Inteligencia Computacional
|
|
|
- Francisco Javier Macías Botella
- hace 8 años
- Vistas:
Transcripción
1 Inteligencia Computacional Búsqueda local: hill-climbing Blanca A. Vargas Govea * [email protected] * Agosto, 0
2 La solución es una secuencia de acciones A-I-G-H A B I C G D E F F H H Métodos anteriores
3 En vez de explorar los caminos se evalúan y modifican uno o más estados Los algoritmos son adecuados para problemas en los que importa el estado meta, no el camino A B C D E F G H A C B D E F G H A B C D E F G H Búsqueda local
4 Los caminos no se almacenan A B C D E F G H A C B D El movimiento es hacia vecinos del estado E F G H A B C D E F G H Generación y evaluación de vecinos Búsqueda local 4
5 simple Selecciona la primer acción que mejora el estado actual Algoritmo Hill climbing 5
6 steepest ascent Evalúa a todos los vecinos y se mueve en la dirección en donde el valor aumenta ( cuesta arriba ) Termina cuando alcanza un pico donde ningún vecino tiene mayor valor Algoritmo Hill climbing 6
7 steepest ascent No mantiene un árbol de búsqueda La estructura de datos del nodo actual solamente registra el estado y el valor de la función objetivo Si hay vecinos empatados, la estrategia más simple es seleccionar de forma aleatoria Algoritmo Hill climbing 7
8 steepest ascent estado_actual = estado_inicial loop Generar sucesores del estado_actual Obtener el sucesor con el valor más alto if valor(sucesor) < valor(estado_actual) then return estado_actual else estado_actual = sucesor Algoritmo Hill climbing 8
9 función objetivo máximo local máximo global función objetivo máximo local máximo global Solución: óptimo local espacio de estados Solución: óptimo global espacio de estados Algoritmo Hill climbing 9
10 Valor de la función objetivo Posibles objetivos: Minimizar costo Maximizar el valor de la función El estado inicial es importante Panorama espacio de stados 0
11 Razones de estancamiento Máximo local. Pico más alto que cualquier vecino pero menor al óptimo global. Cresta. Secuencia de máximos locales. Meseta. Área plana del espacio de estados (plano, hombro). En cada caso, el algoritmo llega a un punto en el cual no puede alcanzar una mejor solución Algoritmo Hill climbing
12 Saliendo de mesetas Se llega a una meseta cuando el vecino mejor evaluado tiene el mismo valor que el estado actual. hombro Idea: movimientos laterales esperando que encuentre un mejor vecino. máximo local plano Riesgo: que no existan y se entre en un ciclo infinito. Posible solución: limitar el no. de movimientos laterales. Algoritmo Hill climbing
13 Considera las 5 figuras geométricas de tamaño,,,4 y 5: 4 5 Se da el estado inicial y el estado meta. Solamente se puede mover la pieza de arriba y usar stacks adicionales. Ejemplo : acomoda los bloques
14 + por cada figura que esté sobre la figura correcta. El estado meta vale por cada figura que esté en la figura incorrecta. Ejemplo - heurística 4
15 Estado meta Estado inicial = = Ejemplo - heurística 5
16 Movimiento = Mejor evaluación que el estado inicial. Reemplaza al estado actual. Movimiento a = Menor al estado actual Ejemplo - heurística 6
17 Movimiento 4 5 Movimiento b 4 5 Se llega a un óptimo local = Mejor evaluación que el estado inicial. Reemplaza al estado actual = Menor al estado actual Para a y b la evaluación es menor que el estado inicial. El movimiento es el mejor. Ejemplo - heurística 7
18 +n por cada figura que esté en un grupo correcto de n figuras. El estado meta tiene el valor de 0. -n por cada figura que esté en un grupo incorrecto de n figuras. Ejemplo - heurística 8
19 Estado meta Estado inicial está sobre pieza correcta = está sobre piezas correctas = está sobre piezas correctas = está sobre 4 piezas correctas = 4 0 está sobre pieza incorrecta = - está sobre piezas incorrectas = - está sobre piezas incorrectas = - 5 está sobre 4 piezas incorrectas = -4-0 Ejemplo - heurística 9
20 4 5 Movimiento está sobre pieza incorrecta = - está sobre piezas incorrectas = - está sobre piezas incorrectas = = -6 Mejor evaluación que el estado inicial. Reemplaza al estado actual. Movimiento a = - Mayor al estado actual Ejemplo - heurística 0
21 4 5 Movimiento está sobre pieza incorrecta = - está sobre piezas incorrectas = - está sobre piezas incorrectas = Movimiento b --- = -6 Mejor evaluación que el estado inicial. Reemplaza al estado actual. --- = -4 Mayor al estado actual Se evita el óptimo local Ejemplo - heurística
22 Estado inicial 4 h= Estado meta h= h=4 h= h=0 4 5 Reemplaza Reemplaza h= h= h= h=0 h= En este caso, HC es exitoso Ejemplo - 8 puzzle
23 Agente viajero. Traveling Salesman Problem (TSP). Dado un conjunto de n ciudades y el costo del viaje entre cada par, el problema es encontrar la forma menos costosa de visitarlas todas, sin repetición y regresar al punto de partida. F 4 4 A E 5 B D 4 C Pueden usarse distintos operadores. El más simple: intercambiar el orden en que dos ciudades son visitadas. Ejemplo : agente viajero
24 Estado inicial ABCDEF (6) ACBDEF (7) ABDCEF (7) ABCEDF (9) ABCDFE (5) reemplaza ABCDFE (5) ACBDFE (6) ABDCFE (7) ABCFDE (0) Ninguno es mejor. F 4 4 A E 5 B 4 D C Óptimo local: ABCDFE Ejemplo : agente viajero. Óptimo local. 4
25 Si consideramos que cualquier par de ciudades puede intercambiarse al mismo tiempo: ABCDEF (6) ACBDEF (7) ADCBEF () AECDBF (5) AFCDEB (9) ABDCEF (6) ABEDCF (9) ABCEDF (7) ABCFED (6) ABCDFE (5) ADCBEF () ACDBEF (5) AECBDF (7) ADBCEF () ADFBEC (4) ADCFEB (4) AFCBED (6) ADEBCF (6) ADCEBF () ADCBFE (0) Óptimo global: ADCBFE Al reemplazar y continuar, no hay otro menor Ejemplo : agente viajero. Óptimo global. 5
26 Stochastic hill: no examina a todos los vecinos, selecciona aleatoriamente a uno y con base en la mejora decide si revisa otro o se queda con ése. Random restart hill climbing: realiza series de búsqueda hill climbing a partir de estados iniciales generados aleatoriamente hasta que se encuentra la meta. Variantes 6
27 Ventajas Fácil de implementar, poca memoria Fácil para obtener una solución aproximada Desventajas El diseño de la función de evaluación puede ser difícil Si el no. de movimientos es muy grande puede ser ineficiente Si el no. de movimientos es pequeño puede estancarse fácilmente Ventajas/desventajas de Hill Climbing 7
28 Recocido simulado Algoritmos genéticos Familia de algoritmos de búsqueda local 8
29 Problema de los misioneros y caníbales. misioneros y caníbales están en la orilla izquiera de un río. Los 6 quieren cruzar el río. Un bote está disponible pero el bote solamente puede llevar personas a la vez. Además, los misioneros no deben ser menos (en número) que los caníbales en ningún momento. Ejercicio: resolver usando Hill Climbing 9
30 Referencias Russell, S., y Norvig, P. (00). Artificial intelligence: A modern approach (nd edition ed.). Prentice-Hall, Englewood Cliffs, NJ. Grosan C., y Abraham A. (0) Intelligent Systems: A Modern Approach. Intelligent Systems Reference Library, Volume 7. Springer. 0
Estado 3.2 (coste = 9)
Búsqueda heurística Fernando Berzal, [email protected] Búsqueda heurística Búsqueda primero el mejor p.ej. búsqueda de coste uniforme [UCS] Heurísticas Búsqueda greedy El algoritmo A* Heurísticas admisibles
Tema 2: Representación de problemas como espacios de estados
Tema 2: Representación de problemas como espacios de estados José Luis Ruiz Reina José Antonio Alonso Franciso J. Martín Mateos Departamento de Ciencias de la Computación e Inteligencia Artificial Universidad
Resolución de problemas de búsqueda
Resolución de problemas de búsqueda Memoria de Prácticas de Segunda Entrega 26 de noviembre de 2007 Autores: Mariano Cabrero Canosa [email protected] Elena Hernández Pereira [email protected] Directorio de entrega:
Búsqueda en e.e. --> reglas para elegir entre las ramas que con más probabilidad lleven a la solución.
BÚSQUEDA HEURÍSTICA estudio de los métodos y reglas del descubrimiento y la invención. Búsqueda en e.e. --> reglas para elegir entre las ramas que con más probabilidad lleven a la solución. Situaciones
UNIVERSIDAD MAYOR DE SAN SIMÓN FACULTAD DE CIENCIAS Y TECNOLOGÍA INGENIERÍA DE SISTEMAS BÚSQUEDA PRIMERO EL MEJOR
UNIVERSIDAD MAYOR DE SAN SIMÓN FACULTAD DE CIENCIAS Y TECNOLOGÍA INGENIERÍA DE SISTEMAS BÚSQUEDA PRIMERO EL MEJOR INTEGRANTES: Caricari Cala Aquilardo Villarroel Fernandez Fructuoso DOCENTE: Lic. Garcia
4ta. Práctica. Búsqueda en árbol con contrincante: MiniMax con poda Alfa-Beta. Inteligencia Artificial Prácticas 2004/2005
4ta. Práctica Búsqueda en árbol con contrincante: MiniMax con poda Alfa-Beta Inteligencia Artificial Prácticas 2004/2005 Decisiones Perfectas en Juegos de DOS Participantes Definición de Juego Estado Inicial:
Juegos deterministas. Ajedrez, damas, Go, Othello. barquitos
Árboles de juegos Análisis y Diseño de Algoritmos Tipos de juegos Juegos deterministas Juegos de azar Con información perfecta Con información imperfecta Ajedrez, damas, Go, Othello barquitos Backgammon,
(b) Cuál es la desventaja principal de una heurística con aprendizaje? es más informada que otra función heurística optimista h 2 *?
UNIVERIDD REY JUN CRLO CURO 0-0 INTELIGENCI RTIFICIL Hoja de Problemas Tema Ejercicio : Conteste a las siguientes preguntas: (a) Cómo funciona una heurística con aprendizaje? olución: Una heurística con
Búsqueda Local. cbea (LSI-FIB-UPC) Inteligencia Artificial Curso 2011/2012 1 / 33
Introducción Búsqueda Local A veces el camino para llegar a la solución no nos importa, buscamos en el espacio de soluciones Queremos la mejor de entre las soluciones posibles alcanzable en un tiempo razonable
Búsqueda con información, informada o heurística
Búsqueda con información, informada o heurística Heurística Del griego heuriskein (encontrar, descubrir).» Arquímedes EUREKA!» Uso en IA 957, (G. Polya): Estudio de métodos para descubrir formas de resolución
Inteligencia Artificial
Inteligencia Artificial Tema 2 Búsquedas Ivan Olmos Pineda Contenido Estructura General de un PSA Formulación de un PSA Algoritmos de Búsqueda de Soluciones Aplicaciones BUAP Inteligencia Artificial 2
Tema 4: Búsqueda informada mediante técnicas heurísticas
Tema 4: Búsqueda informada mediante técnicas heurísticas José Luis Ruiz Reina José Antonio Alonso Franciso J. Martín Mateos 1 Departamento de Ciencias de la Computación e Inteligencia Artificial Universidad
Capítulo 4 Probabilidad TÉCNICAS DE CONTEO Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved.
Capítulo 4 Probabilidad TÉCNICAS DE CONTEO Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. 4.1-1 Técnicas de conteo En muchos problemas de probabilidad, el reto mayor es encontrar
ALGORITMO HILL CLIMBING
ALGORITMO HILL CLIMBING También es conocido como el método de ascenso de colinas Usa una técnica de mejoramiento iterativo Comienza a partir de un punto (punto actual) en el espacio de búsqueda Si el nuevo
Búsqueda con adversario
Introducción Búsqueda con adversario Uso: Decidir mejor jugada en cada momento para cierto tipo de juegos Hay diferentes tipos de juegos según sus características: Numero de jugadores, toda la información
Para definir en formalmente el juego se deberá establecer:
INTRODUCCION A LA INTELIGENCIA ARTIFICIAL MÓDULO 5- JUEGOS COMO PROBLEMA DE BÚSQUEDA Referencias: Inteligencia Artificial Russell and Norvig Cap.5. Artificial Intellingence Nils Nilsson Ch.3 Se trata el
Tema 5: Problemas de satisfacción de restricciones
Tema 5: Problemas de satisfacción de restricciones José Luis uiz eina José Antonio Alonso Franciso J. Martín Mateos María José Hidalgo Departamento de Ciencias de la Computación e Inteligencia Artificial
Algoritmos Genéticos. Introducción a la Robótica Inteligente. Álvaro Gutiérrez 20 de abril de
Algoritmos Genéticos Introducción a la Robótica Inteligente Álvaro Gutiérrez 20 de abril de 2016 [email protected] www.robolabo.etsit.upm.es Índice 1 Introducción 2 Algoritmos Genéticos 3 Algunos Fundamentos
Problemas de Satisfacción de Restricciones
Problemas de Satisfacción de estricciones José Luis uiz eina José Antonio Alonso Jiménez Franciso J. Martín Mateos María José Hidalgo Doblado Dpto. Ciencias de la Computación e Inteligencia Artificial
1. Introducción 2. Esquema básico 3. Codificación 4. Evaluación 5. Selección 6. Operadores 7. Ejemplo. Algoritmos genéticos
1. Introducción 2. Esquema básico 3. Codificación 4. Evaluación 5. Selección 6. Operadores 7. Ejemplo Algoritmos genéticos Introducción Propuestos por Holland, mediados 70, computación evolutiva Popularizados
JUEGOS. Área de aplicación de los algoritmos heurísticos Juegos bi-personales: oponente hostil
JUEGOS Área de aplicación de los algoritmos heurísticos Juegos bi-personales: oponente hostil I Oponente: Jugador: intenta mover a un estado que es el peor para Etiquetar cada nivel del espacio de búsqueda
3ra. Practica. Algoritmos de Búsqueda. Inteligencia Artificial Prácticas 2004/2005
3ra. Practica Algoritmos de Búsqueda Inteligencia Artificial Prácticas 2004/2005 Algoritmos de Búsqueda Algoritmos Básicos: (búsqueda no informada) Búsqueda preferente por amplitud Búsqueda preferente
El Juego como Problema de Búsqueda
El Juego como Problema de Búsqueda En este algoritmo identificamos dos jugadores: max y min. El objetivo es encontrar la mejor movida para max. Supondremos que max mueve inicialmente y que luego se turnan
Algoritmos genéticos como métodos de aproximación analítica y búsqueda de óptimos locales
Algoritmos genéticos como métodos de aproximación analítica y búsqueda de óptimos locales Jorge Salas Chacón A03804 Rubén Jiménez Goñi A93212 Juan Camilo Carrillo Casas A91369 Marco Vinicio Artavia Quesada
Búsqueda Heurística. Branch and Bound, Best First Search A, A IDA Búsqueda local (Hill climbing, Simulated annealing, Alg.
Introducción Búsqueda Heurística Supone la existencia de una función de evaluación que debe medir la distancia estimada al (a un) objetivo (h(n)) Esta función de evaluación se utiliza para guiar el proceso
Métodos Heurísticos en Inteligencia Artificial
Métodos Heurísticos en Inteligencia Artificial Javier Ramírez rez-rodríguez Ana Lilia Laureano-Cruces Universidad Autónoma Metropolitana Métodos Heurísticos en Inteligencia Artificial Los problemas de
Introducción a las RdP. Optimización basada en redes de Petri. Redes de Petri. Son objeto de estudio: RdP. Ejemplos:
Seminario sobre toma de decisiones en logística y cadenas de suministro Introducción a las RdP Optimización basada en redes de Petri https://belenus.unirioja.es/~emjimene/optimizacion/transparencias.pdf
La Máquina de Acceso Aleatorio (Random Access Machine)
La Máquina de Acceso Aleatorio (Random Access Machine) Nuestro modelo de cómputo secuencial es la máquina de acceso aleatorio (RAM, Random Access Machine) mostrada en la Figura 2.1, y que consiste de:
Algoritmos glotones. mat-151
Algoritmos glotones (greedy) mat-151 Alonso Ramirez Manzanares Computación y Algoritmos 04.06.2009 Algoritmos glotones Algoritmos utilizados en problemas de optimización. Estos algoritmos siguen típicamente
A B MIN C D E F MAX x E.T.S.I. INFORMÁTICA 4º CURSO. INTELIGENCIA ARTIFICIAL E INGENIERÍA DEL CONOCIMIENTO
E.T.S.I. INFORMÁTICA 4º CURSO. INTELIGENCIA ARTIFICIAL E INGENIERÍA DEL CONOCIMIENTO UNIVERSIDAD DE MÁLAGA Dpto. Lenguajes y Ciencias de la Computación RELACIÓN DE PROBLEMAS. TEMA IV. PROBLEMAS DE JUEGOS.
Alonso Ramirez Manzanares Computación y Algoritmos 03.05
Tablas de hash (2) mat-151 Alonso Ramirez Manzanares Computación y Algoritmos 03.05 Tablas de hash: resolviendo colisiones por encadenamiento cuando el número de elementos en total es proporcional al número
Problemas de búsqueda entre adversarios
Problemas de búsqueda entre adversarios Juegos For IA researchers, the abstract nature of games makes them an appealing subject for study (Russell & Norvig, 2003). 1 Introducción Juegos» Origen, 1928:
ALGORÍTMICA
ALGORÍTMICA 2012 2013 Parte I. Introducción a las Metaheurísticas Tema 1. Metaheurísticas: Introducción y Clasificación Parte II. Métodos Basados en Trayectorias y Entornos Tema 2. Algoritmos de Búsqueda
Juegos deterministas. Ajedrez, damas, Go, Othello. barquitos
Búsqueda con adversario: Juegos Fernando Berzal, [email protected] Tipos de juegos Juegos deterministas Juegos de azar Con información perfecta Con información imperfecta Ajedrez, damas, Go, Othello barquitos
CAPITULO III. Determinación de Rutas de Entregas
CAPITULO III Determinación de Rutas de Entregas Un importante aspecto en la logística de la cadena de abastecimiento (supply chain), es el movimiento eficiente de sus productos desde un lugar a otro. El
1.- DATOS DE LA ASIGNATURA. Nombre de la asignatura: Inteligencia Artificial. Carrera: Ingeniería en Sistemas Computacionales. Clave de la asignatura:
1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Inteligencia Artificial Ingeniería en Sistemas Computacionales Clave de la asignatura: (Créditos) SATCA 1 SCC-1012 2-2-4 2.- PRESENTACIÓN Caracterización
greedy (adj): avaricioso, voraz, ávido, codicioso, glotón
Algoritmos Greedy Análisis y Diseño de Algoritmos Algoritmos Greedy Características generales Elementos de un algoritmo greedy Esquema de un algoritmo greedy s Almacenamiento óptimo en cintas Problema
Búsqueda con adversario
Búsqueda con adversario José Luis Ruiz Reina José Antonio Alonso Jiménez Franciso J. Martín Mateos María José Hidalgo Doblado Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla
Métodos de Búsqueda para juegos humano-maquina. PROF: Lic. Ana María Huayna D.
Métodos de Búsqueda para juegos humano-maquina PROF: Lic. Ana María Huayna D. Tópicos 1. Introducción 2. Juegos 3. Estrategias de Juego 4. Algoritmo Minimax 5. Algoritmo Poda Alfa-Beta 1.- Introducción
Resolviendo Modelos de Mapas
Resolviendo Modelos de Mapas SMMC Prof. Teddy Alfaro Resolviendo Mapas o Grafos Entre las técnicas completas más utilizadas para resolver la ruta más corta se encuentran BFS Backtracking Dijkstra A* Uso
EMPRENDIMIENTO EMPRESARIAL
UNIVERSIDAD MARIANO GALVEZ ADMINISTRACION DE EMPRESAS Licda. Nancy Ortiz SEMINARIO ADMINISTRATIVO HORA: 9:30 11:30 EMPRENDIMIENTO EMPRESARIAL Carlos Alfredo Montenegro Galindo 022-06-2903 Guatemala 14
APLICACIONES DE INTELIGENCIA ARTIFICIAL
GUÍA DOCENTE 2013-2014 APLICACIONES DE INTELIGENCIA ARTIFICIAL 1. Denominación de la asignatura: APLICACIONES DE INTELIGENCIA ARTIFICIAL Titulación MÁSTER UNIVERSITARIO EN INGENIERÍA INFORMÁTICA Código
Inteligencia Artificial. Integrantes Equipo # 1:
INSTITUTO TECNOLÓGICO De Nuevo Laredo Especialidad: Ingeniería en Sistemas Computacionales Catedrático: Ing. Bruno López Takeyas. Asignatura: Inteligencia Artificial. Integrantes Equipo # 1: Javier Alonso
ALGORITMOS HEURÍSTICOS Y APROXIMADOS. Análisis y diseño de algoritmos II- 2009
ALGORITMOS HEURÍSTICOS Y APROXIMADOS Análisis y diseño de algoritmos II- 2009 Problemas difíciles : Definiciones, ejemplos y propiedades Análisis y diseño de algoritmos II- 2009 Un viaje a Ciencias de
Filtrado de Imágenes y Detección de Orillas Utilizando un Filtro Promediador Móvil Multipunto Unidimensional
Filtrado de Imágenes y Detección de Orillas Utilizando un Filtro Promediador Móvil Multipunto Unidimensional Mario A. Bueno a, Josué Álvarez-Borrego b, Leonardo Acho a y Vitaly Kober c [email protected],
Tema 7: Búsqueda con adversario (juegos)
Tema 7: Búsqueda con adversario (juegos) José Luis Ruiz Reina José Antonio Alonso Franciso J. Martín Mateos María José Hidalgo Departamento de Ciencias de la Computación e Inteligencia Artificial Universidad
PROGRAMA ANALÍTICO DE ASIGNATURA
UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO COORDINACIÓN DE DOCENCIA DIRECCIÓN DE PLANEACIÓN Y DESARROLLO EDUCATIVO _ 1.- DATOS GENERALES 1.1 INSTITUTO: CIENCIAS BÁSICAS E INGENIERÍA PROGRAMA ANALÍTICO
Tema: Búsqueda Heurística (Informada).
Sistemas Expertos e Inteligencia Artificial. Guía No. 5 1 Tema: Búsqueda Heurística (Informada). Facultad: Ingeniería Escuela: Computación Asignatura: Sistemas Expertos e Inteligencia Artificial Objetivos
Descripción inicial del sistema. Descripción final del sistema. Estado 1 Estado 2 Estado n
Búsqueda en Inteligencia Artificial Fernando Berzal, [email protected] Búsqueda en I.A. Introducción Espacios de búsqueda Agentes de búsqueda Uso de información en el proceso de búsqueda Búsqueda sin información
Estudiemos el siguiente problema, propuesto por Wirth y desarrollado por Dijkstra: Una lista de las primeras secuencias que cumplen es:
25. Algoritmos heurísticos 25.1 Concepto de heurística. Se denomina heurística al arte de inventar. En programación se dice que un algoritmo es heurístico cuando la solución no se determina en forma directa,
ALGORITMOS GENÉTICOS
ALGORITMOS GENÉTICOS Autor: Miguel Ángel Muñoz Pérez. Primera versión: Noviembre, 1997. Última modificación: Abril, 2005. ADVERTENCIA Si ya sabes lo que es un algoritmo genético y esperas hallar algo novedoso
Tema 3: Sistema inicial de representación y razonamiento
Razonamiento Automático Curso 999 2000 Tema 3: Sistema inicial de representación y razonamiento José A. Alonso Jiménez Miguel A. Gutiérrez Naranjo Dpto. de Ciencias de la Computación e Inteligencia Artificial
Métodos de Inteligencia Artificial
Métodos de Inteligencia Artificial L. Enrique Sucar (INAOE) [email protected] ccc.inaoep.mx/esucar Tecnologías de Información UPAEP Sistemas Multiagentes IA Distribuida Introducción Esquemas de control
7.1 Consideraciones. Considere la búsqueda de un libro en una biblioteca. Considere la búsqueda de un nombre en el directorio telefónico.
86 Capítulo 7. ORDENAMIENTO. 7.1 Consideraciones. Considere la búsqueda de un libro en una biblioteca. Considere la búsqueda de un nombre en el directorio telefónico. Si los elementos a ordenar son compuestos
Métodos de Inteligencia Artificial
Métodos de Inteligencia Artificial L. Enrique Sucar (INAOE) [email protected] ccc.inaoep.mx/esucar Tecnologías de Información UPAEP Objetivos Estudiar algunas de las metodologías de Inteligencia Artificial,
Algoritmos basados en hormigas
Algoritmos basados en hormigas Inteligencia Artificial Avanzada 1er. Semestre 2008 1 Aspectos Generales La metáfora de los insectos sociales para resolver problemas ha sido un tema importante a partir
LAS CIENCIAS DE LA PLANIFICACIÓN
LAS CIENCIAS DE LA PLANIFICACIÓN 5. EL PROBLEMA DEL VIAJANTE (PV) (The Traveling Salesman Problem TSP) Un problema como el de las vacaciones, pero vital para las empresas, es el problema del viajante (PV):
OPTIMIZACIÓN VECTORIAL
OPTIMIZACIÓN VECTORIAL Métodos de Búsqueda Directa Utilizan sólo valores de la función Métodos del Gradiente Métodos de Segundo Orden Requieren valores aproimados de la primera derivada de f) Además de
GUIA PARALA SOLICITUD DE CÓDIGOS DE PROYECTOS, ACTIVIDADES Y FINALIDADES
MINISTERIO DE ECONOMÍA Y FINANZAS GUIA PARALA SOLICITUD DE CÓDIGOS DE PROYECTOS, ACTIVIDADES Y FINALIDADES Dirección General de Presupuesto Público. SOLICITUD DE CÓDIGOS PRESUPUESTARIOS INDICE GENERAL
Alumnos: Familiarizarse con el código y su uso y resolver las cuestiones planteadas utilizando el intérprete de LISP.
Práctica IA- Búsqueda Nº 1 Equipo nº: Alumnos: Semana 8 Dic.2000 Familiarizarse con el código y su uso y resolver las cuestiones planteadas utilizando el intérprete de LISP. Nota: hay que entregar los
Programcaión Básica. Secuencias de Control y Repetición. Arturo Vega González.
Programación Básica Arturo Vega González [email protected] Division de Ciencias e Ingenierías Universidad de Guanajuato Campus León Sesión 5 Universidad de Guanajuato, DCI, Campus León 1 / 31 Universidad
BÚSQUEDA DE RUTAS DE METRO
8Proyecto 3 BÚSQUEDA DE RUTAS DE METRO 1. DESCRIPCIÓN DEL PROBLEMA En este proyecto se quiere implementar un algoritmo evolutivo para buscar el mejor camino entre dos puntos de una red de metro. La calidad
Unidad II: Análisis semántico
Unidad II: Análisis semántico Se compone de un conjunto de rutinas independientes, llamadas por los analizadores morfológico y sintáctico. El análisis semántico utiliza como entrada el árbol sintáctico
TÉCNICO SUPERIOR UNIVERSITARIO EN TECNOLOGÍAS DE LA INFORMACIÓN Y COMUNICACIÓN
TÉCNICO SUPERIOR UNIVERSITARIO EN TECNOLOGÍAS DE LA INFORMACIÓN Y COMUNICACIÓN HOJA DE ASIGNATURA CON DESGLOSE DE UNIDADES TEMÁTICAS 1. Nombre de la asignatura Desarrollo de Habilidades De Pensamiento
Guía de estudio para el examen de admisión - Convocatoria 2013
Guía de estudio para el examen de admisión - Convocatoria 2013 Tabla de contenido Descripción...3 1. Metodología de la Investigación...3 2. Matemáticas computacional...4 4. Algoritmos y programación...4
Estructuras de control
Estructuras de control Introducción Los algoritmos vistos hasta el momento han consistido en simples secuencias de instrucciones; sin embargo, existen tareas más complejas que no pueden ser resueltas empleando
Técnicas de Clasificación Supervisada DRA. LETICIA FLORES PULIDO
Técnicas de Clasificación Supervisada DRA. LETICIA FLORES PULIDO 2 Objetivo El objetivo principal de las técnicas de clasificación supervisada es obtener un modelo clasificatorio válido para permitir tratar
PHP: Lenguaje de programación
Francisco J. Martín Mateos Carmen Graciani Diaz Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla Tipos de datos Enteros Con base decimal: 45, -43 Con base octal: 043, -054
Análisis de Decisiones II. Tema 17 Generación de números al azar. Objetivo de aprendizaje del tema
Tema 17 Generación de números al azar Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Obtener números aleatorios a partir de un proceso de generación. Validar las características
Tema 5: Conceptualización relacional
Razonamiento Automático Curso 2000 200 Tema 5: Conceptualización relacional José A. Alonso Jiménez Miguel A. Gutiérrez Naranjo Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad
Prof. Pérez Rivas Lisbeth Carolina
Ingeniería de Sistemas Investigación de Operaciones Prof. Pérez Rivas Lisbeth Carolina Investigación de Operaciones Es una rama de las Matemáticas consistente en el uso de modelos matemáticos, estadística
Problemas de satisfacción de restricciones.
Problemas de satisfacción de restricciones. In whitch we see how treating states as more than just little black boxes leads to the invention of a range of powerful new search methods and a deeper understanding
ALGORITMO MINIMAX. o Nodo: Representa una situación del juego. o Sucesores de un nodo: Situaciones del juego a las que se
ALGORITMO MINIMAX Algoritmo de decisión para minimizar la pérdida máxima aplicada en juegos de adversarios Información completa (cada jugador conoce el estado del otro) Elección del mejor movimiento para
Universidad de las Illes Balears Guía docente
1, 2S, GEIN, GIN2, GMAT D Identificación de la asignatura Créditos Período de impartición de impartición 2,4 presenciales (60 horas) 3,6 no presenciales (90 horas) 6 totales (150 horas). 1, 2S, GEIN, GIN2,
Tema 15: Combinación de clasificadores
Tema 15: Combinación de clasificadores p. 1/21 Tema 15: Combinación de clasificadores Abdelmalik Moujahid, Iñaki Inza, Pedro Larrañaga Departamento de Ciencias de la Computación e Inteligencia Artificial
Programación. Carrera: MAE 0527
1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Programación Ingeniería en Materiales MAE 0527 2 2 6 2.- HISTORIA DEL PROGRAMA
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL Facultad de Ingeniería en Electricidad y Computación SYLLABUS DEL CURSO Procesamiento Digital de Imágenes
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL Facultad de Ingeniería en Electricidad y Computación SYLLABUS DEL CURSO Procesamiento Digital de Imágenes 1. CÓDIGO Y NÚMERO DE CRÉDITOS CÓDIGO FIEC05439 NÚMERO
Algoritmos y Estructuras de Datos Curso 06/07. Ejercicios
9..En un problema de backtracking estamos interesados en almacenar de forma explícita el árbol recorrido por el algoritmo. De cada nodo del árbol sólo necesitamos saber un número, que indica el orden en
Planificaciones. 6665 - Control Digital. Docente responsable: ZANINI ANIBAL JOSE ANTONIO. 1 de 5
Planificaciones 6665 - Control Digital Docente responsable: ZANINI ANIBAL JOSE ANTONIO 1 de 5 OBJETIVOS El alumno deberá finalizar la asignatura manejando fluidamente las diferentes técnicas de modelización
Aprendizaje: Boosting y Adaboost
Técnicas de Inteligencia Artificial Aprendizaje: Boosting y Adaboost Boosting 1 Indice Combinando clasificadores débiles Clasificadores débiles La necesidad de combinar clasificadores Bagging El algoritmo
Generación de variables aleatorias continuas Método de rechazo
Generación de variables aleatorias continuas Método de rechazo Georgina Flesia FaMAF 18 de abril, 2013 Método de Aceptación y Rechazo Repaso Se desea simular una v. a. X discreta, con probabilidad de masa
TÉCNICO SUPERIOR UNIVERSITARIO EN TECNOLOGÍAS DE LA INFORMACIÓN Y COMUNICACIÓN ÁREA SISTEMAS INFORMÁTICOS.
TÉCNICO SUPERIOR UNIVERSITARIO EN TECNOLOGÍAS DE LA INFORMACIÓN Y COMUNICACIÓN ÁREA SISTEMAS INFORMÁTICOS. HOJA DE ASIGNATURA CON DESGLOSE DE UNIDADES TEMÁTICAS 1. Nombre de la asignatura Ingeniería de
1. Capacitar al estudiante en las aplicaciones más importantes de la Termoquímica experimental y teórica.
NOMBRE DE LA MATERIA: CÓDIGO DE LA MATERIA: DEPARTAMENTO: CARGA TOTAL DE HORAS TEORÍA: CARGA TOTAL DE HORAS DE TRABAJO INDEPENDIENTE: TOTAL DE HORAS: NÚMERO DE CRÉDITOS: NIVEL DE FORMACIÓN: TIPO DE CURSO:
Resolución de Problemas
Resolución de Problemas con algoritmos Colaboratorio de Computación Avanzada (CNCA) 2015 1 / 27 Contenidos 1 Introducción 2 Elementos de algoritmos Elementos Variables Estructuras de Control Condicionales
SILABO DEL CURSO FUNDAMENTOS DE PROGRAMACIÓN
FACULTAD DE INGENIERÍA CARRERA DE INGENIERÍA DE SISTEMAS SILABO DEL CURSO FUNDAMENTOS DE PROGRAMACIÓN 1. DATOS GENERALES 1.1. Facultad : Ingeniería 1.2. Carrera Profesional : Ingeniería de Sistemas 1.3.
UNIVERSIDAD DE LOS ANDES NUCLEO UNIVERSITARIO RAFAEL RANGEL (NURR) DEPARTAMENTO DE FISICA Y MATEMATICA AREA COMPUTACION TRUJILLO EDO.
UNIVERSIDAD DE LOS ANDES NUCLEO UNIVERSITARIO RAFAEL RANGEL (NURR) DEPARTAMENTO DE FISICA Y MATEMATICA AREA COMPUTACION TRUJILLO EDO. TRUJILLO Recursividad: La recursividad es una técnica de programación
Darío Canales Ignacio Salas Oscar Yañez
Estructura de RNA Darío Canales Ignacio Salas Oscar Yañez RNA Está presente tanto en las células procariotas como en las eucariotas. Pares de bases canónicas A/U G/C G/U (par inestable) G/U (par inestable)
PROGRAMA DE CURSO. Código Nombre CC5502 Geometría Computacional Nombre en Inglés Computational Geometry SCT Auxiliar. Personal
PROGRAMA DE CURSO Código Nombre CC5502 Geometría Computacional Nombre en Inglés Computational Geometry SCT es Horas de Horas Docencia Horas de Trabajo Docentes Cátedra Auxiliar Personal 6 10 3 0 7 Requisitos
