TEMA PE5. PE.5.3. La figura muestra una batería de condensadores idénticos, de capacidad C, conectada a una diferencia de potencial constante V

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA PE5. PE.5.3. La figura muestra una batería de condensadores idénticos, de capacidad C, conectada a una diferencia de potencial constante V"

Transcripción

1 TEMA PE5 PE.5.1.Un condensador de placas planoparalelas, de lados a y b, y separación d (d<<a,b), está aislado y cargado con carga Q. Entre sus placas se introduce un material dieléctrico, de constante dieléctrica relativa 4, de forma que ocupa la mitad del condensador, tal y como se indica en la figura. Hallar: 1) La densidad de carga sobre cada una de las regiones de las placas del condensador. ) La diferencia de potencial entre las placas. 3) La variación de energía del sistema, respecto a la situación en que no había dieléctrico dentro del condensador. PE.5.. Dos láminas metálicas planas, horizontales, están colocadas paralelamente una frente a la otra, distantes e = 1cm. Se establece entre ellas una diferencia de potencial constante V = 3 V. Se introduce en el interior del condensador así formado, una lámina de espesor e = 5mm paralelamente a las armaduras y permitividad relativa ε =. Calcular: 1) Carga que toman las láminas metálicas por unidad de superficie. ) La presión que tiende a acercarlos. 3) Se hace resbalar horizontalmente la lámina aislante, de modo que uno de sus bordes emerja del condensador mientras el resto del dieléctrico continúa en su interior y en su misma posición relativa. Calcular la fuerza necesaria, por unidad de longitud sobre el borde, para mantener la lámina en equilibrio. PE.5.3. La figura muestra una batería de condensadores idénticos, de capacidad C, conectada a una diferencia de potencial constante V. Posteriormente se rellena el condensador C con un dieléctrico de permitividad relativa ε r. Se pide: 1) Calcular la energía almacenada por el condensador C antes y después de introducir el dieléctrico. ) Calcular la energía total almacenada una vez introducido el dieléctrico. 3) Por qué factor habría que multiplicarse la distancia entre las armaduras del condensador C 3 para que no se modificase la capacidad total al introducir el dieléctrico? PE.5.4. Un condensador formado por dos conductores planoparalelos, situados en x = a y x = a se encuentran a potenciales cero y V respectivamente. El dieléctrico que los separa tiene una permitividad relativa dada por 1 ε =. x 1+ a Calcular el potencial eléctrico y el campo eléctrico en cualquier punto ene. condensador, el vector polarización y las cargas polarizadas.

2 PE.5.5 Un ingeniero informático trata de probar la utilidad de los condensadores en un laboratorio de hardware. Para ello carga la armadura interna (radio R 1 =18cm) de un condensador esférico hasta alcanzar un valor de carga Q=1-5 C mientras la armadura externa (radio R =18.cm) la mantiene conectada a tierra (Situación 1). Tras cargarlo, deja el condensador esférico totalmente aislado (Situación ). A continuación, conecta a tierra la armadura interna (Situación 3). El ingeniero informático te pide que le ayudes a calcular: a) La cantidad de carga que ha pasado finalmente a tierra (Situación 3). b) El valor del potencial V AB = V A -V B que ayudó a cargar al principio el condensador esférico (Situación 1). c) La capacidad C del condensador esférico. Situación 1 Situación Situación 3 PE.5.6. En el circuito integrado que hay en el interior de la carcasa de un módem, nos encontramos una asociación de condensadores C 1 =C =C 3 =C 4 =µf distribuidos según aparecen en la figura. La diferencia de potencial entre el punto A y la toma de tierra en C vale V AC = V A -V C = V. Calcular: a) La capacidad equivalente de la asociación de condensadores. b) La carga de los condensadores C 1 y C 3. c) La diferencia de potencial entre las placas del condensador C 4. PE.5.7. Se tiene un condensador plano, para almacenamiento de carga en la placa base de un ordenador, de armaduras cuadradas de lado a y entre ellas cuatro dieléctricos como indica la figura. Se carga dicho condensador con una carga eléctrica Q. Se pide: 1) La diferencia de potencial entre las armaduras. ) densidad superficial de carga eléctrica en sus armaduras. 3) Capacidad del mismo. 4) Energía almacenada.

3 6 Datos: a = 1m ; e = mm ; Q = 5 1 C ; ε = 3F m ; ε = 6 5F m ; ε = 1 F m 1 1 PE.5.8. Un sencillo circuito electrónico de un PC consta de los elementos de la figura, en el que los condensadores tienen la misma capacidad C 1 =C =C 3 =C 4 =C 5 =C 6 =C 7 =1µ F, y en el que manteniendo la diferencia de potencial V AB = V A -V B = 1 V se cargan los condensadores. a) Cuál es la capacidad equivalente entre A y B? b) Una vez cargados los condensadores y manteniendo la misma diferencia de potencial entre A y B, introducimos en el condensador C 7 un dieléctrico de permitividad ε 7 =ε. Calcular la nueva energía total de los condensadores. c) En esta misma nueva situación, cuánto vale el desplazamiento eléctrico en el condensador C 7 si la superficie de sus láminas es S 7 = m? PE.5.9. Un condensador de láminas planoparalelas de superficie S tiene en su interior una combinación de dieléctricos como muestra la figura. Se carga con 7µ C y se aísla. Determinar: 1) La capacidad del condensador. ) Las densidades de carga de polarización en cada dieléctrico. PE.5.1. Un ingeniero informático diseña un circuito con tres condensadores inicialmente descargados de igual capacidad C 1 =C =C 3 =3µF, a los que somete a una

4 Figura 1 (Diseño 1) Figura (Diseño ) diferencia de potencial V DE = V D -V E = 1 V según la Figura 1 (Diseño 1) y los carga. Del mismo modo, en otra parte de su mesa de trabajo, carga un cuarto condensador C 4 =3µF con la ayuda de otra fuente de tensión de mismo potencial V DE = V D -V E = 1 V. Posteriormente, modifica el circuito y añade el condensador C 4 entre los puntos B y C, según se representa en la Figura (Diseño). Cuál de ambos diseños es capaz de almacenar mayor energía? Razonar la respuesta. Nota: Considerar la energía almacenada en el condensador C 4 como parte de la energía almacenada total del primer diseño PE Dado el sistema de condensadores de la figura, en el que C1 = 4nF ; C = nf ; C3 = 6nF y C4 = 6nF, conectado a una diferencia de potencial de 1V, determinar: 1) carga en las placas de cada condensador. ) Energía total almacenada. 3) Constante dieléctrica que debería tener un material para que al introducirlo en el condensador C 1, la ddp entre A y B fuera de 5V. 4) Incremento de energía producido al introducir el dieléctrico. PE.5.1. El espacio comprendido entre dos placas conductoras paralelas, indefinidas y separadas una distancia L, está ocupado por tres láminas de dieléctrico des espesores L 4, L 3 y L 1 cada una y permitividades absolutas ε1 = ε ; ε = ε y ε3 = 4ε, como se ve en la figura. Si la diferencia de potencial entre las placas es V, calcular: 1) La densidad de carga en las placas. ) El campo eléctrico en cada región. 3) La diferencia de potencial entre a-b, b-c y c-d. 4) La densidad superficial de carga polarizada en cada cara de los dieléctricos.

5

Capacitores y dieléctricos

Capacitores y dieléctricos Capacitores y dieléctricos Ejercicio 1: los capacitores del circuito de la figura valen C1=4 F; C2=6 F; C3=12,6 F; C4=2 F; C5=8 F. En régimen estacionario, calcule: a) la capacidad equivalente de la configuración;

Más detalles

Problemas 3: Condensadores

Problemas 3: Condensadores Problemas tema 3: ondensadores /9 Problemas 3: ondensadores Fátima Masot onde Ing. Industrial 00/ Fátima Masot onde Dpto. Física Aplicada III Universidad de Sevilla Problemas tema 3: ondensadores /9 Problema

Más detalles

El vector de desplazamiento también puede inscribirse como: D (r) = εe (r)

El vector de desplazamiento también puede inscribirse como: D (r) = εe (r) ENTREGA 2 Dieléctricos Elaborado por liffor astrillo, Ariel Hernández Muñoz, Rafael López Sánchez y Armando Ortez Ramos, Universidad Nacional Autónoma de Managua. Vector de desplazamiento eléctrico Se

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO 1. Un condensador se carga aplicando una diferencia de potencial entre sus placas de 5 V. Las placas son circulares de diámetro cm y están separadas

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Electrostática

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Electrostática 1(7) Ejercicio nº 1 Supongamos dos esferas de 10 Kg y 10 C separadas una distancia de 1 metro. Determina la fuerza gravitatoria y la fuerza eléctrica entre las esferas. Compara ambas fuerzas. Ejercicio

Más detalles

de 2/(3) 1/2 de lado y en el tercero hay una la Tierra?.

de 2/(3) 1/2 de lado y en el tercero hay una la Tierra?. 1. Calcula la altura necesaria que hay que subir por encima de la superficie terrestre para que la intensidad del campo Determinar la velocidad de una masa m' cuando partiendo del reposo del primero de

Más detalles

MATERIALES DIELÉCTRICOS

MATERIALES DIELÉCTRICOS MATERIALES DIELÉCTRICOS PREGUNTAS 1. Qué le ocurre a una placa sólida, dieléctrica, cuando se coloca en un campo eléctrico uniforme?. Qué es un material dieléctrico?, argumente. 3. Hay dieléctricos polar

Más detalles

TEMA PE9. PE.9.2. Tenemos dos espiras planas de la forma y dimensiones que se indican en la Figura, siendo R

TEMA PE9. PE.9.2. Tenemos dos espiras planas de la forma y dimensiones que se indican en la Figura, siendo R TEMA PE9 PE.9.1. Los campos magnéticos de los que estamos rodeados continuamente representan un riesgo potencial para la salud, en Europa se han establecido recomendaciones para limitar la exposición,

Más detalles

Práctica 3 de Física General (Curso propedéutico 2_2007)

Práctica 3 de Física General (Curso propedéutico 2_2007) Práctica 3 de Física General (Curso propedéutico 2_2007) 1.- Si los valores de las cargas Q1, Q2, Q3 son de 30 C; 100 C y 160 C respectivamente, determinar la fuerza eléctrica resultante que actúa sobre

Más detalles

PROBLEMAS ELECTROESTÁTICA

PROBLEMAS ELECTROESTÁTICA POBLEMAS DE ELETOESTÁTIA III ampo electrostático en los conductores Prof. J. Martín ONDUTOES AGADOS EN EL AI O Pr obl e ma alcular : a) la capacidad de una superficie esférica de radio ; b) la capacidad

Más detalles

Efecto del dieléctrico en un capacitor

Efecto del dieléctrico en un capacitor Efecto del dieléctrico en un capacitor La mayor parte de los capacitores llevan entre sus placas conductoras una sustancia no conductora o dieléctrica. Efecto del dieléctrico en un capacitor Un capacitor

Más detalles

CONDENSADOR CILÍNDRICO Y ESFÉRICO. ASOCIACIÓN DE CONDENSADORES. 1. Determinar su capacidad. 2. La expresión de la energía almacenada entre sus placas.

CONDENSADOR CILÍNDRICO Y ESFÉRICO. ASOCIACIÓN DE CONDENSADORES. 1. Determinar su capacidad. 2. La expresión de la energía almacenada entre sus placas. CONDENSADOR CILÍNDRICO Y ESFÉRICO. ASOCIACIÓN DE CONDENSADORES. P1.- Un condensador esférico está compuesto por dos esferas concéntricas, la interior de radio r y la exterior (hueca) de radio interior

Más detalles

CAPACITANCIA Introducción

CAPACITANCIA Introducción CAPACITANCIA Introducción Además de los resistores, los capacitores y los inductores son otros dos elementos importantes que se encuentran en los circuitos eléctricos y electrónicos. Estos dispositivos,

Más detalles

6.3 Condensadores y dieléctricos.

6.3 Condensadores y dieléctricos. 6.3 Condensadores y dieléctricos. 6.3.1 CONCEPTO DE DIPOLO. MATERIALES DIELÉCTRICOS. Un material mal conductor o dieléctrico, no posee cargas libres, al contrario de un material conductor, como por ejemplo

Más detalles

32. Se conecta un condensador de 10 µf y otro de 20 µf en paralelo y se aplica al conjunto

32. Se conecta un condensador de 10 µf y otro de 20 µf en paralelo y se aplica al conjunto 2. Conductores y dieléctricos. Capacidad, condensadores. Energía electrostática. 24. Cargamos un condensador de 100 pf hasta que adquiere una ddp de 50 V. En ese momento desconectamos la batería. Conectamos

Más detalles

CONDENSADORES. 2 condensador. Rpta. pierde

CONDENSADORES. 2 condensador. Rpta. pierde CONDENSADORES 1. En una asociación de tres condensadores en serie con cargas Q 1, Q 2 y Q 3 la carga Q del condensador equivalente es igual a: a) Q=Q 1 +Q 2 +Q 3 b) Q=Q 1 =Q 2 =Q 3 c) (Q 1 +Q 2 +Q 3 )/2

Más detalles

Universidad de Alcalá. Departamento de Física. Solución del Ejercicio propuesto del Tema 4

Universidad de Alcalá. Departamento de Física. Solución del Ejercicio propuesto del Tema 4 Universidad de Alcalá Departamento de Física Solución del Ejercicio propuesto del Tema 4 1) La figura muestra un condensador esférico, cuyas armaduras interna y externa tienen radios R i 1 cm y R e 2 cm.

Más detalles

C E = C 1 + C 2 ; F = F + C 2

C E = C 1 + C 2 ; F = F + C 2 Ejercicio resuelto Nº 1 La capacidad total de dos condensadores conectados en paralelo es de 40 μf, sabiendo que uno de ellos tiene 10 μf. Que valor tendrá el otro condensador? Resolución C E = 40 μf =

Más detalles

CONSTANTE DIELÉCTRICA

CONSTANTE DIELÉCTRICA ONSTANTE DIELÉTRIA. OBJETIVO En esta práctica se calculará experimentalmente el valor de la constante eo (permitividad del espacio libre), y se estudiará un material dieléctrico determinándose su constante

Más detalles

GUÍA 2: CAPACITORES Y DIELECTRICOS Electricidad y Magnetismo

GUÍA 2: CAPACITORES Y DIELECTRICOS Electricidad y Magnetismo GUÍA 2: CAPACITORES Y DIELECTRICOS Primer Cuatrimestre 2013 Docentes: Dr Alejandro Gronoskis Lic María Inés Auliel Andrés Sabater Universidad Nacional de Tres de febrero Depto de Ingeniería Universidad

Más detalles

Cuando dos condensadores se conectan en serie, almacenan la misma carga Q:

Cuando dos condensadores se conectan en serie, almacenan la misma carga Q: CONSTANTE DIELÉCTRICA. OBJETIVO En esta práctica se calculará experimentalmente el valor de la constante eo (permitividad del espacio libre), y se estudiará un material dieléctrico determinándose su constante

Más detalles

FÍSICA 2ºBach CURSO 2014/2015

FÍSICA 2ºBach CURSO 2014/2015 PROBLEMAS CAMPO ELÉCTRICO 1.- (Sept 2014) En el plano XY se sitúan tres cargas puntuales iguales de 2 µc en los puntos P 1 (1,-1) mm, P 2 (-1,-1) mm y P 3 (-1,1) mm. Determine el valor que debe tener una

Más detalles

Electricidad y Magnetismo UEUQ Cursada 2004 Trabajo Práctico N 6: Resistencias y Circuitos de Corriente Continua.

Electricidad y Magnetismo UEUQ Cursada 2004 Trabajo Práctico N 6: Resistencias y Circuitos de Corriente Continua. Electricidad y Magnetismo UEUQ Cursada 2004 Trabajo Práctico N 6: esistencias y Circuitos de Corriente Continua. 1) a) Sobre un resistor de 10 Ω se mantiene una corriente de 5 A durante 4 minutos. Cuánta

Más detalles

CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO

CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO PROBLEMAS PROPUESTOS 1:.Se coloca una bobina de 200 vueltas y 0,1 m de radio perpendicular a un campo magnético uniforme de 0,2 T. Encontrar la fem inducida

Más detalles

1º E.U.I.T.I.Z. Curso Electricidad y Electrometría. Problemas resueltos tema 6 1/17

1º E.U.I.T.I.Z. Curso Electricidad y Electrometría. Problemas resueltos tema 6 1/17 1º E.U.I.T.I.Z. Curso 2004 05. Electricidad y Electrometría. Problemas resueltos tema 6 1/17 4.- Calcular el vector inducción magnética, B, en el punto O, creado por una corriente eléctrica de intensidad

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Departamento de Física Aplicada III Escuela Superior de Ingenieros Camino de los Descubrimientos s/n 4109 Sevilla Examen de Campos electromagnéticos. o Curso de Ingeniería Industrial. Septiembre de 011

Más detalles

q q CAPACIDAD El condensador. U U U U = C = constante C= V ==> = cb V = (F) FARADIO tambien = C. U = (cb) y U = C = (V)

q q CAPACIDAD El condensador. U U U U = C = constante C= V ==> = cb V = (F) FARADIO tambien = C. U = (cb) y U = C = (V) 1 CAPACIDAD El condensador. Dos placas de metal, separadas por un dialéctico o aislador, forman un condensador, o capacitor, o sea un dispositivo ue tiene la capacidad de almacenar electricidad, como un

Más detalles

FÍSICA 2º Bachillerato Ejercicios: Campo eléctrico

FÍSICA 2º Bachillerato Ejercicios: Campo eléctrico 1(10) Ejercicio nº 1 Dos cargas eléctricas iguales, situadas en el vacío a 0,2 milímetros de distancia, se repelen con una fuerza de 0,01 N. Calcula el valor de estas cargas. Ejercicio nº 2 Hallar a qué

Más detalles

Sistemas y Circuitos Eléctricos 1 GSE Juan Carlos García Cazcarra

Sistemas y Circuitos Eléctricos 1 GSE Juan Carlos García Cazcarra Unidad Didáctica 2: Condensadores y Resistencias. 1.- Condensadores Es un aparato constituido por dos conductores llamados armaduras, separados por un aislante (dieléctrico) que se cargan con igual cantidad

Más detalles

E 2.3. CAPACITORES. E Dos capacitores descargados, de capacitancias

E 2.3. CAPACITORES. E Dos capacitores descargados, de capacitancias E 2.3. CAPACITORES E 2.3.01. Un capacitor de capacitancia C 1 [F] se carga hasta que la diferencia de potencial entre sus placas es V 0 [V]. Luego se conecta a un capacitor descargado, de capacitancia

Más detalles

CAPACITORES INDUCTORES. Mg. Amancio R. Rojas Flores

CAPACITORES INDUCTORES. Mg. Amancio R. Rojas Flores CAPACITORES E INDUCTORES Mg. Amancio R. Rojas Flores A diferencia de resistencias, que disipan la energía, condensadores e inductores no se disipan, pero almacenan energía, que puede ser recuperada en

Más detalles

01 - LEY DE COULOMB Y CAMPO ELÉCTRICO. 3. Dos cargas puntuales cada una de ellas de Dos cargas iguales positivas de valor q 1 = q 2 =

01 - LEY DE COULOMB Y CAMPO ELÉCTRICO. 3. Dos cargas puntuales cada una de ellas de Dos cargas iguales positivas de valor q 1 = q 2 = 01 - LEY DE COULOMB Y CAMPO ELÉCTRICO DISTRIBUCIONES DISCRETAS DE CARGAS 1. Tres cargas están a lo largo del eje x, como se ve en la figura. La carga positiva q 1 = 15 [µc] está en x = 2 [m] y la carga

Más detalles

2. A que distancia se deben situar 2 cargas de +1µC para repelerse con una fuerza de 1N?

2. A que distancia se deben situar 2 cargas de +1µC para repelerse con una fuerza de 1N? BOLETÍN DE PROBLEMAS SOBRE CAMPO ELÉCTRICO Ley de Coulomb 1. Calcula la intensidad (módulo) de las fuerzas que dos cargas Q 1 =8µC y Q 2 =-6µC separadas una distancia r=30cm se ejercer mutuamente. Dibújalas.

Más detalles

Física 3 ECyT UNSAM Capacitores y dieléctricos. Capacitores. Docentes: Gerardo García Bemudez Salvador Gil

Física 3 ECyT UNSAM Capacitores y dieléctricos. Capacitores.  Docentes: Gerardo García Bemudez Salvador Gil Física 3 ECyT UNSAM 1 Clases 5 Capacitores y dieléctricos Introducción al electromagnetismo Docentes: Gerardo García Bemudez Salvador Gil www.fisicarecreativa.com/unsam_f3 1 Capacitores y dieléctricos

Más detalles

PROBLEMAS ELECTROMAGNETISMO

PROBLEMAS ELECTROMAGNETISMO PROBLEMAS ELECTROMAGNETISMO 1. Se libera un protón desde el reposo en un campo eléctrico uniforme. Aumenta o disminuye su potencial eléctrico? Qué podemos decir de su energía potencial? 2. Calcula la fuerza

Más detalles

CAPACITORES (parte 1)

CAPACITORES (parte 1) CAPACTORES (parte 1) Un dispositivo que sea capaz de almacenar cargas eléctricas es llamado capacitor. Cuando se aplica una tensión de corriente continua a un capacitor, la corriente empieza a circular

Más detalles

Problemas de electricidad y magnetismo

Problemas de electricidad y magnetismo Problemas de electricidad y magnetismo J.L. Font 27 de abril de 2005 1. FUERZA Y CAMPO ELÉCTRICOS 1.1 Un triángulo isósceles tiene una base de longitud b=0.5 m y los lados iguales de longitud l = 1,5 m.

Más detalles

CAPÍTULO III Electrostática

CAPÍTULO III Electrostática CAPÍTULO III Electrostática Fundamento teórico I.- Ley de Coulomb Ia.- Ley de Coulomb La fuerza electrostática F que una carga puntual q con vector posición r ejerce sobre una carga puntual q con vector

Más detalles

FISICA III - Ejemplo - Primer Parcial

FISICA III - Ejemplo - Primer Parcial FSCA - Ejemplo - Primer Parcial 1) En cuatro de los cinco vértices de un pentágono regular de lado a se colocan sendas cargas q. a) Cuál es la magnitud de la carga que deberá colocarse en el quinto vértice

Más detalles

2 Energía electrostática y Capacidad

2 Energía electrostática y Capacidad 2 Energía electrostática y Capacidad M. Mudarra Física III (2A) - M. Mudarra Enginyeria Aeroespacial - p. 1/44 Densidad de energía electrostática 2.2 Campo E en presencia de 2.6 Fuerzas sobre Física III

Más detalles

UNIVERSIDAD AUTÓNOMA CHAPINGO DPTO. DE PREPARATORIA AGRÍCOLA ÁREA DE FÍSICA

UNIVERSIDAD AUTÓNOMA CHAPINGO DPTO. DE PREPARATORIA AGRÍCOLA ÁREA DE FÍSICA UNIVERSIDAD AUTÓNOMA CHAPINGO DPTO. DE PREPARATORIA AGRÍCOLA ÁREA DE FÍSICA ELECTRICIDAD TEORÍA Establezca las siguientes definiciones o conceptos: 1.- Carga. 2.- Ley de Coulomb. 3.- Ley de Conservación

Más detalles

M A Y O A C T U A L I Z A D A

M A Y O A C T U A L I Z A D A U N I V E R S I D A D N A C I O N A L E X P E R I M E N T A L F R A N C I S C O D E M I R A N D A C O M P L E J O A C A D É M I C O E L S A B I N O Á R E A D E T E C N O L O G Í A D E P A R T A M E N T

Más detalles

Corriente Continua. 6. En el circuito de la figura 1(b) hallar la diferencia de potencial entre los puntos a y b.

Corriente Continua. 6. En el circuito de la figura 1(b) hallar la diferencia de potencial entre los puntos a y b. Corriente Continua 1. Un cable conductor de cobre cuyo diámetro es de 1.29 mm puede transportar con seguridad una corriente máxima de 6 A. a) Cuál es la diferencia de potencial máxima que puede aplicarse

Más detalles

FÍSICA 2º Bachillerato Ejercicios: Campo magnético y corriente eléctrica

FÍSICA 2º Bachillerato Ejercicios: Campo magnético y corriente eléctrica 1(9) Ejercicio nº 1 Una partícula alfa se introduce en un campo cuya inducción magnética es 1200 T con una velocidad de 200 Km/s en dirección perpendicular al campo. Calcular la fuerza qué actúa sobre

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Electrostática (II) 1 m 2 m

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Electrostática (II) 1 m 2 m 1(7) jercicio nº 1 Calcula la fuerza sobre la carga q 3 Datos: q 1 = 12 µc, q 2 = 4 µc y q 3 = 5 µc 1 m 2 m jercicio nº 2 Calcula la fuerza sobre la carga q 3 Datos: q 1 = 6 µc, q 2 = 4 µc y q 3 = 9 µc

Más detalles

Primer examen parcial del curso Física II, M

Primer examen parcial del curso Física II, M Primer examen parcial del curso Física II, 106015M Prof. Beatriz Londoño 11 de octubre de 2013 Tenga en cuenta: Escriba en todas las hojas adicionales su nombre! Hojas sin nombre no serán corregidas El

Más detalles

Corriente continua : Condensadores y circuitos RC

Corriente continua : Condensadores y circuitos RC Corriente continua : Condensadores y circuitos RC Marcos Flores Carrasco Departamento de Física mflorescarra@ing.uchile.cl Tópicos introducción Condensadores Energia electroestática Capacidad Asociación

Más detalles

Ejercicios resueltos de FISICA II que se incluyen en la Guía de la Asignatura

Ejercicios resueltos de FISICA II que se incluyen en la Guía de la Asignatura Ejercicios resueltos de FISICA II que se incluyen en la Guía de la Asignatura Módulo 2. Campo electrostático 4. Consideremos dos superficies gaussianas esféricas, una de radio r y otra de radio 2r, que

Más detalles

EXAMEN DE FÍSICA. 24 DE JUNIO DE TEORÍA. GRUPOS 16(B) Y 17(C)

EXAMEN DE FÍSICA. 24 DE JUNIO DE TEORÍA. GRUPOS 16(B) Y 17(C) Página 1 de 8 Índice de exámenes EXAMEN DE FÍSICA. 24 DE JUNIO DE 1999. TEORÍA. GRUPOS 16(B) Y 17(C) C1. Tenemos una superficie cónica de radio r = 0.5 m y altura h 2 m (ver figura), dentro de un campo

Más detalles

10. La figura muestra un circuito para el que se conoce que:

10. La figura muestra un circuito para el que se conoce que: CORRIENTE ELÉCTRICA 1. Un alambre de Aluminio de 10m de longitud tiene un diámetro de 1.5 mm. El alambre lleva una corriente de 12 Amperios. Encuentre a) La Densidad de corriente b) La velocidad de deriva,

Más detalles

Guía de Ejercicios Electroestática, ley de Coulomb y Campo Eléctrico

Guía de Ejercicios Electroestática, ley de Coulomb y Campo Eléctrico NOMBRE: LEY DE COULOMB k= 9 x 10 9 N/mc² m e = 9,31 x 10-31 Kg q e = 1,6 x 10-19 C g= 10 m/s² F = 1 q 1 q 2 r 4 π ε o r 2 E= F q o 1. Dos cargas puntuales Q 1 = 4 x 10-6 [C] y Q 2 = -8 x10-6 [C], están

Más detalles

Capacitores y capacitancia

Capacitores y capacitancia Capacitores y capacitancia Un capacitor es básicamente dos superficies conductoras separadas por un dieléctrico, o aisaldor. La capacitancia de un elemento es su habilidad para almacenar carga eléctrica

Más detalles

FISI 3143: Laborarorio de Electrónica 1 Dept. Física y Electrónica, UPR Humacao Prof. Idalia Ramos, Ago Capacitores

FISI 3143: Laborarorio de Electrónica 1 Dept. Física y Electrónica, UPR Humacao Prof. Idalia Ramos, Ago Capacitores Capacitores El capacitor es el segundo componente eléctrico pasivo que estudiaremos en el laboratorio. El capacitor básico es un componente electrónico construido con dos placas paralelas conductoras separadas

Más detalles

GUÍA DE EJERCICIOS-6 ELECTRICIDAD-1 CONEXIÓN SERIE PARALELO DE CONDENSADORES

GUÍA DE EJERCICIOS-6 ELECTRICIDAD-1 CONEXIÓN SERIE PARALELO DE CONDENSADORES GUÍA DE EJERCICIOS-6 ELECTRICIDAD-1 CONEXIÓN SERIE PARALELO DE CONDENSADORES Área de EET Página 1 de 7 Derechos Reservados Titular del Derecho: INACAP N de inscripción en el Registro de Propiedad Intelectual

Más detalles

FISICA II HOJA 3 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 3. ELECTRODINÁMICA FORMULARIO

FISICA II HOJA 3 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 3. ELECTRODINÁMICA FORMULARIO FISIC II HOJ 3 ESCUEL POLITÉCNIC DE INGENIERÍ DE MINS Y ENERGI 3. ELECTRODINÁMIC FORMULRIO FISIC II HOJ 3 ESCUEL POLITÉCNIC DE INGENIERÍ DE MINS Y ENERGI 3.1) Para la calefacción de una habitación se utiliza

Más detalles

CAMPO Y POTENCIAL ELÉCTRICO

CAMPO Y POTENCIAL ELÉCTRICO CAMPO Y POTENCIAL ELÉCTRICO PREGUNTAS 1. Cómo se aplica el principio de superposición para las fuerzas entre cargas eléctricas?. Qué le ocurre a una placa sólida, conductora, cuando se coloca en un campo

Más detalles

GUIA # INTRACCIONES PARTE ( II ) LEY DE COULOMB

GUIA # INTRACCIONES PARTE ( II ) LEY DE COULOMB REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA EDUCACIÓN LICEO BRICEÑO MÉNDEZ S0120D0320 DPTO. DE CONTROL Y EVALUACIÓN PROFESOR: Teudis Navas 4to Año GUIA # 13-14-15 INTRACCIONES

Más detalles

Ejercicios Propuestos Transporte eléctrico.

Ejercicios Propuestos Transporte eléctrico. Ejercicios Propuestos Transporte eléctrico. 1. La cantidad de carga que pasa a través de una superficie de área 1[ 2 ] varía con el tiempo de acuerdo con la expresión () =4 3 6 2 +6. (a) Cuál es la intensidad

Más detalles

Examen Final Fisi 3162/3172 Nombre: lunes, 18 de mayo de 2009

Examen Final Fisi 3162/3172 Nombre: lunes, 18 de mayo de 2009 Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de ísica Examen inal isi 3162/3172 Nombre: lunes, 18 de mayo de 2009 Sección: Prof. Lea cuidadosamente las instrucciones. Seleccione

Más detalles

Interacción electrostática

Interacción electrostática Interacción electrostática Cuestiones (97-R) Dos cargas puntuales iguales están separadas por una distancia d. a) Es nulo el campo eléctrico total en algún punto? Si es así, cuál es la posición de dicho

Más detalles

TEMA 2. CAMPO ELECTROSTÁTICO

TEMA 2. CAMPO ELECTROSTÁTICO TEMA 2. CAMPO ELECTROSTÁTICO CUESTIONES TEÓRICAS RELACIONADAS CON ESTE TEMA. Ejercicio nº1 Indica qué diferencias respecto al medio tienen las constantes K, de la ley de Coulomb, y G, de la ley de gravitación

Más detalles

ELECTROSTÁTICA EN PRESENCIA DE MEDIOS CONDUCTORES

ELECTROSTÁTICA EN PRESENCIA DE MEDIOS CONDUCTORES Técnicas experimentales I Práctica nº3 de Electromagnetismo 1.- ELECTROSTÁTICA EN PRESENCIA DE MEDIOS CONDUCTORES 3.1.- CAMPO ELECTROSTÁTICO CREADO POR UNA ESFERA CONDUCTORA. IMÁGENES ELÉCTRICAS 3.2.-

Más detalles

E 4.0. EJERCICIOS DE EXAMEN

E 4.0. EJERCICIOS DE EXAMEN E 4.0. EJERCICIOS DE EXAMEN E 4.0.01. El campo eléctrico producido por un anillo circular uniformemente cargado, en un punto cualquiera sobre su eje es (ver figura 1 Qz izquierda) E = k [N/C]. A 2 2 3

Más detalles

IES GUSTAVO ADOLFO BÉCQUER DEPARTAMENTO DE TECNOLOGÍA TECNOLOGÍAS 4ºESO PLAN DE RECUPERACIÓN SEPTIEMBRE Nombre:... Curso:...

IES GUSTAVO ADOLFO BÉCQUER DEPARTAMENTO DE TECNOLOGÍA TECNOLOGÍAS 4ºESO PLAN DE RECUPERACIÓN SEPTIEMBRE Nombre:... Curso:... DEPARTAMENTO DE TECNOLOGÍA TECNOLOGÍAS 4ºESO PLAN DE RECUPERACIÓN SEPTIEMBRE 2010 Nombre:... Curso:... Se recomienda realizar los ejercicios propuesto y un resumen por cada tema. Presentación de los trabajos:

Más detalles

E 1.3. LA LEY DE GAUSS

E 1.3. LA LEY DE GAUSS E 1.3. LA LEY DE GAUSS E 1.3.1. Calcule el flujo del campo eléctrico producido por un disco circular de radio R [m], uniformemente cargado con una densidad σ [C/m 2 ], a través de la superficie de una

Más detalles

PROBLEMAS Y TEORÍA DE CAPACITORES PLANOS.

PROBLEMAS Y TEORÍA DE CAPACITORES PLANOS. PROBLEMAS Y TEORÍA DE CAPACITORES PLANOS. INTRODUCCIÓN: Este desarrollo pretende hacer un estudio acabado de los ejercicios en los cuales se analizan propiedades de los capacitores planos, estos problemas

Más detalles

RELACIÓN DE PROBLEMAS CAMPO ELÉCTRICO 1. Se tienen dos cargas puntuales; q1= 0,2 μc está situada a la derecha del origen de coordenadas y dista de él 3 m y q2= +0,4 μc está a la izquierda del origen y

Más detalles

III. Capacidad y Capacitores. Capacidad de un Conductor Aislado: conductor cargado puede escribirse:

III. Capacidad y Capacitores. Capacidad de un Conductor Aislado: conductor cargado puede escribirse: III. Capacidad y Capacitores Capacidad de un Conductor Aislado: Oportunamente hemos visto (ver página 58) que, en el vacío, el potencial V de una esfera conductora cargada está dado por: (74) 4 O sea que

Más detalles

Ejercicios Propuestos Campos en la materia.

Ejercicios Propuestos Campos en la materia. Ejercicios Propuestos Campos en la materia. 1. Un dipolo eléctrico es un par de cargas de la misma magnitud y signos opuestos, situadas en puntos diferentes. Así, la carga total del dipolo es cero. (a)

Más detalles

0,7m.

0,7m. 1. Dos pequeñas esferas de plata, cada una con una masa de 10 g. están separadas 1 m. Calcule la fracción de electrones de una esfera que deberá ser transferida a la otra a fin de producir una fuerza de

Más detalles

B El campo se anula en un punto intermedio P. Para cualquier punto intermedio: INT 2 2

B El campo se anula en un punto intermedio P. Para cualquier punto intermedio: INT 2 2 01. Dos cargas puntuales de 3 y 1, están situadas en los puntos y ue distan 0 cm. a) ómo aría el campo entre los puntos y y representarlo gráficamente. b) Hay algún punto de la recta en el ue el campo

Más detalles

Magnetismo e inducción electromagnética. Ejercicios PAEG

Magnetismo e inducción electromagnética. Ejercicios PAEG 1.- Por un hilo vertical indefinido circula una corriente eléctrica de intensidad I. Si dos espiras se mueven, una con velocidad paralela al hilo y otra con velocidad perpendicular respectivamente, se

Más detalles

un sistema de conductores cargados. Energía electrostática en función de los vectores de campo. Fuerza electrostática. Presión electrostática.

un sistema de conductores cargados. Energía electrostática en función de los vectores de campo. Fuerza electrostática. Presión electrostática. 11 ÍNDICE GENERAL INTRODUCCIÓN 13 CÁLCULO VECTORIAL 17 Escalares y vectores. Operaciones con vectores. Campos escalares y vectoriales. Sistemas de coordenadas. Transformación de coordenadas. Vector de

Más detalles

INDUCCIÓN MAGNÉTICA. b N v u e l t a s. a B

INDUCCIÓN MAGNÉTICA. b N v u e l t a s. a B INDUCCIÓN MAGNÉTICA 1) Un solenoide posee n vueltas por unidad de longitud, radio 1 y transporta una corriente I. (a) Una bobina circular grande de radio 2 > 1y N vueltas rodea el solenoide en un punto

Más detalles

EJERCICIOS DE POTENCIAL ELECTRICO

EJERCICIOS DE POTENCIAL ELECTRICO EJERCICIOS DE POTENCIAL ELECTRICO 1. Determinar el valor del potencial eléctrico creado por una carga puntual q 1 =12 x 10-9 C en un punto ubicado a 10 cm. del mismo como indica la figura 2. Dos cargas

Más detalles

Capítulo 16. Electricidad

Capítulo 16. Electricidad Capítulo 16 Electricidad 1 Carga eléctrica. Ley de Coulomb La carga se mide en culombios (C). La del electrón vale e = 1.6021 10 19 C. La fuerza eléctrica que una partícula con carga Q ejerce sobre otra

Más detalles

DETERMINAR LA CAPACITANCIA DE UN CONDENSADOR

DETERMINAR LA CAPACITANCIA DE UN CONDENSADOR DETERMINAR LA CAPACITANCIA DE UN CONDENSADOR OBJETIVOS: Comprobar el valor del condensador dado sus valores nominales. Tener cuidado con los instrumentos y equipos de laboratorio, por el valor de su magnitud.

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica

Más detalles

EJERCICIOS CONCEPTUALES

EJERCICIOS CONCEPTUALES ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: CAMPOS ELÉCTRICOS GUÍA: 1203 ESTUDIANTE: E-MAIL: FECHA: 2 EJERCICIOS CONCEPTUALES 1. Suponiendo que el valor de la carga del protón fuera un poco diferente de la

Más detalles

Introducción. Condensadores

Introducción. Condensadores . Introducción Un condensador es un dispositivo que sirve para almacenar carga y energía. Está constituido por dos conductores aislados uno de otro, que poseen cargas iguales y opuestas. Los condensadores

Más detalles

2- Un hilo metálico de 100m de longitud y 1 mm 2 de sección tiene una resistencia de 2,5 De qué metal se trata?.

2- Un hilo metálico de 100m de longitud y 1 mm 2 de sección tiene una resistencia de 2,5 De qué metal se trata?. CORRIENTE CONTINU 1- verigua el valor de la intensidad de corriente si a través de una sección transversal del hilo conductor circula una carga de 1 C cada 10 minutos. 2- Un hilo metálico de 100m de longitud

Más detalles

(Problemas - Parte 2) Prof. Cayetano Di Bartolo Andara

(Problemas - Parte 2) Prof. Cayetano Di Bartolo Andara Física 3 (Problemas - Parte 2) Prof. Cayetano Di Bartolo Andara Ultima actualización: Julio de 2004 Julio de 2004 Física-3 (Problemas - Parte 2) Prof. Cayetano Di Bartolo Andara Departamento de Física

Más detalles

QUÉ ES LA TEMPERATURA?

QUÉ ES LA TEMPERATURA? 1 QUÉ ES LA TEMPERATURA? Nosotros experimentamos la temperatura todos los días. Cuando estamos en verano, generalmente decimos Hace calor! y en invierno Hace mucho frío!. Los términos que frecuentemente

Más detalles

No 10 LABORATORIO DE ELECTROMAGNETISMO CARGA Y DESCARGA DE CONDENSADORES. Objetivos

No 10 LABORATORIO DE ELECTROMAGNETISMO CARGA Y DESCARGA DE CONDENSADORES. Objetivos No 10 LABORATORIO DE ELECTROMAGNETISMO DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Determinar la constante de tiempo RC, utilizando valores calculados

Más detalles

Capacitores e Inductores

Capacitores e Inductores Capacitores e Inductores Introducción Resistor: es un elemento lineal pasio que disipa energía únicamente. Existen otros dos elementos lineales pasios: Capacitor Inductor Tanto el capacitor como el inductor

Más detalles

Examen de Ubicación. Física del Nivel Cero Enero / 2009

Examen de Ubicación. Física del Nivel Cero Enero / 2009 Examen de Ubicación DE Física del Nivel Cero Enero / 2009 NOTA: NO ABRIR ESTA PRUEBA HASTA QUE SE LO AUTORICEN! Este examen, sobre 100 puntos, consta de 30 preguntas de opción múltiple con cinco posibles

Más detalles

COLECCIÓN DE PROBLEMAS II. Asociación de resistencias

COLECCIÓN DE PROBLEMAS II. Asociación de resistencias COLECCIÓN DE PROBLEMAS II Asociación de resistencias 1. Qué resistencia debe conectarse en paralelo con otra de 40Ω para que la resistencia equivalente de la asociación valga 24Ω? R=60Ω 2. Si se aplica

Más detalles

Problemas de Física 2º Bachillerato PAU Campo eléctrico 25/01/2016

Problemas de Física 2º Bachillerato PAU Campo eléctrico 25/01/2016 Problemas de Física 2º Bachillerato PAU Campo eléctrico 25/01/201 1. Cómo es el campo eléctrico en el interior de una esfera metálica cargada? Y el potencial? 2. Cuál debería ser la masa de un protón si

Más detalles

Electromagnetismo (Todos. Selectividad Andalucía )

Electromagnetismo (Todos. Selectividad Andalucía ) Electromagnetismo (Todos. Selectividad Andalucía 2001-2006) EJERCICIO 3. (2.5 puntos) Un núcleo toroidal tiene arrolladas 500 espiras por las que circulan 2 Amperios. Su circunferencia media tiene una

Más detalles

/Ejercicios de Campo Eléctrico

/Ejercicios de Campo Eléctrico /Ejercicios de Campo Eléctrico 1-Determine la fuerza total actuante sobre q2 en el sistema de la figura. q 1 = 12 µ C q 2 = 2.0 µ C q 3 = 12 µ C a= 8,0 cm b= 6,0 cm 2-Determine la fuerza total actuante

Más detalles

Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q.

Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q. 1.4. Trabajo en un campo eléctrico. Potencial Clases de Electromagnetismo. Ariel Becerra Al desplazar una carga de prueba q en un campo eléctrico, las fuerzas eléctricas realizan un trabajo. Este trabajo

Más detalles

1. Para α = 75º, determinar la magnitud de la fuerza F y el ángulo β para que exista equilibrio estático.

1. Para α = 75º, determinar la magnitud de la fuerza F y el ángulo β para que exista equilibrio estático. 1. Para α = 75º, determinar la magnitud de la fuerza F y el ángulo β para que exista equilibrio estático. 2. El bloque A, cuyo peso es de 90N, se sostiene en la posición mostrada. Determinar el peso del

Más detalles

PRÁCTICA NÚMERO 9 CAPACITANCIA

PRÁCTICA NÚMERO 9 CAPACITANCIA PRÁCTICA NÚMERO 9 CAPACITANCIA I.Objetivos. 1. Comprender la función básica del condensador como almacenador de carga. 2. Observar el efecto que tiene un material dieléctrico sobre la capacitancia de un

Más detalles

TEMA Nº2. CONDENSADORES

TEMA Nº2. CONDENSADORES TEMA Nº2. CONDENSADORES Cuando diseñamos un equipo electrónico, normalmente concebimos y diseñamos la circuitería para que funcione en base a tensiones y corrientes, concibiendo el equipo siguiendo la

Más detalles

3. Calcular la corriente que circula por un conductor metálico de ρ = 0.17Ω m que tiene una longitud de 0.2m y un área de sección

3. Calcular la corriente que circula por un conductor metálico de ρ = 0.17Ω m que tiene una longitud de 0.2m y un área de sección Electromagnetismo: PROBLEMAS PROPUESTOS. 1. Calcular el campo eléctrico producido por q 1 y q en el punto a, si q 1 =q =3 μ c. Y d=10mm.. Calcular el potencial en el punto b, si q 1 =q y 1 μ c q 3 =q 4

Más detalles

(93.43) Física III ITBA Copyright: Ing. Daniel Palombo 2008

(93.43) Física III ITBA Copyright: Ing. Daniel Palombo 2008 (93.43) Física III ITBA Copyright: Ing. Daniel Palombo 2008 Desde ApuntesITBA nos hemos tomado el trabajo de escanear y recopilar este material, con el afán de brindarles a los futuros ingenieros del ITBA

Más detalles

GUÍA 1: CAMPO ELÉCTRICO Electricidad y Magnetismo

GUÍA 1: CAMPO ELÉCTRICO Electricidad y Magnetismo GUÍA 1: CAMPO ELÉCTRICO Primer Cuatrimestre 2013 Docentes: Dr. Alejandro Gronoskis Lic. María Inés Auliel Andrés Sabater Universidad Nacional de Tres de febrero Depto de Ingeniería Universidad de Tres

Más detalles

Problemas de Potencial Eléctrico. Boletín 2 Tema 2

Problemas de Potencial Eléctrico. Boletín 2 Tema 2 1/22 Problemas de Potencial Eléctrico Boletín 2 Tema 2 Fátima Masot Conde Ing. Industrial 21/11 Problema 1 Ocho partículas con una carga de 2 nc cada una están uniformemente distribuidas sobre el perímetro

Más detalles

Interacción electrostática

Interacción electrostática Interacción electrostática Cuestiones 1. Dos cargas puntuales iguales están separadas por una distancia d. a) Es nulo el campo eléctrico total en algún punto? Si es así, cuál es la posición de dicho punto?

Más detalles

Ejercicios resueltos de Corriente Eléctrica. Ley de Ohm

Ejercicios resueltos de Corriente Eléctrica. Ley de Ohm Ejercicios resueltos de Corriente Eléctrica. Ley de Ohm Ejercicio resuelto nº 1 Una estufa está aplicada a una diferencia de potencial de 250 V. Por ella circula una intensidad de corriente de 5 A. Determinar

Más detalles