Función de Transferencia
|
|
|
- Amparo Godoy de la Fuente
- hace 8 años
- Vistas:
Transcripción
1 Función de Transferencia N de práctica: 2 Tema: Modelado y representación de sistemas físicos Nombre completo del alumno Firma N de brigada: Fecha de elaboración: Grupo: Elaborado por: Revisado por: Autorizado por: Vigente desde: Profesor 1 Ing. Benjamín Ramírez Hernández Dr. Paul Rolando Maya Ortiz 28 de noviembre de 2015
2 Ingeniería 1. Seguridad en la ejecución Peligro o Fuente de energía Riesgo asociado 1 Fuente de alimentación Daño al equipo Alambrado incorrecto Daño al equipo y pérdida de 2 componentes 2. Objetivos de aprendizaje I. Objetivos generales: 1. Conocer la Configuración Básica del Circuito Integrado LM Determinar la Función de Transferencia de algunos circuitos armados con un amplificador operacional. II. Objetivos específicos: a) El alumno comprenderá los conceptos y métodos empleados en la formulación de modelos matemáticos de sistemas físicos. b) El alumno comprobará por medio de datos prácticos la validez de los calculados teóricamente mediante el concepto de Función de Transferencia. 3. Introducción La función de cualquier amplificador es aumentar o amplificar la magnitud de una señal (voltaje, velocidad, potencia, corriente, o cualquier otra variable física) sin que esta sea distorsionada. 2
3 Ingeniería Los amplificadores operacionales son dispositivos electrónicos que amplifican señales de voltaje, su ganancia de lazo abierto es muy grande. Son también llamados operacionales porque además de ampliar las señales de entrada se pueden realizar operaciones sobre ellas, tales como: sumar, comparar, integrar, derivar e invertir o cambiar de signo (en el caso de señales de voltaje, cambiar su polaridad; es decir, de positivo a negativo o viceversa). Debido a estas características los amplificadores operacionales son muy empleados en la simulación analógica de procesos de todo tipo: eléctricos, mecánicos, hidráulicos, neumáticos o térmicos. Los amplificadores operacionales tienen ciertas propiedades ideales, con las cuales se puede simplificar el análisis de los circuitos que los contienen. Básicamente estas propiedades son: a) Alta ganancia de voltaje. b) Impedancia de entrada infinita. c) Impedancia de salida cero. d) Respuesta de frecuencia infinita. e) Cuando la entrada es igual a cero la salida es igual a cero. f) Insensibilidad a la temperatura (DRIFT nulo) El signo negativo en la relación salida-entrada es una característica propia del dispositivo conocido como amplificador inversor. Generalmente se le emplea con una impedancia de entrada y una impedancia de retroalimentación con lo cual su función de transferencia solo depende de estas, dada la alta ganancia del dispositivo. Con los amplificadores operacionales en algunas ocasiones se puede observar que siendo el voltaje de entrada igual a cero, el voltaje de salida es diferente de cero, lo cual es denominado corrimiento de offset. En especial para el amplificador LM 741 es posible eliminar el corrimiento de offset conectando los extremos de un potenciómetro de 10K Ω en las terminales correspondientes y el cursor al voltaje negativo con que se alimenta el operacional. Posteriormente variando la posición del cursor se elimina el offset. En forma sencilla y práctica, la tensión de offset puede reducirse (pero no anularse) colocando una resistencia de ecualización en el terminal 3
4 Ingeniería no inversora. Para que el amplificador LM 741 funcione es necesario alimentarlo con 2 voltajes de C.D. uno positivo y otro negativo por lo que es necesario contar con una fuente bipolar o en su defecto dos fuentes de voltaje. 4 Figura 1. Fuente de voltaje simétrica +/- Vcc Cuando no se dispone de fuentes bipolares o simétricas es posible improvisarlas utilizando fuentes sencillas como se indica en la figura 1, el punto común de las fuentes será el de tierra del circuito. Todas las tensiones presentes en el amplificador operacional tendrán como referencia este punto. 3. Material y Equipo 1 Capacitor cerámico de 0.1 µ F 1 Capacitor cerámico de 0.01 µ F 1 Amplificador operacional LM Resistencia de 100 K Ω a ¼ W 2 Resistencia de 10 K Ω a ¼ W 4 Resistencia de 10 M Ω a ¼ W 1 Resistencia de 1 M Ω a ¼ W Alambre para protoboard Hoja de Datos del LM741 Módulo y Tarjeta Prototipo NI ELVIS y software instalado NI ELVIS 2.0
5 Secretaría/División: Ingeniería Instrumentos Virtuales (IV) utilizados Multímetro Digital, DMM (ῼẊ) Generador de Funciones, FGEN Osciloscopio, OSC 4. Desarrollo En esta práctica se muestran algunas configuraciones básicas de circuitos armados con un amplificador operacional en configuraciones de: inversor, amplificador, integrador, derivador y sumador. Podrá comprobar su funcionamiento al través de la observación y el análisis de las respectivas señales de entrada y salida. La Tarjeta Prototipo de la firma National Instruments NI ELVIS junto con el software que la acompaña funcionarán para poder: alimentar al amplificador 5
6 Ingeniería operacional, generar las señales de entrada y obtener las gráficas de salida de los circuitos armados NOTA: Realizar todas las conexiones utilizando los pines designados para cada fin sobre la Tarjeta Prototipo. Ya que los bornes del Panel Frontal no tienen conexión con el programa NI ELVIS. Actividad 1 Armar en la Tarjeta Prototipo el circuito de la figura 2. Sin conectar todavía las señales Ve(t), Vs(t) ni las polarizaciones. 6 Figura 2. Circuito 1 para armar en la Tarjeta Prototipo. - Revisar que las conexiones que se encuentren correctamente realizadas. Abrir el programa NI ELVIS 2.0 ruta INICIO > TODOS LOS PROGRAMAS>NATIONAL INSTRUMENTS > ELVIS 2.0 y Encender la Tarjeta Prototipo, activar el interruptor posterior de la tarjeta y el interruptor frontal. - Verificar en el módulo NI ELVIS que el interruptor de comunicaciones se encuentre en normal. - Abrir el programa para activar las fuentes de potencia variable. (Variable Power Supply). - Ajustar la fuente de potencia variable a 10 V. y +10 V. (verificar funcionamiento no manual y ajustar en el programa, no en el módulo NI ELVIS).
7 Ingeniería - Abrir el osciloscopio para poder visualizar la onda de salida del generador de funciones. - En el osciloscopio seleccionar en la fuente a visualizar (source) en el canal A, la salida del generador de funciones. FGEN_FUNC_OUT. - Abrir el programa para utilizar el generador de funciones (activar el interruptor de modo manual en el módulo NI ELVIS en la parte del generador de funciones). - Ajustar el generador de funciones para obtener una señal senoidal de 250 mvpp, con una frecuencia de 100Hz.Visualizándola en el osciloscopio. - Apagar la tarjeta prototipo. (Solo apagador frontal). - Cuidar de no accionar el apagador posterior ya que esto desconecta la comunicación entre la computadora y el módulo NI ELVIS y deberán realizarse todos los pasos nuevamente. - Conectar Ve(t), Vs(t) y las polarizaciones para el LM Verificar conexiones correctas y encender la tarjeta prototipo (Apagador frontal). Observar que el circuito no se encuentre elevando su temperatura tocando la parte superior, en caso contrario apagar la tarjeta interruptor frontal y corregir las conexiones. - Observar las señales de Ve(t) y Vs(t) en el osciloscopio. Para ello seleccionar la fuente a visualizar (source), Activar el canal B del osciloscopio y seleccionar la fuente a visualizar BNC/Borrad CH B, según corresponda, comparar las señales y anotar conclusiones. - Graficar la forma de las señales obtenidas, así como los voltajes pico a pico y la magnitud del periodo. Actividad 2 Armar el siguiente circuito de la figura 3 y repetir los pasos anteriores. Figura 3. Circuito 2 para armar en Tarjeta Prototipo. 7
8 Secretaría/División: Ingeniería La siguiente figura muestra el circuito como se ve en la Tarjeta de prototipos NI Elvis Determinar la relación: voltaje de entrada / voltaje de salida (Vs /Ve) 8
9 Ingeniería Actividad 3 - Armar el circuito de la figura 4. - A una frecuencia de 100 Hz y un voltaje pico a pico de 300 mv, indicar gráficamente las señales de entrada y salida correspondientes a cada uno de los tres tipos de señales que puede producir el generador de funciones (senoidal, triangular y cuadrada, cambiarlos en la tarjeta prototipo), anotar observaciones. R3 = R1 // R2 Figura 4. Circuito 3 para armar en Tarjeta Protótipo. - Empleando los voltajes pico a pico de las señales obtenidas experimentalmente, calcular la ganancia práctica del circuito empleando la fórmula: A = Vs Ve Nota: Realizar el cálculo solicitado considerando solamente la señal senoidal. - Empleando el concepto de impedancia compleja, obtener la función de transferencia del circuito - Analizar la función obtenida y determinar que operación matemática se está realizando (Hint: Aplicar el concepto de anti-transformada de Laplace). 9
10 Ingeniería Actividad 4 - Armar el circuito de la figura 5 y repetir el punto anterior. R3 = Resistencia de Ecualización I. Figura 5. Circuito 4 para armar en Tarjeta Prototipo. La siguiente figura muestra el circuito en la Tarjeta de prototipos: - Empleando los voltajes pico a pico de las señales obtenidas 10
11 Ingeniería experimentalmente, calcular la ganancia práctica del circuito empleando la fórmula: A = Vs Ve Nota: Realizar el cálculo solicitado considerando solamente la señal senoidal. - Empleando el concepto de impedancia compleja, obtener la función de transferencia del circuito - Analizar la función obtenida y determinar que operación matemática se está realizando( Hint: Aplicar el concepto de anti-transformada de Laplace). Actividad 5 - Armar el circuito de la figura 6 y ajustar el generador de funciones para obtener una señal senoidal de 4Vpp con una frecuencia de 100Hz. Vc = R6 R4 + R5 + R6 Ve Vb = Va = R4 + R5 Ve R4 + R5 + R6 R4 + R5 + R6 Ve R4 + R5 + R6 Figura 6. Circuito 5 para armar en Tarjeta Prototipo. 11
12 Ingeniería R8= R7 // R1 // R2 // R3 = 2.5 M Ω PARA EFECTOS DE ESTA PRÁCTICA EN PARTICULAR, LA RESISTENCIA DE ECUALIZACIÓN SE PUEDE EMPLEAR CON VALORES MENORES AL CALCULADO. PARA ESTE CASO SERÁ: R8 = 1M Ω - Observar en el osciloscopio las señales en los puntos Va, Vb y Vc del divisor de voltaje. - Abrir el programa del osciloscopio y obtener la gráfica de las señales en los puntos Va, Vb, Vc, e indicar los voltajes pico a pico de cada una de ellos. - Obtener la gráfica de la señal de salida e indicar el voltaje pico a pico. 5. Conclusiones Por actividad Actividad 1 Actividad 2 Actividad 3 Actividad 4 Actividad 5 6. Bibliografía! OGATA, K Ingeniería de control moderna México, Pearson, 2001! ERONINI-UMEZ Dinámica de sistemas y control México, Thomson,
LABORATORIOS DE: DISPOSITIVOS DE ALMACENAMIENTO Y DE ENTRADA/SALIDA. MEMORIAS Y PERIFÉRICOS.
LABORATORIOS DE: DISPOSITIVOS DE ALMACENAMIENTO Y DE ENTRADA/SALIDA. MEMORIAS Y PERIFÉRICOS. OBJETIVO DE LA PRÁCTICA. PRÁCTICA #2 EL AMPLIFICADOR OPERACIONAL Hacer la comprobación experimental de la función
Problemas Tema 6. Figura 6.3
Problemas Tema 6 6.1. Se conecta una fuente de voltaje V s =1mV y resistencia interna R s =1MΩ a los terminales de entrada de un amplificador con una ganancia de voltaje en circuito abierto A v0 =10 4,
Laboratorio Integrador y Diferenciador con AO
Objetivos Laboratorio Integrador y Diferenciador con AO El propósito de este práctico es comprender el funcionamiento de un integrador y de un diferenciador construido con un LM741. Textos de Referencia
Figura 1. (a) Diagrama de conexiones del LM741. (b) Diagrama de conexiones del TL084
Práctica No. Usos del Amplificador Operacional (OPAM) Objetivos. Comprobar las configuraciones típicas del amplificador operacional. Comprender en forma experimental el funcionamiento del amplificador
PRÁCTICA 6. AMPLIFICADOR OPERACIONAL: INVERSOR, INTEGRADOR y SUMADOR
PRÁCTICA 6. AMPLIFICADOR OPERACIONAL: INVERSOR, INTEGRADOR y SUMADOR 1. Objetivo El objetivo de esta práctica es el estudio del funcionamiento del amplificador operacional, en particular de tres de sus
PRÁCTICA 12. AMPLIFICADOR OPERACIONAL II
PRÁCTICA 12. AMPLIFICADOR OPERACIONAL II 1. Objetivo El objetivo de esta práctica es el estudio del funcionamiento del amplificador operacional (op-amp), en particular de tres de sus montajes típicos que
E.E.T Nº 460 GUILLERMO LEHMANN Departamento de Electrónica. Sistemas electrónicos analógicos y digitales TRABAJO PRÁCTICO
Tema: El amplificador operacional. Objetivo: TRABAJO PRÁCTICO Determinar las limitaciones prácticas de un amplificador operacional. Comprender las diferencias entre un amplificador operacional ideal y
UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II AMPLIFICADORES OPERACIONALES
AMPLIFICADORES OPERACIONALES LAURA MAYERLY ÁLVAREZ JIMENEZ (20112007040) MARÍA ALEJANDRA MEDINA OSPINA (20112007050) RESUMEN En esta práctica de laboratorio se implementarán diferentes circuitos electrónicos
UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II
INTEGRADOR, DERIVADOR Y RECTIFICADOR DE ONDA CON AMPLIFICADORES OPERACIONALES LAURA MAYERLY ÁLVAREZ JIMENEZ (20112007040) MARÍA ALEJANDRA MEDINA OSPINA (20112007050) RESUMEN En esta práctica de laboratorio
EXP207 REGLAS DE FUNCIONAMIENTO EN OP-AMPS.
EXP207 REGLAS DE FUNCIONAMIENTO EN OP-AMPS. I.- OBJETIVOS. Comprobar experimentalmente las reglas de funcionamiento líneas del amplificador lineal del amplificador operacional. Comprobar el funcionamiento
Laboratorio Amplificador Diferencial Discreto
Objetivos Laboratorio mplificador Diferencial Discreto Verificar el funcionamiento de un amplificador discreto. Textos de Referencia Principios de Electrónica, Cap. 17, mplificadores Diferenciales. Malvino,
Electrónica Analógica
Prácticas de Electrónica Analógica 2º urso de Ingeniería de Telecomunicación Universidad de Zaragoza urso 1999 / 2000 PATIA 1. Amplificador operacional. Etapas básicas. Entramos en esta sesión en contacto
CONSULTA PREVIA La información necesaria para el desarrollo de la práctica, se encuentra disponible al menos en las siguientes referencias.
OBJETIVOS. Entender el comportamiento y las características del amplificador operacional.. Medir ganancia, impedancia de entrada y salida de las configuraciones básicas del amplificador operacional: amplificador
2 Electrónica Analógica TEMA II. Electrónica Analógica
TEMA II Electrónica Analógica Electrónica II 2007 1 2 Electrónica Analógica 2.1 Amplificadores Operacionales. 2.2 Aplicaciones de los Amplificadores Operacionales. 2.3 Filtros. 2.4 Transistores. 2 1 2.1
FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA AMPLIFICADORES OPERACIONALES PRÁCTICA 1 AMPLIFICADOR INVERSOR
AMPLIFICADORES OPERACIONALES PRÁCTICA 1 AMPLIFICADOR INVERSOR Prof. Carlos Navarro Morín 2010 practicas del manual de (Opamps) Haciendo uso del amplificador operacional LM741 determinar el voltaje de salida
Electrónica 1. Práctico 1 Amplificadores Operacionales 1
Electrónica 1 Práctico 1 Amplificadores Operacionales 1 Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic
APLICACIONES LINEALES DEL AMPLIFICADOR OPERACIONAL
UNIVERSIDAD DEL VALLE ESCUELA DE INGENIERIA ELÉCTRICA Y ELÉCTRONICA CÁTEDRA DE PERCEPCIÓN Y SISTEMAS INTELIGENTES LABORATORIO N Fundamentos de Electrónica APLICACIONES LINEALES DEL AMPLIFICADOR OPERACIONAL
3. Operar un generador de señales de voltaje en función senoidal, cuadrada, triangular.
Objetivos: UNIVERSIDAD FRANCISCO DE PAULA SANTANDER Al terminar la práctica el alumno estará capacitado para: 1. El manejo de los controles del osciloscopio (encendido, ajuste de intensidad, barrido vertical,
EL AMPLIFICADOR CON BJT
1 Facultad: Estudios Tecnologicos. Escuela: Electrónica. Asignatura: Electronica Analogica Discresta. EL AMPLIFICADOR CON BJT Objetivos específicos Determinar la ganancia de tensión, corriente y potencia
Práctica Nº 5 AMPLIFICADORES OPERACIONALES.
Práctica Nº 5 AMPLIFICADORES OPERACIONALES. 1. INTRODUCCION. El concepto original del amplificador operacional procede del campo de los computadores analógicos, en los que comenzaron a usarse técnicas
UNIVERSIDAD DE ANTIOQUIA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERIA ELECTRÓNICA LABORATORIO DE CIRCUITOS II PRÁCTICA N 5 "GENERADORES DE SEÑAL"
UNIVERSIDAD DE ANTIOQUIA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERIA ELECTRÓNICA LABORATORIO DE CIRCUITOS II PRÁCTICA N 5 "GENERADORES DE SEÑAL" OBJETIVOS: Conocer el funcionamiento de circuitos
Electrónica II. Guía 4
Electrónica II. Guía 4 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). COMPARADORES Objetivo General Verificar
Temario. Tema 5. El amplificador operacional real OBJETIVOS DEL TEMA. Introducción
Temario Tema Teo. Pro. 1. Amplificación 2h 1h 2. Realimentación 2.5h 1.5h 3. Amplificador operacional (AO) y sus etapas lineales 7h 4h 4. Comparadores y generadores de onda 7h 4h 5. El amplificador operacional
Circuito de Offset
Figura 3.3 Conexión del Amplificador Los cálculos para la ganancia son simples y se muestran en la ecuación (3.), en estas se puede observar que para el cálculo de la ganancia es necesario establecer el
Oscar Ignacio Botero H. Diana Marcela Domínguez P. SIMULADOR PROTEUS MÓDULO. VIRTUAL INSTRUMENTS MODE: (Instrumentos virtuales)
SIMULADOR PROTEUS MÓDULO VIRTUAL INSTRUMENTS MODE: (Instrumentos virtuales) En éste modo se encuentran las siguientes opciones 1. VOLTÍMETROS Y AMPERÍMETROS (AC Y DC) Instrumentos que operan en tiempo
INTRODUCCIÓN: OBJETIVOS:
INTRODUCCIÓN: En el desarrollo de esta práctica se observará experimentalmente el comportamiento del transistor bipolar BJT como amplificador, mediante el diseño, desarrollo e implementación de dos amplificadores
Amplificador inversor y no inversor
Facultad Escuela Lugar de Ejecución : Ingeniería. : Electrónica : Fundamentos Generales (Edificio 3, 2da planta) Amplificador inversor y no inversor Objetivo General Implementar los circuitos amplificadores
Carrera: ECC Participantes Representante de las academias de ingeniería electrónica de los Institutos Tecnológicos.
1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Electrónica Analógica II Ingeniería Electrónica ECC-0413 4-2-10 2.- HISTORIA DEL
BJT como amplificador en configuración de emisor común con resistencia de emisor
Práctica 9 BJT como amplificador en configuración de emisor común con resistencia de emisor Índice General 9.1. Objetivos................................ 73 9.2. Introducción teórica..........................
Trabajo práctico: Amplificador Operacional
Problema 1 El amplificador operacional de la figura posee resistencia de entrada infinita, resistencia de salida cero y ganancia de lazo abierto A LA =50. Calcule la ganancia de lazo cerrado Ar=Vo/Vi si
LABORATORIO DE ELECTRÓNICA DE POTENCIA PRÁCTICA N 4
ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica LABORATORIO
Práctica No. 4 Capacitancia e Inductancia
Objetivo Práctica No. Capacitancia e Inductancia Conocer el principio de funcionamiento y como están formados los capacitares e inductores. Material y Equipo Resistencias de kω y ¼ de Watt Papel aluminio,
Marco Antonio Andrade Barrera 1 Diciembre de 2015
Diseño, simulación, construcción, medición y ajuste de un filtro pasa-bajas activo de segundo orden con coeficientes de Bessel, configuración Sallen-Key, ganancia unitaria y una frecuencia de corte f c
SIFeIS. CONCAyNT PLANTA EXTERIOR E IPR. CONCAyNT ELECTRÓNICA
ELECTRÓNICA PLANTA EXTERIOR E IPR GUÍA DE ESTUDIOS DE ELECTRÓNICA PARA IPR Un agradecimiento especial al Co. FRANCISCO HERNANDEZ JUAREZ por la oportunidad y el apoyo para realizar este trabajo, así como
Programa de Tecnologías Educativas Avanzadas. Bach. Pablo Sanabria Campos
Programa de Tecnologías Educativas Avanzadas Bach. Pablo Sanabria Campos Agenda Conceptos básicos. Relación entre corriente, tensión y resistencia. Conductores, aislantes y semiconductores. Elementos importantes
TEORIA DE CIRCUITOS. CURSO PRÁCTICA 4. RESPUESTA FRECUENCIAL EN REGIMEN PERMANENTE SENOIDAL
1 INGENIERIA TENIA INDUSTRIAL. ELETRONIA INDUSTRIAL TEORIA DE IRUITOS. URSO 2003-2004 PRÁTIA 4. RESPUESTA FREUENIAL EN REGIMEN PERMANENTE SENOIDAL PRIMERA PARTE: SIMULAIÓN EN PSPIE INTRODUIÓN El objetivo
elab 3D Práctica 2 Diodos
UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TECNICA SUPERIOR DE INGENIERIA Y SISTEMAS DE TELECOMUNICACIÓN elab 3D Práctica 2 Diodos Curso 2013/2014 Departamento de Sistemas Electrónicos y de Control 1. Introducción
EL42A - Circuitos Electrónicos
ELA - Circuitos Electrónicos Clase No. 24: Amplificadores Operacionales (1) Patricio Parada [email protected] Departamento de Ingeniería Eléctrica Universidad de Chile 3 de Noviembre de 2009 ELA -
Se inicia con las especificaciones del módulo fotovoltaico.
Con base en las especificaciones técnicas del inversor SB 3000U y de un módulo fotovoltaico de 175 watts, indicar los valores los parámetros característicos requeridos para el dimensionamiento del sistema.
Universidad de San Carlos de Guatemala Facultad de Ingeniería Escuela de Mecánica Eléctrica Laboratorio de Electrónica Electrónica 4
Universidad de San Carlos de Guatemala Facultad de Ingeniería Escuela de Mecánica Eléctrica Laboratorio de Electrónica Electrónica 4 INDICE: Pg. Carátula 1 Introducción 2 Conocimientos Necesarios 2 1.0
PROGRAMA DE ESTUDIO. Horas de. Práctica ( ) Teórica ( X ) Presencial ( X ) Teórica-práctica ( ) Híbrida ( )
PROGRAMA DE ESTUDIO Nombre de la asignatura: ELECTRÓNICA INDUSTRIAL Clave:IEE26 Ciclo Formativo: Básico ( ) Profesional ( X ) Especializado ( ) Fecha de elaboración: marzo 2015 Horas Semestre Horas semana
Teoría de Circuitos (1º de ITI) Práctica 1
Práctica 1: Aparatos de medida y medidas eléctricas básicas. Las leyes de Ohm y de Kirchoff en corriente continua. Asociación de resistencias en serie y en paralelo. Teorema de Thevenin y de máxima transferencia
OBJETIVOS CONSULTA PREVIA. La información necesaria para el desarrollo de la práctica, se encuentra disponible al menos en las siguientes referencias.
OBJETIVOS 1. Evaluar e interpretar las características fundamentales del amplificador diferencial. 2. Analizar las ventajas y desventajas de las diferentes formas de polarización del amplificador diferencial.
MEDIDAS ELÉCTRICAS. Práctica 2: VOLTÍMETROS
MEDIDAS ELÉCTRICAS ráctica : OLTÍMETROS 1. Objetivo Esta práctica se divide en dos partes con objetivos diferentes: arte 1: contrastar el comportamiento de distintos voltímetros en la medida de tensiones
TEMA: OPERADOR COMO COMPARADOR
TEMA: OPERADOR COMO COMPARADOR Objetivo: Utilizar el opam como controlador en sistemas de control todo o nada. Explicar cómo funciona un comparador y describir la importancia del punto de referencia. Describir
Anexo V: Amplificadores operacionales
Anexo V: Amplificadores operacionales 1. Introducción Cada vez más, el procesado de la información y la toma de decisiones se realiza con circuitos digitales. Sin embargo, las señales eléctricas analógicas
PRACTICA Nº 1 MEDICIONES SOBRE CIRCUITOS ELECTRONICOS
UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS CIRCUITOS ELECTRONICOS I EC1177 PRACTICA Nº 1 MEDICIONES SOBRE CIRCUITOS ELECTRONICOS OBJETIVO Familiarizar al estudiante con los conceptos fundamentales
Practica 5 Amplificador operacional
Practica 5 Amplificador operacional Objetivo: Determinar las características básicas de un circuito amplificador operacional. Examinar las ventajas de la realimentación negativa. Equipo: Generador de funciones
AMPLIFICADORES OPERACIONALES. Un Amplificador operacional es un dispositivo con dos puertas de entrada y una de salida, que se caracteriza por tener:
AMPLIFICADORES OPERACIONALES Modelo Un Amplificador operacional es un dispositivo con dos puertas de entrada y una de salida, que se caracteriza por tener: 1. Una impedancia de entrada muy elevada en cada
Experimento 6: Transistores MOSFET como conmutadores y compuertas CMOS
Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica Profesores: Ing. Sergio Morales, Ing. Pablo Alvarado, Ing. Eduardo Interiano Laboratorio de Elementos Activos II Semestre 2006 I Experimento
Electrónica Analógica 1
Trabajo Práctico 4: El transistor bipolar como amplificador. Modelo equivalente de pequeña señal. Parámetros híbridos. Configuraciones multietapa. Análisis en pequeña señal: método de trabajo La figura
Práctica 5. Generadores de Señales de Reloj y Flip-flops
5.1 Objetivo Práctica 5 Generadores de Señales de Reloj y Flip-flops El alumno conocerá y comprobará el funcionamiento de dispositivos empleados en la lógica secuencial y dispositivos con memoria basados
Instituto Tecnológico de Massachussets Departamento de Ingeniería Eléctrica e Informática Circuitos Electrónicos Otoño 2000
Instituto Tecnológico de Massachussets Departamento de Ingeniería Eléctrica e Informática 6.002 Circuitos Electrónicos Otoño 2000 Práctica 4: Amplificadores inversores MOSFET y circuitos de primer orden
Tema 2 El Amplificador Operacional
CICUITOS ANALÓGICOS (SEGUNDO CUSO) Tema El Amplificador Operacional Sebastián López y José Fco. López Instituto de Microelectrónica Aplicada (IUMA) Universidad de Las Palmas de Gran Canaria 3507 - Las
ELECTRÓNICA ANALÓGICA FORMATO DEL REPORTE DE PRÁCTICAS DEL LABORATORIO
FORMATO DEL REPORTE DE PRÁCTICAS DEL LABORATORIO PORTADA Nombre de la universidad Facultad de Ingeniería Ensenada Carrera Materia Alumno Nombre y número de Práctica Nombre del maestro Lugar y fecha CONTENIDO
CURSO TALLER ACTIVIDAD 3 PROTOBOARD MULTÍMETRO MEDICIÓN DE VOLTAJES Y CORRIENTES DE CORRIENTE DIRECTA
CUSO TALLE ACTIIDAD 3 POTOBOAD MULTÍMETO MEDICIÓN DE OLTAJES Y COIENTES DE COIENTE DIECTA FUENTE DE OLTAJE DE COIENTE DIECTA Como su nombre lo dice, una fuente de voltaje de corriente directa (C.D) es
1.- Estudiar los diferentes modos de operaci on del BJT de la figura en función de v I (V BE ~ 0.7 V). IB VC VB IE
Ejercicios relativos al transistor bipolar Problemas de transistores BJT en estática 1.- Estudiar los diferentes modos de operaci on del BJT de la figura en función de v I (V BE ~ 0.7 V). IC IB VC VB
Laboratorio de Electricidad PRACTICA - 5 CIRCUITOS DIVISORES DE TENSIÓN (SIN CARGA)
PRCTIC - CIRCUITO DIVIOR D TNIÓN (IN CRG) I - Finalidades 1.- studiar el funcionamiento de los circuitos divisores de tensión continua. 2.- studiar la utilización de los potenciómetros y los reostatos
Laboratorio de Electrónica III Práctica I
Laboratorio de Electrónica III Práctica I Características Eléctricas de los Amplificadores Operacionales OBJETIO: Al término de esta práctica el alumno aprenderá medir las características eléctricas más
Práctica No 0: Parte C El Osciloscopio y el Generador de Señales
Universidad Nacional Experimental del Táchira. Departamento de Ingeniería Electrónica. Núcleo de Instrumentación y Control. Bioinstrumentación I Revisada por: Prof. Rafael Volcanes, Prof. Lisbeth Román.
Herramientas Integradas para Laboratorios de Electrónica
Herramientas Integradas para Laboratorios de Electrónica NI Educational Laboratory Virtual Instrumentation Suite (NI ELVIS) Integración y funcionalidad con múltiples instrumentos. Combina instrumentación,
Tema: Uso del analizador espectral.
Sistemas de Comunicación I. Guía 1 1 I Facultad: Ingeniería Escuela: Electrónica Asignatura: Sistemas de comunicación Tema: Uso del analizador espectral. Objetivos Conocer el funcionamiento de un Analizador
Práctica 5: Técnicas de Medida con Polímetro, Osciloscopio y Fuentes de señal
DNI APELLIDOS, NOMBRE FECHA GRUPO A - B PROFESOR PRÁCTICAS PUNTUALIDAD LIMPIEZA NOTA: Se recuerda a los alumnos que durante esta sesión deberán demostrar conocimientos en el manejo del polímetro, fuente
PRACTICA Nº3: FAMILIAS LOGICAS
PRACTICA Nº3: FAMILIAS LOGICAS El objetivo de esta práctica es comprobar el funcionamiento de los inversores básicos bipolar y MOS, observando sus características de transferencia y midiendo sus parámetros.
El sistema a identificar es el conjunto motor eléctrico-freno siguiente:
Sistema a identificar El sistema a identificar es el conjunto motor eléctrico-freno siguiente: Relación entrada-salida Las variables de entrada-salida a considerar para la identificación del sistema es
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO DISPOSITIVOS Y CIRCUITOS ELECTRÓNICOS 1654 6º 11 Asignatura Clave Semestre Créditos Ingeniería Eléctrica Ingeniería Electrónica
DV 700-EQ ECUALIZADOR DE VIDEO DOBLE. Ingeniería Electrónica
Ingeniería Electrónica Av. Garibaldi 2760 (B1836ALR) Llavallol. Pcia. Bs.As. Argentina Tel.:(54-11)4298-0637/3090 (54-11)4231-0383 Fax: ( 54-11 ) 4298-1839 [email protected] [email protected]
TRABAJO PRÁCTICO Nº 2 ANÁLISIS DE CIRCUITOS DE CORRIENTE CONTINUA
E.T. Nº 17 - D.E. X Reg. PRÁCTCAS UNFCADAS 1 ntroducción Teórica TRABAJO PRÁCTCO Nº 2 ANÁLSS DE CRCUTOS DE CORRENTE CONTNUA a Multímetro digital: El multímetro digital es un instrumento electrónico de
Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción Teórica DIODO DE UNION
Electrónica I. Guía 1 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). DIODO DE UNION Objetivos generales Identificar
Departamento de Física Aplicada I. Escuela Politécnica Superior. Universidad de Sevilla. Física II
Física II Osciloscopio y Generador de señales Objetivos: Familiarizar al estudiante con el manejo del osciloscopio y del generador de señales. Medir las características de una señal eléctrica alterna (periodo
Grado de Óptica y Optometría Asignatura: FÍSICA Curso: Práctica nº 5. MEDIDAS DE RESISTENCIAS, VOLTAJES Y CORRIENTES: MULTÍMETRO
FCULTD DE CIENCIS UNIERSIDD DE LICNTE Grado de Óptica y Optometría signatura: FÍSIC Curso: 200- Práctica nº 5. MEDIDS DE RESISTENCIS, OLTJES Y CORRIENTES: MULTÍMETRO Material Fuente de alimentación de
DV 300 DISTRUBUIDOR DE VIDEO EN COMPONENTES. Ingeniería Electrónica
Ingeniería Electrónica Av. Garibaldi 2760 (B1836ALR) Llavallol. Pcia. Bs.As. Argentina Tel:(54-11)4298-0637/3090 (54-11)4231-0383 Fax: ( 54-11 ) 4298-1839 [email protected] [email protected]
Sistemas Elec. Digitales. Instrumentación del laboratorio. Pag. 1 1. INSTRUMENTACIÓN DEL LABORATORIO.
Sistemas Elec. Digitales. Instrumentación del laboratorio. Pag. 1 1. INSTRUMENTACIÓN DEL LABORATORIO. Sistemas Elec. Digitales. Instrumentación del laboratorio. Pag. 2 1.1. Fuente de alimentación CPS250
INDICE Capítulo 1. Variables del Circuito Eléctrico Capítulo 2. Elementos de Circuitos Capítulo 3. Circuitos Resistivos
INDICE Capítulo 1. Variables del Circuito Eléctrico 1 Introducción 1 1.1. Reto de diseño: Controlador de una válvula para tobera 2 1.2. Albores de la ciencia eléctrica 2 1.3. Circuitos eléctricos y flujo
PRÁCTICA 1 MODULACIONES LINEALES Modulación en doble banda Lateral: DBL Modulación en banda Lateral Única: BLU
PRÁCTICA 1 MODULACIONES LINEALES 1.1.- Modulación de Amplitud: AM 1.2.- Modulación en doble banda Lateral: DBL 1.3.- Modulación en banda Lateral Única: BLU Práctica 1: Modulaciones Lineales (AM, DBL y
Práctica No. 4 del Curso "Meteorología y Transductores". "Comparadores y generador PWM"
Objetivos. Práctica No. 4 del Curso "Meteorología y Transductores". "Comparadores y generador PWM" Comprobar en forma experimental el funcionamiento de los comparadores con Histéresis, así como el circuito
TEOREMA DE THEVENIN. 1 P ágina SOLEC MEXICO
1 P ágina SOLEC MEXICO TEOREMA DE THEVENIN Un circuito lineal con resistencias que contenga una o más fuentes de voltaje o corriente puede reemplazarse por una fuente única de voltaje y una resistencia
Laboratorio de Electricidad PRACTICA - 4 PROPIEDADES DE LOS CIRCUITOS SERIE-PARALELO LEYES DE KIRCHHOFF (PARA UN GENERADOR)
PRACTICA - 4 PROPIDADS D LOS CIRCUITOS SRI-PARALLO LYS D KIRCHHOFF (PARA UN GNRADOR) I - Finalidades 1.- Comprobar experimentalmente que la resistencia total R T de una combinación de resistencias en conexión
Circuitos Sample & Hold y Conversores. Introducción
Circuitos Sample & Hold y Conversores Introducción Los circuitos de muestreo y retención se utilizan para muestrear una señal analógica en un instante dado y mantener el valor de la muestra durante tanto
CURSO: Circuitos Eléctricos UNIDAD IV: CORRIENTE ALTERNA - TEORÍA
www.ceduvirt.com CURSO: Circuitos Eléctricos UNIDAD IV: CORRIENTE ALTERNA - TEORÍA EJEMPLO 1: Cinco ciclos de una señal ocurren en un tiempo de 25 msg. Hallar el periodo y la frecuencia. Solución Si
REALIZACIÓN DE UN SISTEMA CORRECTOR DEL FACTOR DE POTENCIA (PFC), PARA SU APLICACIÓN EN SISTEMAS CD/CD
REALIZACIÓN DE UN SISTEMA CORRECTOR DEL FACTOR DE POTENCIA (PFC), PARA SU APLICACIÓN EN SISTEMAS CD/CD OBJETIVO El objetivo de la investigación presentada es el desarrollo de un circuito corrector del
Manual de Prácticas. Práctica número 5 Algunas propiedades térmicas del agua
Práctica número 5 Algunas propiedades térmicas del agua Tema Correspondiente: Termodinámica Nombre del Profesor: Nombre completo del alumno Firma N de brigada: Fecha de elaboración: Grupo: Elaborado por:
4.3.- EL AMPLIFICADOR DE INSTRUMENTACIÓN
Ignacio Moreno elasco..- EL MPLIFICDO DE INSTUMENTCIÓN nte las exigencias de medida que imponen los sensores, se necesitan amplificadores específicos llamados de instrumentación que deben cumplir unos
1.- CORRIENTE CONTINUA CONSTANTE Y CORRIENTE CONTINUA PULSANTE
UNIDAD 5: CIRCUITOS PARA APLICACIONES ESPECIALES 1.- CORRIENTE CONTINUA CONSTANTE Y CORRIENTE CONTINUA PULSANTE La corriente que nos entrega una pila o una batería es continua y constante: el polo positivo
Electrónica 1. Práctico 2 Amplificadores operacionales 2
Electrónica 1 Práctico 2 Amplificadores operacionales 2 Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic
La circuitería interna del 555 según National Semiconductors, es la siguiente:
LABORATORIO DE CIRCUITOS DIGITALES II OPERACIÓN DEL 555 COMO ASTABLE INTRODUCCION El 555 es un integrado muy útil, pudiendo ser configurado en varias modalidades. Una de estas modalidades es la del multivibrador
Práctica 4 Filtros de señales eléctricas.
VIII curso de EEIBS -Práctica 4- Núcleo de Ingenierııa Biomédica Facultades de Medicina e Ingenierııa UdelaR. Práctica 4 Filtros de señales eléctricas. Martıı n Arregui, Franco Simini 31 de mayo de 2016
Circuitos resistivos activos. Primera parte
Circuitos resistivos activos. Primera parte Objetivos 1. Analizar circuitos equivalentes de transistores constituidos por resistores y fuentes dependientes. 2. Explicar las características del amplificador
Practica 1 BJT y FET Amplificador de 2 Etapas: Respuesta en Baja y Alta Frecuencia
Universidad de San Carlos de Guatemala Facultad de Ingeniería Escuela de Mecánica Eléctrica Laboratorio de Electrónica Electrónica 2 Primer Semestre 2015 Auxiliar: Edvin Baeza Practica 1 BJT y FET Amplificador
Práctica 3. Amplificador clase C
211 MI. Mario Alfredo Ibarra Carrillo Facultad de Ingeniería; UNAM 9/2/211 2 3 Objetivos: 1. Diseñar y ensamblar un circuito amplificador clase C. 2. Analizar el espectro de la señal de salida del amplificador
PROYECTO DE ELÉCTRONICA
PROYECTO DE ELÉCTRONICA SEMÁFORO DE TRES LEDS EN EL PRESENTE DOCUMENTO SE ENCONTRARÁ CON UNA DESCRIPCIÓN DE LOS ELEMENTOS UTILIZADOS EN EL ARMADO DE UN CIRCUITO ELÉCTRICO (SEMÁFORO DE TRES LEDS), DONDE
de diseño CAPÍTULO 4. Métodos de análisis de los circuitos resistivos 4.1. Reto de diseño: Indicación del ángulo de un potenciómetro 4.2. Circuitos el
CAPÍTULO 1. VARIABLES DEL CIRCUITO ELÉCTRICO 1.1. Reto de diseño: Controlador de una válvula para tobera 1.2. Albores de la ciencia eléctrica 1.3. Circuitos eléctricos y flujo de corriente 1.4. Sistemas
ESTUDIO DE CIRCUITOS ELÉCTRICOS EN CORRIENTE CONTINUA
ESTUDIO DE CIRCUITOS ELÉCTRICOS EN CORRIENTE CONTINUA OBJETIO Aprender a utilizar equipos eléctricos en corriente continua, estudiar la distribución de corriente y energía en un circuito eléctrico, hacer
PRACTICA 1 CIRCUITO AMPLIFICADOR EN EMISOR COMÚN CON POLARIZACIÓN FIJA. Objetivo:
PRACTICA 1 CIRCUITO AMPLIFICADOR EN EMISOR COMÚN CON POLARIZACIÓN FIJA Objetivo: Comprender el comportamiento de un transistor en un amplificador. Diseñando y comprobando las diferentes configuraciones
Desarrollo de la Práctica Unidad de aprendizaje: Practica número: 11, 12 y 13 Nombre de la practica:
Desarrollo de la Práctica Unidad de aprendizaje: Practica número: 11, 12 y 13 Nombre de la practica: 11. Comprobar el teorema de máxima transferencia de potencia. 12. Observar y medir los voltajes en terminales
Amplificadores diferenciales, de instrumentación y de puente
3 mplificadores diferenciales, de instrumentación y de puente 3. Introducción En este capítulo se estudian los circuitos amplificadores diferenciales, de instrumentación y de puente. La aplicación de estos
Práctica 5 Circuito acondicionador de señal
Práctica 5 Circuito acondicionador de señal Objetivo de la práctica Analizar Al terminar esta práctica, el discente será capaz de: Diseñar una red resistiva que cumpla con acondicionamiento analógico.
SINTETIZADOR ANALÓGICO ELECTRÓNICO. TUTORIAL. TALLER DE ELECTRÓNICA BÁSICA.
SINTETIZADOR ANALÓGICO ELECTRÓNICO. TUTORIAL. TALLER DE ELECTRÓNICA BÁSICA. WWW.DIGITART.COM.MX SINTETIZADOR ANALÓGICO ELECTRÓNICO. MATERIALES. 8 1 2 7 3 4 9 6 10 11 12 5 1. Protoboard. 2. Circuito Integrado
