CAPACITORES (parte 1)
|
|
|
- Natalia López Núñez
- hace 9 años
- Vistas:
Transcripción
1 CAPACTORES (parte 1) Un dispositivo que sea capaz de almacenar cargas eléctricas es llamado capacitor. Cuando se aplica una tensión de corriente continua a un capacitor, la corriente empieza a circular instantáneamente con la intensidad máxima que le permite la resistencia del circuito. Esta corriente decrece a medida que transcurre el tiempo hasta alcanzar el nivel cero. Por el contrario la tensión entre los terminales del capacitor será cero en el instante que se aplica tensión al circuito e irá creciendo al mismo ritmo con que la intensidad de corriente va decreciendo. Un capacitor insertado en un circuito se opondrá a los cambios de tensión en el mismo. Como se puede deducir, en un circuito eléctrico el capacitor se comporta eléctricamente en forma opuesta a la de una bobina. Sw 1 Capacitor V c V b máx V c = V b V c Corriente en el circuito Tensión entre placas del capacitor τ τ Curvas de corriente y tensión V c durante la carga de un capacitor 0 t nstante de cierre de Sw 1 Físicamente un capacitor está formado por dos placas de material conductor separadas por un material aislante. Terminal de conexión Terminal de conexión Aislante o dieléctrico Pág. 1
2 La capacidad de un capacitor es una función directamente proporcional a la superficie de las placas enfrentadas, e inversamente proporcional a la distancia de separación entre las mismas, todo afectado por una constante que es dependiente del material utilizado como dieléctrico llamada Constante Dieléctrica e (epsilon). Esto quiere decir que para un espesor dado del aislador o dieléctrico, la capacidad será cada vez mayor cuanto mayor sea la superficie de las placas, o viceversa. Para una superficie dada de placas, la capacidad será cada vez mayor cuanto menor sea la distancia que las separa (espesor del dieléctrico), o viceversa. Cálculo de la capacidad de un capacitor formado por dos placas paralelas: 1,11 x S x e C = 4 x p x e x 10 6 donde: C = capacidad en microfaradios (mf) S = superficie de una de las placas en cm 2 e = constante dieléctrica (obtenida en tablas) e = espesor del dieléctrico en cm. 1 La Constante Dieléctrica es independiente de la superficie y espesor del dieléctrico, porque en cada caso es una comparación con un vacío de las mismas dimensiones. MATERAL Constante Dieléctrica Vacío 1,0 Aire 1,00059 Papel de abeto 2,7 Resina 2,5 Caucho duro 2,8 Papel seco 3,5 Cristal común 4,2 Cuarzo 4,5 Mica 4,5 a 7 Cerámica 5,5 Vidrio fino 7,0 Vidrio ordinario 7,0 a 9 Pág. 2
3 Ejemplo: 1. Hallar la capacidad de un capacitor cuyas placas son paralelas, tienen una superficie de 35 cm 2, la separación entre las mismas es de 0,12 cm. y el dieléctrico es aire. S= 35 cm 2 0,12 cm. Según lo expresado en 1 C = 1,11 x S x ε 4 x π x e x 10 6 reemplazando por los datos suministrados 1,11 x 35 x 1 C = = 0, µf 4 x 3,1416 x 0,12 x Veamos que sucede con la capacidad de este capacitor si en lugar del dieléctrico de aire se coloca un dieléctrico de mica del mismo espesor. 1,11 x 35 x 7 C = = 0, µf 4 x 3,1416 x 0,12 x 10 6 A B Observe la importancia del material con que está conformado el dieléctrico del capacitor comparando los resultados obtenidos en A y B. Esto nos indica que para la misma superficie de placas e igual separación entre las mismas la capacidad varia en función del material utilizado como dieléctrico. Entre la placas de un capacitor se establece un campo eléctrico puesto que al cargarse el capacitor una de las placas entrega electrones al generador quedando con carga positiva y la otra adquiere electrones en la misma proporción con que los pierde la otra placa adquiriendo carga negativa. El fenómeno descripto anteriormente es resultado de que la permisividad del aire para el pasaje de las líneas de fuerza de un campo eléctrico es 1 (uno) y la de los materiales utilizados como dieléctrico en la fabricación de capacitores es mucho mayor. Tener cuidado de no confundir permisividad de pasaje de las líneas de campo eléctrico con conductividad de corriente eléctrica. Pág. 3
4 Capacitor formado por dos placas arrolladas Terminal de conexión de una placa Láminas arrolladas Dieléctrico Dieléctrico Dieléctrico Terminal de conexión de una placa En la figura anterior se ha representado un capacitor de los utilizados en encendidos con bobina de ignición y ruptor, como puede apreciarse las placas son dos láminas generalmente de aluminio separadas por láminas aislantes que conforman el dieléctrico, estas láminas hasta hace unos años se construían con papel embebido en aceite aislante, actualmente se utiliza para las mismas poliestireno o polipropileno. Para lograr en el capacitor la capacidad necesaria para el correcto funcionamiento del circuito, es preciso tener una amplia superficie de placas enfrentadas Por dimensiones físicas del capacitor, es imposible tener esa superficie de placas en un plano, por eso se recurre a formarlas con dos largas láminas de material conductor separadas por láminas aislantes, conjunto que luego es arrollado y encapsulado. La unidad de medida de la capacidad es el Faradio, por ser esta una unidad muy grande, en la práctica son utilizados submúltiplos de la misma y que son: Microfaradio (mf) (puede aparecer expresado como mfd ) = 10-6 faradios Nanofaradio (nf) = 10-9 faradios Picofaradio (pf) (puede aparecer expresado como mmf ) = faradios Pág. 4
5 Comportamiento de un condensador en corriente continua. Proceso de carga y descarga. Sentido de circulación de los electrones en el circuito Sw Sw Sw V V V 2 2 -= Fig. 1 Fig. 2 Fig. 3 El capacitor que está representado en la Fig. 1 está descargado, o sea que la diferencia de potencial entre las placas 1 y 2 es igual a 0 (cero) y ambas placas tienen un potencial diferente al de la batería. Al cerrar el interruptor Sw, el polo positivo de la batería atraerá electrones de la placa 1 y el polo negativo repelerá electrones hacia la placa 2. (Figura 2) *Recordemos que cargas de distinto signo se atraen y cargas de igual signo se repelen.* La cantidad de electrones extraídos de la placa 1, atraídos por el polo positivo de la batería, será igual a la cantidad de electrones repelidos por el polo negativo de esta e impulsados hacia la placa 2. Esta condición se cumple por tratarse de un circuito en conformación serie, recordemos que en un circuito serie la corriente tiene la misma intensidad en cualquier punto del mismo. Las placas se van cargando en el tiempo, la 1 positivamente y la 2 negativamente. Esta carga se va produciendo en forma gradual, pero al mismo tiempo que se produce se va generando entre placas una Diferencia de Potencial (se abrevia como d.d.p.) que se opone a la tensión aplicada, de ahí el retardo que se produce en el crecimiento del nivel de tensión entre placas del condensador. Cuando la Diferencia de Potencial llega a igualar el nivel de la tensión aplicada, cesa la circulación de corriente en el circuito, en ese instante el condensador está completamente cargado. (Figura 3) Del análisis de la condición de carga descripto, surge el porque en un circuito serie alimentado por corriente continua y que tiene insertado un condensador, este bloquea el pasaje de corriente por el circuito. Pág. 5
6 Proceso de carga de un capacitor con una lámpara en serie nterruptor nterruptor lámpara V bateria V V = d.d.p Condensador d.d.p. nstante en que se cierra el interruptor. La carga del capacitor produce un flujo El capacitor se ha cargado totalmente. La diferencia de potencial entre sus pla- de corriente por el circuito. cas ha igualado la tensión de bateria V, no fluye más corriente por el circuito Fig. 4 Una vez que el capacitor ha alcanzado su máxima carga y ya no circula más corriente por el circuito, por más que se abra y se cierre el interruptor el capacitor seguirá manteniendo la carga adquirida. Para descargarlo se debe reemplazar la batería por un puente, entonces el capacitor devolverá al circuito la energía que tiene almacenada. Proceso de descarga del capacitor de la Fig. 4 i puente i capacitor Cuando se cierra el Capacitor descargado. cargado interruptor, la descarga Cesa de circular corriente. del capacitor produce Las placas han quedado al un flujo de corriente mismo potencial eléctrico. por el circuito. Observar que los sentidos de circulación de corriente en la carga y la descarga son opuestos, por ser la circulación electrónica de negativo a positivo. De lo analizado en el circuito se deduce que en un circuito serie alimentado por corriente continua y en el que este incluido un capacitor, solamente se establecerá circulación de corriente por el mismo, en los instantes de carga y descarga del capacitor. Pág. 6
7 Observar que las circulaciones de corriente se establecen entre placas del capacitor a traves del circuito externo del mismo. LACORRENTE NO CRCULA DE PLACA A PLACA NTERNAMENTE EN EL CAPACTOR, S AS SUCEDERA SGNFCARA QUE EL CAPACTOR TENDRA SU DELECTRCO EN CORTOCRCUTO O CON FUGAS MPORTANTES, LO QUE LO TORNARA NSERVBLE COMO CAPACTOR. Circuito equivalente de un capacitor con fugas en el dieléctrico Resistencia de pérdida Capacidad Fig. 5 Como se puede apreciar en el circuito la Resistencia de Pérdida (o fuga) aparece como una resistencia en paralelo con la capacidad real del capacitor. (Fig. 5) Pág.7
INTRODUCCIÓN A LOS SISTEMAS DIGITALES II
INTRODUIÓN A LOS SISTEMAS DIGITALES II ANEXO APUNTES UNIDAD N 1 APAITORES AÑO 2012 Ing. Eduardo Hoesé APAITORES El capacitor, también llamado condensador, es un componente eléctrico de dos terminales capaz
Condensadores. Tutorial de Electrónica
Condensadores Tutorial de Electrónica Condensadores. Principio de funcionamiento Un condensador consiste, básicamente, en dos placas metálicas separadas por un material aislante, denominado dieléctrico,
COLECCIÓN DE PROBLEMAS IV
COLECCIÓN DE PROBLEMAS IV 1. Siendo 628cm 2 la superficie de cada una de las láminas de un condensador plano, 5mm la distancia que las separa y 5 la constante dieléctrica relativa del medio interpuesto,
CAPACIDAD Y CONDESANDORES CAPACIDAD:
CONDENSADORES CAPACIDAD Y CONDESANDORES CAPACIDAD: calor absorbido Capacidad calórica= variación de Tº En el ámbito eléctrico: CAPACIDAD ELECTRICA DE UN CONDUCTOR: Razón constante entre la carga eléctrica
CAPACITORES. Capacitores o Condensadores
CAPACITORES Capacitores o Condensadores Un condensador o capacitor no es más que un dispositivo que tiene como función almacenar cargas eléctricas para su posterior utilización. Son utilizados frecuentemente
NORMAL SUPERIOR LA HACIENDA
NORMAL SUPERIOR LA HACIENDA DPTO. DE CIENCIAS NATURALES ASIGNATURA: FISICA NIVEL 11 o GRADO DOCENTE: MATÍAS ENRIQUE PUELLO CHAMORRO 1 1. CAPACITANCIA - CONDENSADORES Hasta ahora hemos visto cómo analizar
Electrotecnia General Tema 4 TEMA 4 CONDENSADORES
TEMA 4 CONDENSADORES 4.1. CONDENSADORES. CAPACIDAD Un sistema binario es el constituido por dos conductores próximos entre los cuales se producen fenómenos de influencia. Si la influencia es total, se
INDICE SECCION PAGINA. Indice Introducción Que es un condensador y. como funciona? Tipos de Condensadores... 6
INDICE SECCION PAGINA Indice........ 1 Introducción....... 2 Que es un condensador y como funciona?...... 3 Tipos de Condensadores.... 6 Condensadores en serie.... 7 Ejemplares de Condensadores... 8 Conclusión.......
q q CAPACIDAD El condensador. U U U U = C = constante C= V ==> = cb V = (F) FARADIO tambien = C. U = (cb) y U = C = (V)
1 CAPACIDAD El condensador. Dos placas de metal, separadas por un dialéctico o aislador, forman un condensador, o capacitor, o sea un dispositivo ue tiene la capacidad de almacenar electricidad, como un
Sistemas y Circuitos Eléctricos 1 GSE Juan Carlos García Cazcarra
Unidad Didáctica 2: Condensadores y Resistencias. 1.- Condensadores Es un aparato constituido por dos conductores llamados armaduras, separados por un aislante (dieléctrico) que se cargan con igual cantidad
TEMA PE6. 2) carga de los condensadores C
TEMA PE6 PE.6.. Dado el circuito de la figura y teniendo en cuenta que la energía almacenada en el condensador de µ F es de.5 Julios, calcular: a) Valor de la intensidad I.b) Valor de la fem ε. C) Carga
Física II CF-342 Ingeniería Plan Común.
Física II CF-342 Ingeniería Plan Común. Omar Jiménez Henríquez Departamento de Física, Universidad de Antofagasta, Antofagasta, Chile, I semestre 2011. Omar Jiménez. Universidad de Antofagasta. Chile Física
CAPACITORES INDUCTORES. Mg. Amancio R. Rojas Flores
CAPACITORES E INDUCTORES Mg. Amancio R. Rojas Flores A diferencia de resistencias, que disipan la energía, condensadores e inductores no se disipan, pero almacenan energía, que puede ser recuperada en
Departamento de Electrónica y Sistemas PARTE I) ELECTROSTÁTICA
Departamento de Electrónica y Sistemas PARTE I) ELECTROSTÁTICA 1) Capacidad de un conductor aislado 2) Condensadores y su capacidad 1) Condensador plano 2) Condensador cilíndrico 3) Asociación de condensadores.
Módulo 5 BOBINAS Y CAPACITORES Capacitancia Inductancia Reactancia
2016 Módulo 5 BOBINAS Y CAPACITORES Capacitancia Inductancia Reactancia Ing. Rodríguez, Diego 01/01/2016 Bobinas Inductancia Una bobina es un elemento de circuito capaz de almacenar energía magnética.
ELECTRICIDAD Y MAGNETISMO. Observación De La Carga y Descarga De Un Capacitor en un osciloscopio
ELECTRICIDAD Y MAGNETISMO Observación De La Carga y Descarga De Un Capacitor en un osciloscopio UNIDAD 2 PRÁCTICA 1 ING. ELECTROMECÁNICA PRESENTA: DANIEL ABARCA ANALCO DANIEL CEBRERO PRIETO YAMANI DE LA
TEMA: ELECTRÓNICA ANALÓGICA.
TEMA: ELECTRÓNICA ANALÓGICA. INTRODUCCIÓN: La electrónica es una de las herramientas más importantes de nuestro entorno. Se encuentra en muchos aparatos y sistemas como por ejemplo: radio, televisión,
4.3 Almacenamiento de energía eléctrica.
CAPÍTULO 4 Energía electrostática y capacidad Índice del capítulo 4 4 4. Energía potencial electrostática. 4. Capacidad. 4.3 Almacenamiento de energía eléctrica. 4.4 Asociación de condensadores. 4.5 Dieléctricos.
DETERMINAR LA CAPACITANCIA DE UN CONDENSADOR
DETERMINAR LA CAPACITANCIA DE UN CONDENSADOR OBJETIVOS: Comprobar el valor del condensador dado sus valores nominales. Tener cuidado con los instrumentos y equipos de laboratorio, por el valor de su magnitud.
Tipos de condensadores
CONDENSADOR Básicamente un condensador es un dispositivo capaz de almacenar energía en forma de campo eléctrico. Está formado por dos armaduras metálicas paralelas (generalmente de aluminio) separadas
TEMA PE5. PE.5.3. La figura muestra una batería de condensadores idénticos, de capacidad C, conectada a una diferencia de potencial constante V
TEMA PE5 PE.5.1.Un condensador de placas planoparalelas, de lados a y b, y separación d (d
2.3 - Los Condensadores
encajarlas según valores establecidos internacionalmente. Tolerancia 10 % Tolerancia 5 % Tolerancia 2 % 1.0 1.0, 1.1 1.00, 1.05, 1.1, 1.15 1.2 1.2, 1.3 1.21, 1.27, 1.33, 1.40, 1.47 1.5 1.5, 1.6 1.54, 1.62,
Campo eléctrico. Fig. 1. Problema número 1.
Campo eléctrico 1. Cuatro cargas del mismo valor están dispuestas en los vértices de un cuadrado de lado L, tal como se indica en la figura 1. a) Hallar el módulo, dirección y sentido de la fuerza eléctrica
La unidad de capacidad es el FARADIO. El faradio es una unidad tan sumamente grande que no resulta en absoluto práctica
Capítulo III Condensadores - Electricidad Victor Andrés Gómez Aranibar Condensadores Capacidad de un conductor Cuando un conductor se carga, es decir, se le comunica una carga eléctrica, adquiere un cierto
DIELÉCTRICOS Y CONDENSADORES
DIELÉCTRICOS Y CONDENSADORES ÍNDICE 1. Introducción 2. Cálculo de la capacidad 3. Asociación de condensadores 4. Energía del campo eléctrico 5. Dipolo eléctrico 6. Descripción atómica de los dieléctricos
CAPACITANCIA Introducción
CAPACITANCIA Introducción Además de los resistores, los capacitores y los inductores son otros dos elementos importantes que se encuentran en los circuitos eléctricos y electrónicos. Estos dispositivos,
Por definición: La capacitancia (o capacidad) se define a la relación: F C =
APATORES Un capacitor: onsiste, esencialmente, en dos conductores separados por un dieléctrico. Por definición: La capacitancia (o capacidad) se define a la relación: [ ] [ ] Q oul [ F] = olts Dieléctrico
Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago. Corriente directa
Corriente directa La corriente alterna es muy útil para transmitir la energía eléctrica, pues presenta menos pérdidas disipativas, y permite una fácil conversión entre voltaje y corriente por medio de
M A Y O A C T U A L I Z A D A
U N I V E R S I D A D N A C I O N A L E X P E R I M E N T A L F R A N C I S C O D E M I R A N D A C O M P L E J O A C A D É M I C O E L S A B I N O Á R E A D E T E C N O L O G Í A D E P A R T A M E N T
Ejercicios Propuestos Transporte eléctrico.
Ejercicios Propuestos Transporte eléctrico. 1. La cantidad de carga que pasa a través de una superficie de área 1[ 2 ] varía con el tiempo de acuerdo con la expresión () =4 3 6 2 +6. (a) Cuál es la intensidad
UNIVERSIDAD POLITÉCNICA DE EL SALVADOR FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA DE INGENIERÍA ELÉCTRICA LABORATORIO #4
UNIVERSIDAD POLITÉCNICA DE EL SALVADOR FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA DE INGENIERÍA ELÉCTRICA LABORATORIO #4 CIRCUITOS CAPACITIVOS MATERIA: ELECTRICIDAD Y MAGNETISMO 1. 2. 3. ALUMNOS CARNET
CONDENSADOR ELECTRICO
CONDENSADOR ELECTRICO CONCEPTO: Un condensador (en inglés, capacitor, nombre por el cual se le conoce frecuentemente en el ámbito de la electrónica y otras ramas de la física aplicada), es un dispositivo
FISI 3143: Laborarorio de Electrónica 1 Dept. Física y Electrónica, UPR Humacao Prof. Idalia Ramos, Ago Capacitores
Capacitores El capacitor es el segundo componente eléctrico pasivo que estudiaremos en el laboratorio. El capacitor básico es un componente electrónico construido con dos placas paralelas conductoras separadas
Dpto de Física UNS Electromagnetismo, Física B y Física II Prof. C Carletti
Problema 1. Un voltaje de corriente continua de 6[V], aplicado a los extremos de un alambre conductor de 1[Km] de longitud y 0.5 [mm] de radio, produce una corriente de 1/6A. Determine: a) La conductividad
COMPORTAMIENTO DE LOS CIRCUITOS EN CORRIENTE CONTINUA Como Corriente Continua se define una corriente que no varía en el tiempo ni de magnitud ni de sentido. Siempre que la carga insertada en el circuito
Capacitores y capacitancia
Capacitores y capacitancia Un capacitor es básicamente dos superficies conductoras separadas por un dieléctrico, o aisaldor. La capacitancia de un elemento es su habilidad para almacenar carga eléctrica
FISICA II HOJA 2 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 2. CONDENSADORES FORMULARIO
2. CONDENSADORES FORMULARIO 2.1) Para formar una batería de 1,6 µf, que pueda resistir una diferencia de potencial de 5.000 V, disponemos de condensadores de 2x10-6 F que pueden soportar 1.000 V. Calcular:
A.- Electrones fluyendo por un buen conductor eléctrico, que ofrece baja resistencia.
DEPARTAMENTO DE ORIENTACIÓN: TECNOLOGÍA 4E_F Primer trimestre Curso: 2014/2015 TEMA II: ELECTRICIDAD Y ELECTRÓNICA La electrónica forma parte de nuestra vida cotidiana.- Los electrodomésticos, los medios
Componentes básicos usados en electrónica ELECTRICIDAD / ELECTRÓNICA IES BELLAVISTA
Componentes básicos usados en electrónica ELECTRICIDAD / ELECTRÓNICA Elementos de maniobra Interrumpen o dirigen el paso de la corriente eléctrica Interruptor Pulsador Conmutador NA unipolar Conmutador
Trabajo Practico 2 - a: Potencial
1 Universidad Nacional del Nordeste Facultad de Ingeniería Cátedra: Física III Profesor Adjunto: Ing. Arturo Castaño Jefe de Trabajos Prácticos: Ing. Cesar Rey Auxiliares: Ing. Andrés Mendivil, Ing. José
C = ε r. ε o. S / d (1)
Ejercicio Resuelto Nº 1 Un condensador plano tiene sus armaduras de 500 cm2 separadas 5 mm, entre ellas se establece una diferencia de potencial Vo = 2000 V. Determinar la capacidad de dicho condensador.
Voltaje, Tensión o diferencia de potencial
Dispositivos de RF Elizabeth Fonseca Chávez Introducción. 2012 Resistencias, capacitores, y fuentes. Basado en Libro: Principios de Electrónica de Malvino. Circuitos Por un circuito eléctrico circulan
FÍSICA II Ing. Pablo M. Flores Jara Ing. Pablo M. Flores Jara
FÍSICA II [email protected] RÉGIMEN TRANSITORIO EN CIRCUITOS RC Circuitos RC Los circuitos RC son los formados por elementos resistivos y capacitivos. En esta sección vamos a analizar el comportamiento
No 10 LABORATORIO DE ELECTROMAGNETISMO CARGA Y DESCARGA DE CONDENSADORES. Objetivos
No 10 LABORATORIO DE ELECTROMAGNETISMO DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Determinar la constante de tiempo RC, utilizando valores calculados
V CONDENSADORES V.1 CAPACITANCIA C Ξ Q V
V.1 CAPACITANCIA V CONDENSADORES Una combinación de dos conductores separados una distancia que contienen cargas de igual magnitud pero de signo opuesto y entre ellos existe una diferencia de potencial
CAPACITORES EL CAPACITOR COMO COMPONENTE ELECTRÓNICO
DISPOSITIVO ELETRONIO APAITORES EL APAITOR OMO OMPONENTE ELETRÓNIO EL APAITOR OMO OMPONENTE ELETRÓNIO Un capacitor es, esencialmente dos conductores separados por un dieléctrico Se define: La capacitancia
INTEGRACIÓN - AUTOEVALUACIÓN AUTOEVALUACIÓN 1
INTEGRACIÓN - AUTOEVALUACIÓN AUTOEVALUACIÓN 1 1- Una esfera aislante de radio r a = 1.20 cm está sostenida sobre un soporte aislante en el centro de una coraza metálica esférica hueca de radio r b = 9,60
Introducción unidades eléctricas. leyes de la electricidad (Ohm y Kirchhoff) Circuitos en serie y en paralelo Corriente alterna
Introducción unidades eléctricas corriente eléctrica leyes de la electricidad (Ohm y Kirchhoff) Circuitos en serie y en paralelo Corriente alterna Principios Básicos Inicialmente los átomos tienen carga
Cuando más grande sea el capacitor o cuanto más grande sea la resistencia de carga, más demorará el capacitor en descargarse.
CONDENSADOR ELÉCTRICO Un capacitor es un dispositivo formado por dos conductores, en forma de placas o láminas, separados por un material que actúa como aislante o por el vacío. Este dispositivo al ser
Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO
SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO 1. Un condensador se carga aplicando una diferencia de potencial entre sus placas de 5 V. Las placas son circulares de diámetro cm y están separadas
Corriente Continua. 6. En el circuito de la figura 1(b) hallar la diferencia de potencial entre los puntos a y b.
Corriente Continua 1. Un cable conductor de cobre cuyo diámetro es de 1.29 mm puede transportar con seguridad una corriente máxima de 6 A. a) Cuál es la diferencia de potencial máxima que puede aplicarse
Condensadores CARACTERÍSTICAS TÉCNICAS GENERALES
CAPACITANCIA. La capacitancia entre dos conductores que tienen cargas de igual magnitud y de signo contrario es la razón de la magnitud de la carga en uno u otro conductor con la diferencia de potencial
El vector de desplazamiento también puede inscribirse como: D (r) = εe (r)
ENTREGA 2 Dieléctricos Elaborado por liffor astrillo, Ariel Hernández Muñoz, Rafael López Sánchez y Armando Ortez Ramos, Universidad Nacional Autónoma de Managua. Vector de desplazamiento eléctrico Se
CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO
CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO PROBLEMAS PROPUESTOS 1:.Se coloca una bobina de 200 vueltas y 0,1 m de radio perpendicular a un campo magnético uniforme de 0,2 T. Encontrar la fem inducida
ELECTRICIDAD TECNOLOGÍA INDUSTRIAL I
ELECTRICIDAD TECNOLOGÍA INDUSTRIAL I CONCEPTO DE ENERGÍA ELECTRICA La materia está formada por átomos y los átomos por partícula subatómicas. El núcleo está formado a su vez por protones, con masa y carga
Capacitancia. Los capacitores, los resistores y los inductores son elementos
apacitancia Los capacitores, los resistores y los inductores son elementos importantes que se encuentran en los circuitos eléctricos y electrónicos. Estos dispositivos, son conocidos como elementos pasivos.
CARGA Y DESCARGA DE UN CONDENSADOR.
AUTORES FUNDAMENTOS DE ELECTRICIDAD Y MAGNETISMO. Edwin Leonardo Pérez Cantor. Código: 153192 Matheo López Pachón Código: 234619 Andrés Julián Buitrago Lamy Código: 234603 Juan David Tole Código: 234646
Tema 2 Componentes Electrónicos
ELECTRÓNICA ANALÓGICA IES PRADO DE SANTO DOMINGO CURSO 2010-2011 Tema 2 Componentes Electrónicos Profesor: Ramón Rodríguez Luque Web: http://platea.pntic.mec.es/rrodrigu/cms/ Índice 1.- RESISTENCIAS. Tipos:
Unidad 12. Circuitos eléctricos de corriente continua
Unidad 12. Circuitos eléctricos de corriente continua 1. El circuito eléctrico 2. Magnitudes eléctricas 3. Elementos de un circuito 4. Resolución de problemas complejos 5. Distribución de la energía eléctrica
Condensadores. Parte I.
Condensadores. Parte I. Introducción La experiencia, que consta de varias partes, tiene como finalidad familiarizar a los alumnos con los condensadores, sobre la base de realizar unos experimentos, éstos,
GUÍA DE EJERCICIOS-6 ELECTRICIDAD-1 CONEXIÓN SERIE PARALELO DE CONDENSADORES
GUÍA DE EJERCICIOS-6 ELECTRICIDAD-1 CONEXIÓN SERIE PARALELO DE CONDENSADORES Área de EET Página 1 de 7 Derechos Reservados Titular del Derecho: INACAP N de inscripción en el Registro de Propiedad Intelectual
FÍSICA GENERAL III - CURSO 2015 Práctica 5: Electrostática con conductores. Capacidad.
FÍSICA GENERAL III - CURSO 2015 Práctica 5: Electrostática con conductores. Capacidad. 1- Las siguientes cuestiones ayudan a comprender el proceso de descarga a tierra. a) Por qué un cuerpo metálico esférico
INTRODUCCIÓN A LA ELECTRÓNICA
INTRODUCCIÓN A LA ELECTRÓNICA LA ELECTRICIDAD. CONCEPTOS BÁSICOS. Los átomos de lo materiales conductores tienen electrones en su capa externa que pueden saltar fácilmente de unos átomos a otros. Los electrones
PRÁCTICA NÚMERO 9 CAPACITANCIA
PRÁCTICA NÚMERO 9 CAPACITANCIA I.Objetivos. 1. Comprender la función básica del condensador como almacenador de carga. 2. Observar el efecto que tiene un material dieléctrico sobre la capacitancia de un
Son componentes que ofrecen cierta oposición al paso de la corriente, y produce una caída de tensión entre sus terminales.
8. COMPONENTES ELECTRÓNICOS 8.1 Resistencias. Son componentes que ofrecen cierta oposición al paso de la corriente, y produce una caída de tensión entre sus terminales. Una característica muy importante
Slide 1 / 66. El Campo Eléctrico, La Energía Potencial, y El Voltaje
Slide 1 / 66 El Campo Eléctrico, La Energía Potencial, y El Voltaje Slide 2 / 66 Trabajo Q+ Q+ La fuerza cambia mientras las cargas se colocan hacia el uno al otro ya que la fuerza depende en la distancia
6.3 Condensadores y dieléctricos.
6.3 Condensadores y dieléctricos. 6.3.1 CONCEPTO DE DIPOLO. MATERIALES DIELÉCTRICOS. Un material mal conductor o dieléctrico, no posee cargas libres, al contrario de un material conductor, como por ejemplo
Medicion y Análisis de Componentes Circuitos Electrónicos
Liceo Industrial de Electrotecnia Ramón Barros Luco- La Cisterna profesor Claudio Pinto C Módulo 2 Medicion y Análisis de Componentes Circuitos Electrónicos Rectificación y Filtrado El proceso de rectificación
[PRÁCTICAS DE SIMULACIÓN ELECTRÓNICA]
2013 [PRÁCTICAS DE SIMULACIÓN ELECTRÓNICA] 3º E.S.O. PRACTICA Nº 1. RESISTENCIAS VARIABLES POTENCIÓMETRO Monta los circuitos de la figura y observa que ocurre cuando el potenciómetro es de 100Ω, de 1kΩ
Física 3 - Turno : Mañana
Física 3 - Turno : Mañana Guía N 3 - Primer cuatrimestre de 2010 Corrientes estacionarias, ley de Ohm, teorema de Thevenin, transferencia de potencia, conexiones de resistencias. 1. Calcular la resistencia
PRACTICA 4: CAPACITORES
1 PRACTICA 4: CAPACITORES 1.1 OBJETIVO GENERAL Determinar qué factores influyen en la capacitancia de un condensador y las formas de hallar dicha capacitancia 1.2 Específicos: Determinar la influencia
Capacidad y dieléctricos
Capacidad y dieléctricos Física II Grado en Ingeniería de Organización Industrial Primer Curso Joaquín Bernal Méndez Curso 211212 Dpto. Física Aplicada III Universidad de Sevilla Índice Introducción Capacidad:
CAMPO MAGNÉTICO 3. FENÓMENOS DE INDUCCIÓN
CAMPO MAGNÉTICO 3. FENÓMENOS DE INDUCCIÓN RESUMEN 1. LEY DE FARADAY 2. LEY DE LENZ 3. INDUCTANCIA 4. ENERGÍA DEL CAMPO MAGNÉTICO 5. CIRCUITOS RL 6. OSCILACIONES. CIRCUITO LC 7. CORRIENTE ALTERNA. RESONANCIA
ELECTRICIDAD Y MAGNETISMO
26-9-2011 UNAM ELECTRICIDAD Y MAGNETISMO TEMA DOS ING. SANTIAGO GONZÁLEZ LÓPEZ CAPITULO DOS CAPACITORES Un capacitor es un elemento que almacena carga y capacitancia la propiedad que la determina cuanta
Condensadores plásticos (Plastic film capacitors)
Condensadores plásticos (Plastic film capacitors) CURIOSIDAD: Condensador "MULTICAPA" fabricación casera con vasos de Polietileno Condensadores plásticos (Plastic film capacitors) Poliéster metalizado
Evaluación de Electricidad. 30 preguntas. Tiempo = 30 minutos. Se puede usar calculadora. Suerte
Evaluación de Electricidad. 30 preguntas. Tiempo = 30 minutos. Se puede usar calculadora. Suerte 1. Una batería de carbón y zinc tiene una F.E.M., de 9 volts y se le conecta una resistencia de 12 Kohms.
Unidad didáctica 4. Introducción a la electricidad y la electrónica.
Unidad didáctica 4. Introducción a la electricidad y la electrónica. 1. Introducción. Entre las distintas formas de energía, la eléctrica es sin duda una de las mas utilizadas. La corriente producida por
ELECTRÓNICA ANALÓGICA. Tema 1 Introducción a la electrónica analógica
ELECTRÓNICA ANALÓGICA Tema 1 Introducción a la electrónica analógica Índice Tensión, diferencia de potencial o voltaje. Corriente eléctrica. Resistencia eléctrica. Potencia eléctrica. Circuito eléctrico
ELECTROESTÁTICA. Física 1º bachillerato Electroestática 1
ELECTROESTÁTICA 1. Naturaleza eléctrica. 2. Interacción electroestática. 3. Campo eléctrico. 4. Energía potencial eléctrica. 5. Potencial eléctrico. 6. Corriente eléctrica continua. 7. Ley de Ohm. 8. Asociación
UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE TECNOLOGÍAS ESCUELA DE TECNOLOGÍA MECÁNICA
PRÁCTICA 3. ESTABLECER LAS CURVAS DE CARGAS Y DESCARGA DE UN CAPACITOR ELECTROLÍTICO EN C.C OBJETIVOS Realizar el cálculo teórico del tiempo de carga de un capacitor electrolítico. Conocer y manejar la
UNIVERSIDAD AUTÓNOMA CHAPINGO DPTO. DE PREPARATORIA AGRÍCOLA ÁREA DE FÍSICA
UNIVERSIDAD AUTÓNOMA CHAPINGO DPTO. DE PREPARATORIA AGRÍCOLA ÁREA DE FÍSICA ELECTRICIDAD TEORÍA Establezca las siguientes definiciones o conceptos: 1.- Carga. 2.- Ley de Coulomb. 3.- Ley de Conservación
1 TEMA 3: Ciencias Naturales. LA ELECTRICIDAD Y EL MAGMETISMO CRA Sexma de La Sierra. CoNoTiC. Esquema conceptual: 3. LA ELECTRICIDAD Y EL MAGNETISMO
1 TEMA 3: Ciencias Naturales. LA ELECTRICIDAD Y EL MAGMETISMO CRA Sexma de La Sierra. CoNoTiC Esquema conceptual: 3. LA ELECTRICIDAD Y EL MAGNETISMO 2 TEMA 3: Ciencias Naturales. LA ELECTRICIDAD Y EL MAGMETISMO
1. CONCEPTOS GENERALES
ITEM DETALLE GUÍA N 1 Conceptos Generales ASIGNATURA Circuitos de Corriente Alterna CÓDIGO 51133254 DOCENTE William López Salgado CÓDIGO 34167 1. CONCEPTOS GENERALES 1.1 OBJETIVO DE LA UNIDAD Que el estudiante
Problemas 3: Condensadores
Problemas tema 3: ondensadores /9 Problemas 3: ondensadores Fátima Masot onde Ing. Industrial 00/ Fátima Masot onde Dpto. Física Aplicada III Universidad de Sevilla Problemas tema 3: ondensadores /9 Problema
Electricidad y Magnetismo UEUQ Cursada 2004 Trabajo Práctico N 6: Resistencias y Circuitos de Corriente Continua.
Electricidad y Magnetismo UEUQ Cursada 2004 Trabajo Práctico N 6: esistencias y Circuitos de Corriente Continua. 1) a) Sobre un resistor de 10 Ω se mantiene una corriente de 5 A durante 4 minutos. Cuánta
Unidad I: Electrostática (2da parte)
Unidad I: Electrostática (2da parte) Potencial electrostático. a) Trabajo de la fuerza electrostática. Considere el sistema de dos cargas formado por las cargas puntuales Q y q, mostrado en la Figura 2.1.
UNIVERSIDAD NACIONAL DEL CALLAO
UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA ESCUELA PROFESIONAL DE INGENIERÍA ELÉCTRICA Curso: TEORÍA DE CAMPOS ELECTROMAGNÉTICOS PROFESOR: ING. JORGE MONTAÑO PISFIL
CIRCUITOS ELÉCTRICOS
CICUITOS ELÉCTICOS.- CONCEPTOS FUNDAMENTALES Energía eléctrica. Actualmente, la eléctrica es la forma de energía más usada por varios motivos: Es fácil de producir. Se puede transportar a grandes distancias.
LOS CONDENSADORES INTRODUCCIÓN
LOS CONDENSADORES INTRODUCCIÓN En su forma más sencilla, un condensador está formado por dos placas metálicas (armaduras) separadas por una lámina no conductora o dieléctrico. Al conectar una de las placas
Electrodinámica R = 54
Electrodinámica Ejercicio 1: un alambre de longitud L y resistencia =6 se estira hasta una longitud 3L conservando invariante su masa. Calcule la resistencia del alambre una vez estirado. = 54 Ejercicio
PRÁCTICA NÚMERO 3. ESTUDIO DEL CIRCUITO RL.
PRÁCTICA NÚMERO 3. ESTUDIO DEL CIRCUITO RL. 3.1. Introducción Teórica. 3.1.1. El inductor o bobina El tercer componente pasivo que vamos a analizar es el que se conoce como inductor o bobina, que consiste
Piezo electrico K
Piezo electrico Efecto piezoeléctrico, fenómeno físico por el cual aparece una diferencia de potencial eléctrico (voltaje) entre las caras de un cristal cuando éste se somete a una presión mecánica. El
GUIA DIDACTICA DE TECNOLOGIA N º5 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA ONCE PRIMERO 6
1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA ONCE PRIMERO 6 DOCENTE(S) DEL AREA:NILSON YEZID VERA CHALA COMPETENCIA: USO Y APROPIACION DE LA TECNOLOGIA NIVEL DE COMPETENCIA: INTERPRETATIVA
5.3 La energía en los circuitos eléctricos.
CAPÍTULO 5 Corriente eléctrica y circuitos de corriente continua Índice del capítulo 5 51 5.1 Corriente eléctrica. 5.2 esistencia y la ley de Ohm. 5.3 La energía en los circuitos eléctricos. 5.4 Asociaciones
1. DEFINICIÓN. Electrónica. 1. DEFINICIÓN. 2. CLASIFICACIÓN. 3. MEDIDAS E IDENTIFICACIÓN. 2. CLASIFICACIÓN COMPONENTES ELECTRÓNICOS
1. DEFINICIÓN. Electrónica. 1. DEFINICIÓN. 2. CLASIFICACIÓN. 3. MEDIDAS E IDENTIFICACIÓN. Estudio y aplicación del comportamiento de los electrones en diversos medios materiales y vacío, sometidos a la
