 13 RICARDO FLORES MAGÓN LABORATORIO DE FÍSICA GENERAL II CIRCUITOS Práctica N º 13 Nombre: Grupo Calif OBJETIVO Que el alumno: - Comprenda que una corriente eléctrica

Más detalles

Instrumental y Dispositivos Electrónicos

Instrumental y Dispositivos Electrónicos Instrumental y Dispositivos Electrónicos DepartamentoAcadémico Electrónica Facultad de Ingeniería 2014 FI-UNER -DAE -IDE Componentes Electrónicos Pasivos Resistor Capacitor Inductancia Transformadores

Más detalles

TEMA : LA ELECTRÓNICA

TEMA : LA ELECTRÓNICA Electrónica 3º E.S.O. 1 TEMA : LA ELECTRÓNICA 1. ELEMENTOS COMPONENTES DE LOS CIRCUITOS ELECTRÓNICOS. 1.1. Resistencias. Una resistencia es un operador o componente eléctrico que se opone al paso de la

Más detalles

Accionamientos eléctricos Tema VI

Accionamientos eléctricos Tema VI Dispositivos semiconductores de potencia. ELECTRÓNICA DE POTENCIA - Con el nombre de electrónica de potencia o electrónica industrial, se define aquella rama de la electrónica que se basa en la utilización

Más detalles

Problemas 3: Condensadores

Problemas 3: Condensadores Problemas tema 3: ondensadores /9 Problemas 3: ondensadores Fátima Masot onde Ing. Industrial 00/ Fátima Masot onde Dpto. Física Aplicada III Universidad de Sevilla Problemas tema 3: ondensadores /9 Problema

Más detalles

Átomo de Cobre Cu 29. 1capa 2e 2capa 8e 3capa 18e 4capa 1e (capa de valencia) Cargas iguales se repelen Cargas diferentes se atraen

Átomo de Cobre Cu 29. 1capa 2e 2capa 8e 3capa 18e 4capa 1e (capa de valencia) Cargas iguales se repelen Cargas diferentes se atraen Átomo de Cobre Cu 29 1capa 2e 2capa 8e 3capa 18e 4capa 1e (capa de valencia) Cargas iguales se repelen Cargas diferentes se atraen (video van der graaf generator) Conductor Conductores son los materiales

Más detalles

P R Á C T I C A S D E E L E C T R Ó N I C A A N A L Ó G I C A

P R Á C T I C A S D E E L E C T R Ó N I C A A N A L Ó G I C A P R Á C T I C A S D E E L E C T R Ó N I C A A N A L Ó G I C A Nombres y apellidos: Curso:. Fecha:.. Firma: PRÁCTICA 1: RESISTENCIAS OBJETIVO: Conocer los tipos y características de las resistencias, así

Más detalles

Unidad didáctica: Electrónica Básica

Unidad didáctica: Electrónica Básica Unidad didáctica: Electrónica Básica CURSO 3º ESO versión 1.0 1 Unidad didáctica: Electrónica Básica ÍNDICE 1.- Introducción. 2.- La resistencia. 3.- El condensador. 4.- El diodo. 5.- La fuente de alimentación.

Más detalles

MÓDULO 1. Líneas eléctricas de baja tensión en edificios y equipamientos urbanos

MÓDULO 1. Líneas eléctricas de baja tensión en edificios y equipamientos urbanos MÓDULO 1 Líneas eléctricas de baja tensión en edificios y equipamientos urbanos EDICIÓN: TAG FORMACIÓN RESERVADOS TODOS LOS DERECHOS. No está permitida la reproducción total o parcial de este texto, ni

Más detalles

DIODOS SEMICONDUCTORES DE POTENCIA

DIODOS SEMICONDUCTORES DE POTENCIA DIODOS SEMICONDUCTORES DE POTENCIA Los diodos de potencia son de tres tipos: de uso general, de alta velocidad (o de recuperación rápida) y Schottky. Los diodos de uso general están disponibles hasta 6000

Más detalles

Tema 2: COMPONENTES BÁSICOS DE UN CIRCUITO ELECTRÓNICO

Tema 2: COMPONENTES BÁSICOS DE UN CIRCUITO ELECTRÓNICO Tema 2 OMPONENTES ÁSOS DE UN UTO ELETÓNO 1.- ESSTENAS Son elementos que ofrecen oposición al paso de la corriente eléctrica. Se emplean para regular la intensidad de corriente. Hay, básicamente, dos tipos

Más detalles

TEMA: ELECTRÓNICA ANALÓGICA.

TEMA: ELECTRÓNICA ANALÓGICA. TEMA: ELECTRÓNICA ANALÓGICA. INTRODUCCIÓN: La electrónica es una de las herramientas más importantes de nuestro entorno. Se encuentra en muchos aparatos y sistemas como por ejemplo: radio, televisión,

Más detalles

A.1. El diodo. - pieza básica de la electrónica: unión de un semiconductor de tipo p y otro de tipo n es un elemento no lineal

A.1. El diodo. - pieza básica de la electrónica: unión de un semiconductor de tipo p y otro de tipo n es un elemento no lineal A.1.1. Introducción A.1. El diodo - pieza básica de la electrónica: unión de un semiconductor de tipo p y otro de tipo n es un elemento no lineal A.1.2. Caracterización del diodo - al unirse la zona n

Más detalles

Interruptor Amperímetro. Batería

Interruptor Amperímetro. Batería EL CAPACITOR Un capacitor es un componente electrónico, el cual puede describirse como dos placas de material conductor, separadas por un aislamiento, comúnmente llamado dieléctrico, es posible que los

Más detalles

POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA

POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA OBJETIVOS: Determinar la potencia activa, aparente y el factor de potencia en circuitos monofásicos. Observe las normas de seguridad al realizar

Más detalles

COMPORTAMIENTO DE LOS CIRCUITOS EN CORRIENTE CONTINUA Como Corriente Continua se define una corriente que no varía en el tiempo ni de magnitud ni de sentido. Siempre que la carga insertada en el circuito

Más detalles

DESCRIPCIÓN DEL PUESTO DE TRABAJO

DESCRIPCIÓN DEL PUESTO DE TRABAJO NORMATIVA Las prácticas de laboratorio de la asignatura TECNOLOGÍA Y COMPONENTES ELECTRÓNICOS Y FOTÓNICOS de primero curso de la E.T.S.I. de Telecomunicación de la U.L.P.G.C. tendrán lugar en el Laboratorio

Más detalles

PROTECCION DE LOS CONTACTOS

PROTECCION DE LOS CONTACTOS RELES PROTECCION DE LOS CONTACTOS Aparte del cuidado de la corriente y la tensión que se verán sometido los contactos. Existen algunos cuidados adicionales que ayudan a prolongar la vida útil de los contactos

Más detalles

SESION 10: GENERADORES DE C.C.

SESION 10: GENERADORES DE C.C. SESION 10: GENERADORES DE C.C. 1. INTRODUCCION Los generadores de c.c. son máquinas de cc que se usan como generadores. No hay diferencia real entre un generador y un motor, pues solo se diferencian por

Más detalles

PRÁCTICA: MEDIDAS ELÉCTRICAS. LEY DE OHM.

PRÁCTICA: MEDIDAS ELÉCTRICAS. LEY DE OHM. PRÁCTICA: MEDIDAS ELÉCTRICAS. LEY DE OHM. Objetivos: Aprender a utilizar un polímetro para realizar medidas de diversas magnitudes eléctricas. Comprobar la ley de Ohm y las leyes de la asociación de resistencias

Más detalles

RECTIFICADORES MONOFASICOS NO CONTROLADOS

RECTIFICADORES MONOFASICOS NO CONTROLADOS UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERIA QUIMICA Y TEXTIL CONTROLES ELECTRICOS Y AUTOMATIZACION EE - 621 RECTIFICADORES MONOFASICOS NO CONTROLADOS TEMAS Diodos semiconductores, Rectificadores

Más detalles

CIRCUITOS ELÉCTRICOS

CIRCUITOS ELÉCTRICOS CIRCUITOS ELÉCTRICOS 1.- CONCEPTOS FUNDAMENTALES 2.-MAGNITUDES ELÉCTRICAS. LEY DE OHM 3.- ANÁLISIS DE CIRCUITOS 3.1.- CIRCUITO SERIE 3.2.- CIRCUITO PARALELO 3.3.- CIRCUITO MIXTO 4.- INSTRUMENTOS DE MEDIDA

Más detalles

Escuela Politécnica Superior Ingeniero Técnico Industrial, especialidad Electrónica Industrial Electrónica de Potencia. Nombre y apellidos:

Escuela Politécnica Superior Ingeniero Técnico Industrial, especialidad Electrónica Industrial Electrónica de Potencia. Nombre y apellidos: Escuela Politécnica Superior Ingeniero Técnico Industrial, especialidad Electrónica Industrial Electrónica de Potencia Fecha: 20-12-2011 Nombre y apellidos: Duración: 2h DNI: Elegir la opción correcta

Más detalles

Práctica No. 4 Capacitancia e Inductancia

Práctica No. 4 Capacitancia e Inductancia Objetivo Práctica No. Capacitancia e Inductancia Conocer el principio de funcionamiento y como están formados los capacitares e inductores. Material y Equipo Resistencias de kω y ¼ de Watt Papel aluminio,

Más detalles

Efecto del dieléctrico en un capacitor

Efecto del dieléctrico en un capacitor Efecto del dieléctrico en un capacitor La mayor parte de los capacitores llevan entre sus placas conductoras una sustancia no conductora o dieléctrica. Efecto del dieléctrico en un capacitor Un capacitor

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO 1. Un condensador se carga aplicando una diferencia de potencial entre sus placas de 5 V. Las placas son circulares de diámetro cm y están separadas

Más detalles

UNIDAD 2: ELECTRÓNICA ANALÓGICA

UNIDAD 2: ELECTRÓNICA ANALÓGICA UNIDAD 2: ELECTRÓNICA ANALÓGICA 1. INTRODUCCIÓN. 1.1. Concepto de electrónica 1.2. Electrónica analógica y electrónica digital 2. COMPONENTES ELECTRÓNICOS BÁSICOS: 2.1. RESISTENCIAS A. Introducción. B.

Más detalles

Tema 11: CIRCUITOS ELÉCTRICOS

Tema 11: CIRCUITOS ELÉCTRICOS Tema 11: CIRCUITOS ELÉCTRICOS Esquema 1. Estructura atómica 2. El circuito eléctrico 3. Magnitudes eléctricas básicas 4. Ley de Ohm 5. Energía eléctrica. Efecto Joule. 6. Potencia eléctrica. Tipos de resistencias

Más detalles

ELECTRÓNICA ANALÓGICA: COMPONENTES ELECTRÓNICOS.

ELECTRÓNICA ANALÓGICA: COMPONENTES ELECTRÓNICOS. ELECTRÓNICA ANALÓGICA: COMPONENTES ELECTRÓNICOS. Nombre y apellidos: Curso y grupo: 1. INTRODUCCIÓN. La mayoría de aparatos que empleamos cotidianamente funcionan gracias a la electricidad. Sin embargo.

Más detalles

Índice. de maniobra. 4. Sobretensiones transitorias. página. 4.1 Principio fundamental del corte 4/3

Índice. de maniobra. 4. Sobretensiones transitorias. página. 4.1 Principio fundamental del corte 4/3 Índice página 4.1 Principio fundamental del corte 4/3 4.2 Criterios del buen funcionamiento de un aparato de corte 4/3 4.3 Sobretensiones transitorias en alta tensión 4/4 4.4 Sobretensiones transitorias

Más detalles

5 Aplicaciones de ED de segundo orden

5 Aplicaciones de ED de segundo orden CAPÍTULO 5 Aplicaciones de ED de segundo orden 5.3 Circuitos eléctricos Desde hace más de un siglo, la humanidad ha utilizado en su beneficio la energía eléctrica. Actualmente usamos diferentes aparatos

Más detalles

ANEXO B1 CALCULO ELECTRICO DE CONDUCTORES

ANEXO B1 CALCULO ELECTRICO DE CONDUCTORES ANEXO B1 CALCULO ELECTRICO DE CONDUCTORES Pág. 1 B1.1 RESISTENCIA El valor de la resistencia por unidad de longitud, en corriente continua y a la temperatura, vendrá dada por la siguiente expresión: Siendo:

Más detalles

Cuando más grande sea el capacitor o cuanto más grande sea la resistencia de carga, más demorará el capacitor en descargarse.

Cuando más grande sea el capacitor o cuanto más grande sea la resistencia de carga, más demorará el capacitor en descargarse. CONDENSADOR ELÉCTRICO Un capacitor es un dispositivo formado por dos conductores, en forma de placas o láminas, separados por un material que actúa como aislante o por el vacío. Este dispositivo al ser

Más detalles

Resistencias. Resistencias. Resistencias variables. Tolerancia. Potencia de disipación

Resistencias. Resistencias. Resistencias variables. Tolerancia. Potencia de disipación Elementos Pasivos Un elemento pasivo es aquel que no es capaz de entregar potencia al circuito en el cual está conectado esistencia Condensador Bobina esistencia Clasificación según el elemento resistivo

Más detalles

C.A. : Circuito con Resistencia R

C.A. : Circuito con Resistencia R Teoría sobre c.a obtenida de la página web - 1 - C.A. : Circuito con Resistencia R Intensidad Instantánea i(t) e Intensidad Eficaz I v(t) = V sen t) V I = ----- R V = R I i(t) = I sen t) V R = ----- I

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUES DE ESO L UNIVERSIDD L.O.G.S.E URSO 005-006 ONVOTORI SEPTIEMRE ELETROTENI EL LUMNO ELEGIRÁ UNO DE LOS DOS MODELOS riterios de calificación.- Expresión clara y precisa dentro del lenguaje técnico y

Más detalles

1. Introducción. Causas y Efectos de los cortocircuitos. 2. Protecciones contra cortocircuitos. 3. Corriente de Cortocircuito en red trifásica.

1. Introducción. Causas y Efectos de los cortocircuitos. 2. Protecciones contra cortocircuitos. 3. Corriente de Cortocircuito en red trifásica. TEMA 3: CORRIENTES DE CORTOCIRCUITO EN REDES TRIFÁSICAS. INTRODUCCIÓN. CLASIFICACIÓN DE CORTOCIRCUITOS. CONSECUENCIAS DEL CORTOCIRCUITO. CORTOCIRCUITOS SIMÉTRICOS. 1. Introducción. Causas y Efectos de

Más detalles

ARMADO Y REPARACIÓN DE PC

ARMADO Y REPARACIÓN DE PC ARMADO Y REPARACIÓN DE PC Capitulo Nº 2 Tema: Fuentes de alimentación. CON LAS INDICACIONES QUE SE DAN A CONTINUACIÓN USTED PODRA RESOLVER SIN INCONVENIENTES SU PRACTICA 2 DE LABORATORIO. QUE CONSISTE

Más detalles

Potencia Eléctrica en C.A.

Potencia Eléctrica en C.A. Potencia Eléctrica en C.A. Potencia Eléctrica en Circuitos Puramente Resistivos (o en Circuitos con C.C.) Si se aplica una diferencia de potencial a un circuito, éste será recorrido por una determinada

Más detalles

Piezo electrico K

Piezo electrico K Piezo electrico Efecto piezoeléctrico, fenómeno físico por el cual aparece una diferencia de potencial eléctrico (voltaje) entre las caras de un cristal cuando éste se somete a una presión mecánica. El

Más detalles

Unidad 4. Circuitos eléctricos

Unidad 4. Circuitos eléctricos Unidad 4 Circuitos eléctricos ELEMENTOS DE FíSICA 115 4.1. Corriente eléctrica y unidades El movimiento de cargas eléctricas produce un fenómeno denominado corriente eléctrica. Si se considera una superficie

Más detalles

Seguidores de clase Universidad Pontificia de Salamanca (Madrid) Electrónica

Seguidores de clase Universidad Pontificia de Salamanca (Madrid) Electrónica Seguidores de clase Universidad Pontificia de Salamanca (Madrid) Electrónica Alfonso Alejandre Electrónica Versión 1.0 11 oct. 07 pág. 1 INDICE Componentes electrónicos...1 Componentes pasivos...1 Componentes

Más detalles

Otros tipos de Diodos. ITESM Campus Monterrey, Departamento de Ing. Eléctrica

Otros tipos de Diodos. ITESM Campus Monterrey, Departamento de Ing. Eléctrica Otros tipos de Diodos Diodo Schottky Se forma uniendo un metal como platino o aluminio a un silicio tipo p o n. Utilizado en circuitos integrados en donde se requiera conmutación a altas velocidades Voltaje

Más detalles

PRINCIPIOS DE LA ELECTRICIDAD

PRINCIPIOS DE LA ELECTRICIDAD PRINCIPIOS DE LA ELECTRICIDAD La materia está constituida por moléculas y a su vez éstas por átomos, que es la estructura mínima. Los átomos tienen un núcleo central compuesto por neutrones y protones,

Más detalles

Electricidad y Magnetismo UEUQ Cursada 2004 Trabajo Práctico N 6: Resistencias y Circuitos de Corriente Continua.

Electricidad y Magnetismo UEUQ Cursada 2004 Trabajo Práctico N 6: Resistencias y Circuitos de Corriente Continua. Electricidad y Magnetismo UEUQ Cursada 2004 Trabajo Práctico N 6: esistencias y Circuitos de Corriente Continua. 1) a) Sobre un resistor de 10 Ω se mantiene una corriente de 5 A durante 4 minutos. Cuánta

Más detalles