1. Generador sincrónico

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1. Generador sincrónico"

Transcripción

1 Jeisson Romero Guavita Melany Núñez Eguis TECNOLOGÍA EN ELECTRICIDAD 1. Generador sincrónico 1.1. Cálculos en por Unidad Hay una normalización de variables para los cálculos de los sistemas de potencia llamada cálculos en por unidad que es especialmente conveniente si están involucrados gran cantidad de transformadores y altos niveles de tensión. La idea general es elegir valores bases para cantidades como voltajes, corrientes impedancias, fuentes, y también definir cantidades en por unidad, como se define en la ecuación 1: Cantidad en por unidad = V alor real V alor base Los valores base se seleccionan con el fin de satisfacer el mismo tipo de relación que las variables reales. Por ejemplo, para la ecuación en valores reales V = Z I, posteriormente a seleccionar sus valores base se puede expresar como lo indica la ecuación 2. V pu = Z pu I pu (2) Es de vital importancia resaltar la diferencia entre los valores nominales que dependen directamente de la fabricación de un elemento, por lo tanto fueron valores parametrizados por los fabricantes durante el diseño, y los valores de operación que son los arrojados cuando los equipos son sometidos a pruebas experimentales y son los que, principalmente, se eligen como valores base. Por lo cual, cuando éstos son cercanos a los nominales, trabajar con valores en por unidad, además de facilitar el proceso de cálculo, permite detectar posibles errores aritméticos de una forma más sencilla. Así, por ejemplo todas las tensiones deben estar cercanas a la unidad[1]. (1) 1.2. Generador Sincrónico El modelo de la máquina sincrónica es necesario para análisis de cortocircuito, estabilidad, transitorios, entre otros, pero no se hace indispensable para la construcción de la matriz de admitancias nodal para flujo de carga, el modelamiento que se realizará será con un propósito estrictamente académico. Los elementos principales que conforman una máquina sincrónica son de un material ferromagnético, el estator o armadura es prácticamente un cilindro hueco que se comporta de forma estacionaria, tiene cortes en donde se encuentran las bobinas del devanado de armadura, por medio de los cuales se suministra a la carga por el generador la corriente necesaria. Otra elemento principal es el denominado rotor y es el que rota dentro del estator[2].

2 En la Figura 1 se muestra las partes que conforman un generador trifásico de dos polos elemental visto desde la terminal de un rotor cilíndrico y la sección transversal del estator. Figura 1: Generador trifásico elemental de ca que muestra la vista terminal de un rotor cilíndrico de dos polos y sección transversal del estator [3]. En la figura 2 se muestra una máquina de polos salientes que tiene cuatro polos. Figura 2: Sección transversal de un estator elemental y de un rotor de polos salientes [3].

3 Medición de los parámetros necesarios para la obtención del modelo Para la obtención del modelo de la máquina sincrónica (mostrado en la Figura 4) se deben determinar tres cantidades que describen el comportamiento del mismo. a) La corriente de campo (Ea) que define la relación entre la corriente de campo y el flujo. b) Reactancia sincrónica. c) Resistencia del inducido. El primer paso es realizar la prueba de circuito abierto de la máquina sincrónica, la cual consiste en energizar el generador y llevarlo a su corriente nominal, teniendo en cuenta que se deben desconectar todos los terminales de carga llevando la corriente de campo a cero. Posteriormente, se incrementa progresivamente la corriente de campo y se mide la tensión en terminales cada vez que se aumente [4]. El segundo paso es realizar la prueba de cortocircuito, (en la Figura 3 se muestra el circuito equivalente) donde se vuelve a llevar la corriente de campo a cero y se cortocircuitan los terminales de la máquina mediante un grupo de amperímetros. Posteriormente, cuando se incrementa la corriente de campo se mide la corriente de línea Ia, ésta corriente está dada por: [4] Y su magnitud se define como: I a = I a = E a R a + jxs E a R 2 a + X 2 s (3) (4) Ra jxs Ia Ea VΦ=0V Figura 3: Circuito equivalente de un generador sincrónico de rotor de polos lisos durante la prueba de cortocircuito [3]. La impedancia interna de la máquina está dada por la ecuación 5, Debido a que Xs Ra la ecuación se reduce a: Z s = R 2 a + X 2 s = E a I a (5) X s = E a I a (6)

4 En el caso de que Ea e Ia sean conocidos, se puede encontrar la reactancia sincrónica Xs fácilmente. Un método aproximado para hallar Xs en el caso de tener la corriente de campo es: a) Obtener Ea de la prueba de circuito abierto para dicha corriente de campo. b) Obtener Icc (corriente de cortocircuito) para esa corriente de campo con las características de la prueba de cortocircuito. c) Obtener Xs a partir de la ecuación formulada anteriormente. Pero éste método tiene una dificultad, Ea proviene de la prueba de circuito abierto, en el momento en que la máquina está saturada debido a las corrientes de campo, mientras que Ia se obtiene de la prueba de cortocircuito, cuando la máquina no está saturada teniendo en cuenta todas las corrientes de campo. Por lo tanto, en el caso de las corrientes de campo más altas, Ea obtenida de la prueba de circuito abierto con una corriente de campo dada no es igual a la Ea, teniendo en cuenta que es a la misma corriente de campo, en la prueba cortocircuito, debido a esto, el valor resultante de Xs es aproximado [4]. Sin embargo, mediante éste método, Xs es correcta hasta el punto de saturación, así que la reactancia sincrónica no saturada de la máquina se halla con la ecuación básica descrita anteriormente para cualquier corriente de campo dentro de la porción lineal de la curva de circuito abierto. La gráfica del comportamiento de la reactancia sincrónica en función de la corriente de campo se muestra en la Figura 7 [4]. Figura 4: Circuito equivalente de un generador sincrónico de polos lisos. La resistencia de campo y la resistencia externa variable se resumen en Rf [3]. Por otro lado, existe la máquina sincrónica de rotor de polos salientes, que tiene un entrehierro más grande entre polos que en la región arriba de ellos, por lo tanto las reluctancias de las dos regiones difieren en forma significativa. Para explicar esta diferencia, la reactancia síncrona se divide en dos reactancias: Una componente a lo largo del eje polar comúnmente llamada reactancia síncrona del eje directo (Xd) y una componente a lo largo del eje entre polos que se denomina reactancia síncrona del eje de cuadratura (Xq)[5].

5 Figura 5: Máquina sincrónica bipolar de polos salientes [3]. Debido a que la diferencia de espacio de aire en el entrehierro en el eje q es mucho mayor a la distancia del eje d, se deduce que Xq Xd, por lo cual se realiza la aproximación Xs Xq [6]. La representación del circuito equivalente para la máquina de rotor de polos salientes es similar al de polos lisos, teniendo en cuenta que Ea (voltaje de excitación) depende directamente de la tensión inducida Ea, la componente directa de la corriente de armadura Id, Xd y Xq, como se muestra en la Ecuación 7 [5]. E a = E a jid (X d X q ) (7) Ra jxq E a Ia Va Figura 6: Circuito equivalente de la máquina sincrónica de polos salientes [3]. El método para calcular la impedancia sincrónica en los dos tipos de rotores está basado en la obtención de las gráficas de comportamiento durante las pruebas experimentales, tal como lo muestra la Figura 7, que describe una gráfica detallada del comportamiento del generador y el método para el cálculo de la impedancia.

6 Eo (por fase) Curva de entrehierro Curva de vacío Icc (A) V nominal d Característica de cortocircuito g I nominal Curva Zs f e O a b c O If (A) Figura 7: Gráfica del comportamiento de la máquina sincrónica durante las pruebas experimentales [3]. A partir de la anterior figura, la impedancia sincrónica saturada y no saturada se calculan como lo muestra la ecuación 8 [7]: Z s (No Saturada) = Od O e y Z s(saturada) = Od O (8) f

7 1.3. Obtención del Modelo en ModelApp R Figura 8: Ventana de Inicio de ModelApp R [3]. Al ejecutar ModelApp R, se mostrará la ventana de inicio mostrada en la Figura 8 donde se debe indicar el número de nodos del sistema (de lo contrario se generará un error y no se podrá seguir el proceso), posteriormente, se debe elegir el elemento del sistema de potencia que desea modelar. En la esquina superior izquierda se muestran dos pestañas: Al seleccionar Acerca de se despliega toda la información pertinente sobre la aplicación y sus autores, por su parte la pestaña Reiniciar borra todos los datos ya introducidos del sistema de potencia, ya que al cerrar la ventana de un elemento ésta no es editable, en el caso de seleccionar la opción Generador surgirá la siguiente ventana:

8 Figura 9: Ventana para la configuración de los datos requeridos para la obtención del modelo [3]. En ModelApp R se deplegará la ventana para la obtención del modelo del generador, mostrada en la Figura 9 al seleccionar la opción Generador del menú principal. Los datos requeridos dependen de la información que posee el usuario, el caso de tener conocimiento de los valores de las reactancias sincrónicas de eje de cuadratura y eje directo lo muestra la Figura 9. La Reactancia de eje directo (Xd) y la de Eje de cuadratura (Xq) del generador deben ser valores en P U, de lo contrario ModelApp R generará una ventana de Advertencia, como lo muestra la Figura 10 para que se verifiquen los valores base del sistema la Potencia base debe ser un valor en (MV A) y la Tensión base debe ser en (Kv). Figura 10: Ventana de advertencia [3]. El caso de tener conocimiento de los datos de las pruebas de corto ciruito y circuito abierto lo muestra la Figura 11, donde se desplegarán dos listas de hasta diez datos para las corrientes de campo (If) y tensiones de vacío (Ea), en el caso de la prueba de circuito abierto y corrientes de corto circuito (Icc) y de campo (If), en el caso de la prueba de corto ciruito, si se tienen menos de los diez datos requeridos, las casillas deben rellenarse con ceros (0).

9 Figura 11: Ventana para la configuración de los datos requeridos para la obtención del modelo [3]. Además de ésto, se requieren los datos de la Resistencia Ra en (Ω) y la Tensión nominal del generador en (V ), también se hace indispensable el grado del polinomio para la obtención de las curvas características del generador durante las pruebas experimentales, mostrada en la Figura 12, tomando un ejercicio práctico como ejemplo. Figura 12: Curvas caracteristicas del generador a partir de pruebas experimentales [3]. En el caso de que se introduzcan valores no numéricos, comas (,) en lugar de puntos (.) como separador decimal, valores negativos o que ModelApp R no encuentre algún dato, se mostrará una ventana como las de la Figuras 13 y 14, indicando un Error y el modelo no podrá ser obtenido o se mostrará de forma incorrecta.

10 Figura 13: Ventana de error para el caso de valores negativos [3]. Figura 14: Ventana de error para el caso de valores no numéricos [3]. Al terminar de introducir la totalidad de los datos que necesita ModelApp R se entregarán los valores del modelo correspondiente al generador sincrónico de rotor de polos lisos requerido mostrado en la Figura 4, también, dependiendo de la información entregada por el usuario, se entregarán los coeficientes de los polinimios de las gráficas correspondientes al comportamiento del generador, donde éstos se determinarán por el grado introducido por el usuario y se mostrarán en forma descendente (leído de izquierda a derecha).

11 REFERENCIAS Referencias [1] A. Montoya, Análisis de Sistemas de Potencia. Facultad de Ingeniería Eléctrica, Universidad Tecnológica de Pereira, Colombia. (Citado en página 1.) [2] W. S. J.J. Grainger, Análisis de Sistemas de Potencia. McGraw-Hill, Inc, (Citado en página 1.) [3] M. N. E. J.F.Romero Guavita, Estudiantes Tecnología en Electricidad. Universidad Distrital Francisco José de Caldas, Bogotá D.C., Colombia, (Citado en páginas 2, 3, 4, 5, 6, 7, 8, 9 y 10.) [4] S. J. Chapman, Máquinas Eléctricas. McGraw Hill Mexico, (Citado en páginas 3 y 4.) [5] H. H. B.S. Guru, Máquinas Eléctricas y Transformadores. Oxford University Press,México D.C., México, (Citado en páginas 4 y 5.) [6] E.-H. E. Mohamed, E, Introduction to Electrical Power Systems. Hoboken, New Jersey, Ed. IEEE Press, (Citado en página 5.) [7] Máquinas eléctricas de corriente alterna, Disponible en: Madrid, España. (Citado en página 6.)

a las pruebas de circuito abierto y cortocircuito a los generadores sincrónicos,

a las pruebas de circuito abierto y cortocircuito a los generadores sincrónicos, Electricidad avanzada ENTREGA 1 Pruebas de circuito abierto y cortocircuito en los generadores sincrónicos La máquina sincrónica es hoy por hoy, la más ampliamente utilizada para convertir grandes cantidades

Más detalles

INDICE Capítulo 1. Conversión de Energía Capítulo 2. Inductancia Capítulo 3. Transformador

INDICE Capítulo 1. Conversión de Energía Capítulo 2. Inductancia Capítulo 3. Transformador INDICE Capítulo 1. Conversión de Energía 1 1.1. Fuerza en un capacitor 2 1.2. El Toroide 5 1.3. Circuitos magnéticos en serie y paralelo 7 1.4. Otros sistemas comunes de unidades magnéticas 8 1.5. Materiales

Más detalles

Máquinas eléctricas de corriente alterna. Capítulo 3 Máquina Síncrona

Máquinas eléctricas de corriente alterna. Capítulo 3 Máquina Síncrona Universidad Carlos III de Madrid Dept. Ingenería eléctrica Máquinas eléctricas de corriente alterna Capítulo 3 Máquina Síncrona David Santos Martín CAPÍTULO 3 Máquina Síncrona 3.1.- Introducción 3.2.-

Más detalles

PROGRAMA DE CURSO. Conversión de la Energía y Sistemas Eléctricos Nombre en Inglés Energy Conversion and Power Systems SCT

PROGRAMA DE CURSO. Conversión de la Energía y Sistemas Eléctricos Nombre en Inglés Energy Conversion and Power Systems SCT Código Nombre PROGRAMA DE CURSO EL 4001 Conversión de la Energía y Sistemas Eléctricos Nombre en Inglés Energy Conversion and Power Systems SCT Unidades Horas de Horas Docencia Horas de Trabajo Docentes

Más detalles

SESION 9.2: EXCITACIÓN DE LAS MAQUINAS DE C.C.

SESION 9.2: EXCITACIÓN DE LAS MAQUINAS DE C.C. SESION 9.2: EXCITACIÓN DE LAS MAQUINAS DE C.C. 1. INTRODUCCION La forma como se produce el flujo magnético en las máquinas de corriente contínua (cc), estas máquinas se clasifican en: EXCITACIÓN INDEPENDIENTE

Más detalles

PROGRAMA INSTRUCCIONAL MAQUINAS ELÉCTRICAS I

PROGRAMA INSTRUCCIONAL MAQUINAS ELÉCTRICAS I UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA ESCUELA DE ELÉCTRICA PROGRAMA INSTRUCCIONAL MAQUINAS ELÉCTRICAS I CÓDIGO ASIGNADO SEMESTRE U. C DENSIDAD HORARIA H.T H.P/H.L H.A

Más detalles

MÁQUINAS DE CORRIENTE CONTÍNUA. LA MÁQUINA LINEAL.

MÁQUINAS DE CORRIENTE CONTÍNUA. LA MÁQUINA LINEAL. MÁQUINAS DE CORRIENTE CONTÍNUA. LA MÁQUINA LINEAL. Fuerza sobre el conductor. r r r df = IΛ B dl F = I. B.L Tensión inducida en el conductor. dφ dφ e =, pero dados los sentidos normales se cumple que :

Más detalles

SÍLABO DE FUNDAMENTOS DE MÁQUINAS ELECTRICAS

SÍLABO DE FUNDAMENTOS DE MÁQUINAS ELECTRICAS SÍLABO DE FUNDAMENTOS DE MÁQUINAS ELECTRICAS I. DATOS GENERALES CÓDIGO CARÁCTER A0999 Obligatorio CRÉDITOS 5 PERIODO ACADÉMICO 2016 PRERREQUISITO Teoría Electromagnética HORAS Teóricas: 4 Prácticas: 2

Más detalles

Práctica 2: Características de la Máquina de CD Funcionando Como Generador

Práctica 2: Características de la Máquina de CD Funcionando Como Generador IEE Clave: 1131076 Área de Ingeniería Energética y Electromagnética 2 Prof. Dr. Juan Carlos Olivares alván e-mail: jolivare [email protected] Práctica 2: Características de la áquina de CD Ayudante: Hiram

Más detalles

Universidad de Costa Rica Escuela de Ingeniería Eléctrica IE Máquinas Eléctricas II Grupo N 54 - Subgrupo N 03 I Ciclo 2016

Universidad de Costa Rica Escuela de Ingeniería Eléctrica IE Máquinas Eléctricas II Grupo N 54 - Subgrupo N 03 I Ciclo 2016 Universidad de Costa Rica Escuela de Ingeniería Eléctrica IE 0615 - Máquinas Eléctricas II Grupo N 54 - Subgrupo N 03 I Ciclo 2016 Reporte 4: La Máquina Síncrona Polos Lisos. Generador Bajo Carga Mauricio

Más detalles

Ingeniería Industrial

Ingeniería Industrial CÓDIGO ASIGNATURA 986 DEPARTAMENTO: Ingeniería e Investigaciones Tecnológicas ASIGNATURA: Máquinas Eléctricas Ingeniería Industrial OBJETIVOS: La asignatura "Máquinas Eléctricas", que forma parte del cuarto

Más detalles

CURSO VIII CICLO SISTEMAS ELECTRICOS DE POTENCIA SEMANA 4. Análisis de Sistemas de Potencia Grainger-Stevenson. Capítulo 1

CURSO VIII CICLO SISTEMAS ELECTRICOS DE POTENCIA SEMANA 4. Análisis de Sistemas de Potencia Grainger-Stevenson. Capítulo 1 UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA CURSO VIII CICLO SISTEMAS ELECTRICOS DE POTENCIA SEMANA 4 OBJETIVO Representar y analizar un SEP BIBLIOGRAFIA Análisis de Sistemas de Potencia

Más detalles

5.1.1)Principio de funcionamiento.

5.1.1)Principio de funcionamiento. CAPÍTULO 5 MÁQUINAS DE CORRIENTE CONTINUA 5.1)ASPECTOS CONSTRUCTIVOS Y PRINCI- PIO DE FUNCIONAMIENTO. 5.1.1)Principio de funcionamiento. Devanado de Estator (campo): - Objetivo: producir el campo que posibilita

Más detalles

LABORATORIO DE MAQUINAS ELECTRICAS. Guía de Practica N 02: MEDICION DE TENSION Y CORRIENTES EN TRANSFORMADORES MONOFASICOS

LABORATORIO DE MAQUINAS ELECTRICAS. Guía de Practica N 02: MEDICION DE TENSION Y CORRIENTES EN TRANSFORMADORES MONOFASICOS Universidad Nacional del Santa Facultad de Ingeniería E.A.P. Ingeniería En Energía Departamento Académico de Energía y Física LABORATORIO DE MAQUINAS ELECTRICAS Guía de Practica N 02: MEDICION DE TENSION

Más detalles

FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser

FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser Objetivos: Estudiar el comportamiento de distintos elementos (resistores,

Más detalles

UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL AVELLANEDA DTO. DE ELÉCTRICA. Cátedra: Máquinas Eléctricas II

UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL AVELLANEDA DTO. DE ELÉCTRICA. Cátedra: Máquinas Eléctricas II NIVERSIDAD TECNOLOGICA NACIONAL FACLTAD REGIONAL AVELLANEDA DTO. DE ELÉCTRICA Cátedra: Máquinas Eléctricas II TRABAJO PRÁCTICO N 2 Características Internas y Externas de Máquinas Sincrónicas - Triángulo

Más detalles

Carrera: ELC Participantes Representante de las academias de ingeniería eléctrica de los Institutos Tecnológicos.

Carrera: ELC Participantes Representante de las academias de ingeniería eléctrica de los Institutos Tecnológicos. .- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Conversión de la Energía II Ingeniería Eléctrica ELC-0 --0.- HISTORIA DEL PROGRAMA

Más detalles

Práctica 3: Transformador monofásico con carga

Práctica 3: Transformador monofásico con carga IEE Ayudante: 1. Objetivos Clave: 1131073 Área de Ingeniería Energética y Electromagnética 2 Prof. Dr.Irvin López García e-mail: [email protected] Práctica 3: Transformador monofásico con carga Hiram

Más detalles

Carrera: MTF Participantes Representante de las academias de ingeniería en Mecatrónica de los Institutos Tecnológicos.

Carrera: MTF Participantes Representante de las academias de ingeniería en Mecatrónica de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Máquinas Eléctricas Ingeniería Mecatrónica MTF-0508 2-4-8 2.- HISTORIA DEL PROGRAMA

Más detalles

Introducción a los principios de las máquinas

Introducción a los principios de las máquinas CONTENIDO Prefacio Capítulo 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 Introducción a los principios de las máquinas Las máquinas eléctricas, los transformadores y la vida diaria Nota referente a las unidades

Más detalles

PROGRAMA INSTRUCCIONAL MAQUINAS ELECTRICAS I

PROGRAMA INSTRUCCIONAL MAQUINAS ELECTRICAS I UNIVERSIDAD FERMIN TORO VICE-RECTORADO ACADEMICO FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA ELECTRICA PROGRAMA AL MAQUINAS ELECTRICAS I CÓDIGO ASIGNADO SEMESTRE U.C DENSIDAD HORARIA H.T H.P/H.L H.A H.V

Más detalles

Sistemas Trifásicos. Departamento de Ingeniería Eléctrica UNEFA Maracay Redes Eléctricas II Chrystian Roa

Sistemas Trifásicos. Departamento de Ingeniería Eléctrica UNEFA Maracay Redes Eléctricas II Chrystian Roa Generador trifásico Secuencia de fases. Conexiones: estrella, delta. Carga trifásica. Estudio y resolución de sistemas en desequilibrio. Modelo equivalente monofásico. Estudio y resolución de sistemas

Más detalles

Práctica 5: Transformador trifásico con carga

Práctica 5: Transformador trifásico con carga IEE Ayudante: 1. Objetivos Clave: 1131073 Área de Ingeniería Energética y Electromagnética 2 Prof. Dr. Juan Carlos Olivares Galván e-mail: jolivare [email protected] Práctica 5: Transformador trifásico con

Más detalles

PROGRAMA DE ESTUDIO. Horas de. Práctica ( ) Teórica ( X) Presencial ( ) Teórica-práctica ( ) Híbrida (X)

PROGRAMA DE ESTUDIO. Horas de. Práctica ( ) Teórica ( X) Presencial ( ) Teórica-práctica ( ) Híbrida (X) PROGRAMA DE ESTUDIO Nombre de la asignatura: SISTEMAS ELÉCTRICOS DE POTENCIA 2 Clave: IEE16 Ciclo Formativo: Básico ( ) Profesional (X ) Especializado ( ) Fecha de elaboración: Marzo 2015 Horas Semestre

Más detalles

SESION 10: GENERADORES DE C.C.

SESION 10: GENERADORES DE C.C. SESION 10: GENERADORES DE C.C. 1. INTRODUCCION Los generadores de c.c. son máquinas de cc que se usan como generadores. No hay diferencia real entre un generador y un motor, pues solo se diferencian por

Más detalles

Facultad de Ingeniería. Escuela de Eléctrica. Asignatura CONVERSIÓNDE LA

Facultad de Ingeniería. Escuela de Eléctrica. Asignatura CONVERSIÓNDE LA Tema: PRINCIPIOS DE LAS MAQUINAS DE CORRIENTE CONTINUA. I. OBJETIVOS. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura CONVERSIÓNDE LA ENERGIAELECTROMECÁNICAII. Que el estudiante: Identifique la

Más detalles

Máquinas de corriente directa

Máquinas de corriente directa Electricidad básica ENTREGA 6 - Curso de electricidad Máquinas de corriente directa Las máquinas de corriente continua (MCC) se caracterizan por su versatilidad debido a las distintas configuraciones posibles

Más detalles

Curva de vacío. Recta del entrehierro 2.- COMPORTAMIENTO DE UN GENERADOR SINCRONO BAJO CARGA

Curva de vacío. Recta del entrehierro 2.- COMPORTAMIENTO DE UN GENERADOR SINCRONO BAJO CARGA POTENCIA EN LAS MAQUINAS SINCRONAS 1.- COMPORTAMIENTO DE UN GENERADOR EN VACIO Cuando la máquina esta trabajando en vacío (a velocidad constante) la tensión del estator depende del flujo magnético generado

Más detalles

Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Teoría Electromagnética.

Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Teoría Electromagnética. Tema: Aplicaciones prácticas de circuitos magnéticos. I. Objetivos. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Teoría Electromagnética. Analizar la relación del número de vueltas en los

Más detalles

El circuito magnético principal de las máquinas lineales Líneas de fuerza principales de las máquinas lineales

El circuito magnético principal de las máquinas lineales Líneas de fuerza principales de las máquinas lineales 13.2 - El circuito magnético principal de las máquinas lineales 13.2.1 - Líneas de fuerza principales de las máquinas lineales El flujo inductor que atraviesa el entrehierro y que constituye el flujo activo

Más detalles

Cálculo de cortocircuitos

Cálculo de cortocircuitos Cálculo de cortocircuitos Índice 2 1 Tipo de Falla Las fallas posibles son: Falla trifásica Falla monofásica a tierra Falla entre dos fases Falla entre dos fases a tierra Fase abierta 3 Tipo de Falla 3-phase

Más detalles

3.2 CONTROL DE GIRO DE UN MOTOR DE INDUCCIÓN DE JAULA DE. Un motor de inducción tiene físicamente el mismo estator de una máquina

3.2 CONTROL DE GIRO DE UN MOTOR DE INDUCCIÓN DE JAULA DE. Un motor de inducción tiene físicamente el mismo estator de una máquina 220 3.2 CONTROL DE GIRO DE UN MOTOR DE INDUCCIÓN DE JAULA DE ARDILLA 3.2.1 Descripción del problema. Un motor de inducción tiene físicamente el mismo estator de una máquina sincrónica con diferente construcción

Más detalles

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II AMPLIFICADORES OPERACIONALES

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II AMPLIFICADORES OPERACIONALES AMPLIFICADORES OPERACIONALES LAURA MAYERLY ÁLVAREZ JIMENEZ (20112007040) MARÍA ALEJANDRA MEDINA OSPINA (20112007050) RESUMEN En esta práctica de laboratorio se implementarán diferentes circuitos electrónicos

Más detalles

4. Control Vectorial. 1. Modelo dinámico del motor de inducción. 2. Control vectorial del motor de inducción. 3. Control vectorial Directo

4. Control Vectorial. 1. Modelo dinámico del motor de inducción. 2. Control vectorial del motor de inducción. 3. Control vectorial Directo 4. Control Vectorial Control de Máquinas Eléctricas Primavera 2009 1. Modelo dinámico del motor de inducción 2. Control vectorial del motor de inducción 3. Control vectorial Directo 4. Control vectorial

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS MATERIA: ELECTROTECNIA OFICIALES DE GRADO (MODELO DE EXAMEN) Curso 2013-2014 INSTRUCCIONES GENERALES Y

Más detalles

Programa de la asignatura Curso: 2011 / 2012 (3232)MÁQUINAS ELÉCTRICAS (3232)

Programa de la asignatura Curso: 2011 / 2012 (3232)MÁQUINAS ELÉCTRICAS (3232) Programa de la asignatura Curso: 2011 / 2012 (3232)MÁQUINAS ELÉCTRICAS (3232) PROFESORADO Profesor/es: MONTSERRAT DIEZ MEDIAVILLA - correo-e: [email protected] FICHA TÉCNICA Titulación: INGENIERÍA TÉCNICA INDUSTRIAL:

Más detalles

La Autoexcitación en el Generador DC

La Autoexcitación en el Generador DC La Autoexcitación en el Generador DC Jorge Hans Alayo Gamarra julio de 2008 1. Introducción La invención del proceso de la autoexcitación en las máquinas eléctricas, acreditada a Wener Von Siemens hace

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 2002-2003 CONVOCATORIA SEPTIEMBRE ELECTROTÉCNIA EL ALUMNO ELEGIRÁ UNO DE LOS DOS MODELOS Criterios de calificación.- Expresión clara y precisa dentro

Más detalles

Se inicia con las especificaciones del módulo fotovoltaico.

Se inicia con las especificaciones del módulo fotovoltaico. Con base en las especificaciones técnicas del inversor SB 3000U y de un módulo fotovoltaico de 175 watts, indicar los valores los parámetros característicos requeridos para el dimensionamiento del sistema.

Más detalles

Unidad 7: Motores eléctricos de corriente continua I. Los motores eléctricos se pueden clasificar según la corriente empleada en:

Unidad 7: Motores eléctricos de corriente continua I. Los motores eléctricos se pueden clasificar según la corriente empleada en: INTRODUCCIÓN Los motores eléctricos se pueden clasificar según la corriente empleada en: PARTES DE UN MOTOR ELÉCTRICO Hemos visto que el generador es una máquina reversible. Es decir, puede actuar también

Más detalles

Contenido. Acerca del autor... Prólogo... Agradecimientos...

Contenido. Acerca del autor... Prólogo... Agradecimientos... Contenido Acerca del autor... Prólogo... Agradecimientos... xiii xv xix Capítulo 1: CIRCUITOS MAGNÉTICOS Y CONVERSIÓN DE ENERGÍA...... 1 1.1. Introducción.................................... 1 1.2. Materiales

Más detalles

Como obtener los parámetros de un motor de corriente continua e imán permanente

Como obtener los parámetros de un motor de corriente continua e imán permanente Como obtener los parámetros de un motor de corriente continua e imán permanente Autor: Ing. Alfredo Carrasco Aráoz Introducción [email protected] En la actualidad los motores de corriente

Más detalles

Tema 3. Máquinas Eléctricas. Ingeniería Eléctrica y Electrónica

Tema 3. Máquinas Eléctricas. Ingeniería Eléctrica y Electrónica 1 Tema 3. Máquinas Eléctricas 2 Máquinas eléctricas. Definición, tipos. Índice El transformador El motor El generador 3 Máquina Eléctrica: Máquinas que realizan la conversión de energía de una forma u

Más detalles

Sistemas Trifásicos y Máquinas Eléctricas (STyME)

Sistemas Trifásicos y Máquinas Eléctricas (STyME) Sistemas Trifásicos y Máquinas Eléctricas (STyME) Descripción General Los objetivos generales de la materia de STyME son: conocer y aplicar las técnicas para el análisis de circuitos eléctricos trifásicos

Más detalles

Capítulo 4: DEVANADOS

Capítulo 4: DEVANADOS Capítulo 4: DEVANADOS Universidad Técnica Federico Santa María ELO 281 Sistemas Electromecánicos J. Pontt O. Felipe Leiva Cruz 4.1 Campo magnético producido en máquinas rotatorias 4.1.1 Estructura de las

Más detalles

Generador Sincrónico. Dr. Ing. Mario Guillermo Macri

Generador Sincrónico. Dr. Ing. Mario Guillermo Macri Generador Sincrónico Turboalternador Hidroalternador Pelton Francis Kaplan Proceso de Bobinado de un Estator de un Generador Sincrónico Sistema de excitación básico (electromecánico) Sistema de excitación

Más detalles

UNIVERSIDAD NACIONAL DE TUCUMÁN

UNIVERSIDAD NACIONAL DE TUCUMÁN UNIVERSIDAD NACIONAL DE TUCUMÁN Facultad de Ciencias Exactas y Tecnología SISTEMAS DE POTENCIA TRABAJO PRÁCTICO Nº 4 Cálculo de Cortocircuito ALUMNO: AÑO 2015 INTRODUCCIÓN El Cortocircuito es una conexión

Más detalles

Practica 7. Medición del campo magnético de una bobina Solenoide

Practica 7. Medición del campo magnético de una bobina Solenoide Practica 7. Medición del campo magnético de una bobina Solenoide A. Amud 1, L. Correa 2, K. Chacon 3 Facultad de Ciencias, Fundamentos de Electricidad y Magnetismo Universidad Nacional de Colombia, Bogotá

Más detalles

Análisis de circuitos trifásicos. Primera parte

Análisis de circuitos trifásicos. Primera parte Análisis de circuitos trifásicos. Primera parte Objetivos 1. Mencionar el principio de funcionamiento de los generadores trifásicos. 2. Establecer los tipos básicos de conexiones de circuitos trifásicos

Más detalles

CRONOGRAMA DE MATERIA PROFESOR: TEL: E. MAIL: PRE-REQUISITOS COMPETENCIAS

CRONOGRAMA DE MATERIA PROFESOR: TEL: E. MAIL: PRE-REQUISITOS COMPETENCIAS 1 CENTRO UNIVERSITARIO DE CIENCIAS EXACTAS E INGENIERIAS DIVISIÓN DE INGENIERIAS DEPARTAMENTO DE INGENIERIA MECANICA ELECTRICA CRONOGRAMA DE MATERIA CARRERA: ING. COM. Y ELECT. HORAS SEM: T: 60 hrs. P:

Más detalles

Instalar, Operar y Mantener máquinas eléctricas estáticas y dinámicas involucradas en procesos diversos.

Instalar, Operar y Mantener máquinas eléctricas estáticas y dinámicas involucradas en procesos diversos. Nombre de la asignatura: Máquinas Eléctricas Créditos: 3-2-5 Aportación al perfil Instalar, Operar y Mantener máquinas eléctricas estáticas y dinámicas involucradas en procesos diversos. Objetivo de aprendizaje

Más detalles

ESCUELA DE INGENIERÍA ELÉCTRICA TRIANGULO DE POTIER

ESCUELA DE INGENIERÍA ELÉCTRICA TRIANGULO DE POTIER ESCUELA DE INGENIERÍA ELÉCTRICA MÉTODO 1 INTRODUCCIÓN: El Triángulo de Potier es un método gráfico que tiene un papel importante dentro de la selección y puesta en funcionamiento de las maquinas síncronas

Más detalles

MOTORES DE CORRIENTE ALTERNA. Los motores de corriente alterna se clasifican de la siguiente forma:

MOTORES DE CORRIENTE ALTERNA. Los motores de corriente alterna se clasifican de la siguiente forma: MOTORES DE CORRIENTE ALTERNA Los motores de corriente alterna se clasifican de la siguiente forma: Trifásicos: formados por tres bobinas iguales; son los más habituales Bifásicos: formados por dos bobinas

Más detalles

INDICE Capitulo 1. El concepto del circuito magnético Capitulo 2. Excitación de estructuras ferromagnéticas con corriente directa

INDICE Capitulo 1. El concepto del circuito magnético Capitulo 2. Excitación de estructuras ferromagnéticas con corriente directa INDICE Capitulo 1. El concepto del circuito magnético 1-1. introducción 1 1-2. algunas leyes básicas de electrostática 3 1-3. algunas leyes básicas de magnetostática 8 1-4. otras conclusiones útiles en

Más detalles

INFORMACIÓN SOBRE LA PRUEBA DE ACCESO (PAU) A LA UNIVERSIDAD DE OVIEDO. CURSO 2015 / Materia: ELECTROTECNIA

INFORMACIÓN SOBRE LA PRUEBA DE ACCESO (PAU) A LA UNIVERSIDAD DE OVIEDO. CURSO 2015 / Materia: ELECTROTECNIA INFORMACIÓN SOBRE LA PRUEBA DE ACCESO (PAU) A LA UNIVERSIDAD DE OVIEDO. CURSO 2015 / 2016 Materia: ELECTROTECNIA 1. COMENTARIOS Y/O ACOTACIONES RESPECTO AL TEMARIO EN RELACIÓN CON LA PAU: Indicaciones

Más detalles

Tema 3. Circuitos magnéticos

Tema 3. Circuitos magnéticos Tema 3. Circuitos magnéticos Ya sabemos de temas anteriores la importancia del campo magnético dentro de la electricidad. Hemos estudiado y aprendido la importancia del campo magnético, su inducción, el

Más detalles

MINISTERIO DE ENERGÍA Y MINAS REQUISITOS PARA SOLICITUD DE LICENCIA DE GENERACIÓN ELÉCTRICA

MINISTERIO DE ENERGÍA Y MINAS REQUISITOS PARA SOLICITUD DE LICENCIA DE GENERACIÓN ELÉCTRICA I. DOCUMENTACIÓN EN GENERAL 1. NOMBRE DEL PROYECTO. 2. DOCUMENTACIÓN LEGAL. (En el caso de presentar copia, la misma deberá estar autenticada). a) Documentación legal que acredite la constitución de la

Más detalles

Práctica 5: Motores de Inducción

Práctica 5: Motores de Inducción CICLO II 1 Práctica 5: Motores de Inducción PREINFORME 1. Por qué a la máquina de inducción se le conoce también con el nombre de máquina asíncrona? 2. Describa brevemente el funcionamiento del motor de

Más detalles

INTRODUCCIÓN: OBJETIVOS:

INTRODUCCIÓN: OBJETIVOS: INTRODUCCIÓN: En el desarrollo de esta práctica se observará experimentalmente el comportamiento del transistor bipolar BJT como amplificador, mediante el diseño, desarrollo e implementación de dos amplificadores

Más detalles

Nombre de la asignatura: Maquinas Eléctricas. Carrera: Ingeniería Mecatrónica. Clave de la asignatura: MCC-0207

Nombre de la asignatura: Maquinas Eléctricas. Carrera: Ingeniería Mecatrónica. Clave de la asignatura: MCC-0207 . - DATOS DE LA ASIGNATURA Nombre de la asignatura: Maquinas Eléctricas Carrera: Ingeniería Mecatrónica Clave de la asignatura: MCC-0207 Horas teoría-horas práctica - créditos: 4-2-0 2. - UBICACIÓN a)

Más detalles

UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I ELECTRICIDAD Y MAGNETISMO NIVEL: LICENCIATURA CRÉDITOS: 6 CLAVE: ICAB23000610 HORAS TEORÍA: 3 SEMESTRE: SEGUNDO HORAS PRÁCTICA: 0 REQUISITOS:

Más detalles

ESTUDIO DE LA MÁQUINA ASÍNCRONA

ESTUDIO DE LA MÁQUINA ASÍNCRONA ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIVERSIDAD DE NAVARRA Práctica nº : Sistemas Eléctricos ESTUDIO DE LA MÁQUINA ASÍNCRONA Sistemas Eléctricos 009-00.La Máquina de Inducción o Asíncrona

Más detalles

LABORATORIO DE ELECTROMAGNETISMO RESISTIVIDAD

LABORATORIO DE ELECTROMAGNETISMO RESISTIVIDAD No 4 LABORATORIO DE ELECTROMAGNETISMO DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Comprender que la resistencia eléctrica de un elemento conductor

Más detalles

Planificaciones Máquinas Eléctricas I. Docente responsable: PODESTA HORACIO EDUARDO. 1 de 8

Planificaciones Máquinas Eléctricas I. Docente responsable: PODESTA HORACIO EDUARDO. 1 de 8 Planificaciones 8506 - s Eléctricas I Docente responsable: PODESTA HORACIO EDUARDO 1 de 8 OBJETIVOS Que los alumnos de la carrera Ingeniería Electricista puedan: - Comprender los principios de conversión

Más detalles

Programa de la asignatura Curso: 2006 / 2007 MÁQUINAS ELÉCTRICAS (3232)

Programa de la asignatura Curso: 2006 / 2007 MÁQUINAS ELÉCTRICAS (3232) Programa de la asignatura Curso: 2006 / 2007 MÁQUINAS ELÉCTRICAS (3232) PROFESORADO Profesor/es: MONTSERRAT DÍEZ MEDIAVILLA - correo-e: [email protected] FICHA TÉCNICA Titulación: INGENIERÍA TÉCNICA INDUSTRIAL:

Más detalles

POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA. Mg. Amancio R. Rojas Flores

POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA. Mg. Amancio R. Rojas Flores POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA Mg. Amancio R. Rojas Flores Introducción En algún instante dado, la potencia en una carga es igual al producto y la corriente Ahora consideremos el caso de C.

Más detalles

Se agrupan ambos generadores de corriente, obteniéndose el circuito equivalente de la figura.

Se agrupan ambos generadores de corriente, obteniéndose el circuito equivalente de la figura. EJEMPLO Obtener el circuito equivalente Thevenin del circuito de la figura, mediante transformaciones Thevenin-Norton RESOLUCIÓN: Para agrupar los generadores de tensión V 1 y V 2 se aplica la transformación

Más detalles

3. MOTORES MONOFÁSICOS

3. MOTORES MONOFÁSICOS 3. MOTORES MONOFÁSICOS 142 Temario El motor de inducción monofásico. Con un devanado auxiliar. Con arranque por capacitor. Con capacitor permanente. Con arranque por capacitor y operación por capacitor.

Más detalles

INDICE Capitulo 2. Construcción y devanado de la dinamo

INDICE Capitulo 2. Construcción y devanado de la dinamo INDICE Prefacio XV Capitulo 1. Fundamentos electromecánicos 1-1. sistemas típico de potencia de C.A. 1 1-2. fundamentos de electromagnetismo 3 1-3. ley de Faraday de la inducción electromagnética 5 1-4.

Más detalles

ASEPE - Análisis de Sistemas Eléctricos de Potencia

ASEPE - Análisis de Sistemas Eléctricos de Potencia Unidad responsable: Unidad que imparte: Curso: Titulación: Créditos ECTS: 2016 820 - EEBE - Escuela Universitaria de Ingeniería Técnica Industrial de Barcelona 709 - EE - Departamento de Ingeniería Eléctrica

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBS DE CCESO L UNIERSIDD L.O.G.S.E CURSO 2004-2005 - CONOCTORI: ELECTROTECNI EL LUMNO ELEGIRÁ UNO DE LOS DOS MODELOS Criterios de calificación.- Expresión clara y precisa dentro del lenguaje técnico

Más detalles

PRÁCTICA PD4 REGULACIÓN DE VOLTAJE CON DIODOS ZENER

PRÁCTICA PD4 REGULACIÓN DE VOLTAJE CON DIODOS ZENER elab, Laboratorio Remoto de Electrónica ITEM, Depto. de Ingeniería Eléctrica PRÁCTICA PD4 REGULACIÓN DE OLTAJE CON DIODO ENER OBJETIO Analizar teóricamente y de forma experimental la aplicación de diodos

Más detalles

ANEXO 1. CALIBRADO DE LOS SENSORES.

ANEXO 1. CALIBRADO DE LOS SENSORES. ANEXO 1. CALIBRADO DE LOS SENSORES. Las resistencias dependientes de la luz (LDR) varían su resistencia en función de la luz que reciben. Un incremento de la luz que reciben produce una disminución de

Más detalles

EJERCICIOS PROPUESTOS DE MAQUINAS ELECTRICAS TEMA-2 (TRANSFORMADORES)

EJERCICIOS PROPUESTOS DE MAQUINAS ELECTRICAS TEMA-2 (TRANSFORMADORES) EJERCICIO Nº1 EJERCICIOS PROPUESTOS DE MAQUINAS ELECTRICAS TEMA-2 (TRANSFORMADORES) Un transformador monofásico de 10KVA, relación 500/100V, tiene las siguientes impedancias de los devanados: Ω y Ω. Al

Más detalles

Ejercicios Tipo Examen:

Ejercicios Tipo Examen: Universidad Autónoma Metropolitana, Unidad Azcapotzalco Departamento de Energía Área de Ingeniería Energética y Electromagnética 2 Ejercicios Tipo Examen: Transformadores y Máquinas Síncronas (1131074)

Más detalles

FORMATO DE SILABO I. DATOS GENERALES

FORMATO DE SILABO I. DATOS GENERALES FORMATO DE SILABO I. DATOS GENERALES 1. Nombre de la Asignatura: MAQUINAS ELÉCTRICAS 2. Carácter : OBLIGATORIO 3. Carrera Profesional : INGENIERIA MECANICA Y ELECTRICA 4. Código : IM0605 5. Semestre Académico

Más detalles

BLOQUE II: MÁQUINAS. TEMA 10. MÁQUINAS ELÉCTRICAS CUESTIONES (40)

BLOQUE II: MÁQUINAS. TEMA 10. MÁQUINAS ELÉCTRICAS CUESTIONES (40) BLOQUE II: MÁQUINAS. TEMA 10. MÁQUINAS ELÉCTRICAS CUESTIONES (40) INTRODUCCIÓN C1. Define qué es una máquina eléctrica. C2. Realiza una clasificación de las máquinas eléctricas, explicando cada una de

Más detalles

EL MOTOR ELÉCTRICO (I)

EL MOTOR ELÉCTRICO (I) 1 EL MOTOR ELÉCTRICO (I) Contenidos 1. El motor trifásico. Fundamentos 2. Constitución del motor trifásico 3. Par motor y par resistente. Velocidad 4. Intensidades de corriente de un motor trifásico 5.

Más detalles

Motores de corriente directa (DC) Motores de corriente alterna (AC):

Motores de corriente directa (DC) Motores de corriente alterna (AC): De acuerdo a la fuente de tensión n que alimente al motor, podemos realizar la siguiente clasificación: Motores de corriente directa (DC) Motores de corriente alterna (AC): El Motor Asíncrono o de Inducción

Más detalles

Estudio de fallas asimétricas

Estudio de fallas asimétricas Departamento de Ingeniería Eléctrica Universidad Nacional de Mar del Plata Área Electrotecnia Estudio de fallas asimétricas Autor: Ingeniero Gustavo L. Ferro Prof. Adjunto Electrotecnia EDICION 2012 1.

Más detalles

Departamento de Tecnología I.E.S. Mendiño. Electricidad 3º E.S.O. Alumna/o :...

Departamento de Tecnología I.E.S. Mendiño. Electricidad 3º E.S.O. Alumna/o :... Departamento de Tecnología I.E.S. Mendiño Electricidad 3º E.S.O. Alumna/o :... Electricidad.- Magnitudes fundamentales. Tensión o Voltaje: Indica la diferencia de potencial entre 2 puntos de un circuito.

Más detalles

Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Diseño de Líneas de Transmisión. Tema: Momento eléctrico. GUÍA 4 Pág. 1 I. OBJETIVOS.

Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Diseño de Líneas de Transmisión. Tema: Momento eléctrico. GUÍA 4 Pág. 1 I. OBJETIVOS. Tema: Momento eléctrico. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Diseño de Líneas de Transmisión. I. OBJETIVOS. Determinar el porcentaje de regulación en una línea de transporte de energía.

Más detalles

Electromagnetismo (Todos. Selectividad Andalucía )

Electromagnetismo (Todos. Selectividad Andalucía ) Electromagnetismo (Todos. Selectividad Andalucía 2001-2006) EJERCICIO 3. (2.5 puntos) Un núcleo toroidal tiene arrolladas 500 espiras por las que circulan 2 Amperios. Su circunferencia media tiene una

Más detalles

MAQUINAS ELECTRICAS Trabajo Práctico Nº 10 GENERADOR SÍNCRONO: Ensayos y Puesta en Paralelo

MAQUINAS ELECTRICAS Trabajo Práctico Nº 10 GENERADOR SÍNCRONO: Ensayos y Puesta en Paralelo LABORATORO EXPERMENTAL MAQUNAS ELECTRCAS OBJETO: Efectuar descripción general de las maquinas sincrónicas, estudiar conexiones y características principales de funcionamiento. Determinación de parámetros

Más detalles

PROBLEMAS DE MAQUINAS SINCRONAS

PROBLEMAS DE MAQUINAS SINCRONAS PROBLEMAS DE MAQUINAS SINCRONAS PROBLEMA N 1.- Un generador síncrono de cuatro polos con conexión en δ, de 480 - v 60 - hz, tiene las siguientes características de vacío. este generador tiene una reactancia

Más detalles

Funcionamiento: Como transformador. Como Motor. Como Generador. Como Freno Electromagnético.

Funcionamiento: Como transformador. Como Motor. Como Generador. Como Freno Electromagnético. ÍNDICE 1. Principio de Funcionamiento.. Deslizamiento. 3. Circuito equivalente del motor y magnitudes características. 4. Aspectos constructivos. 5. Ensayos característicos. 6. Regulación de velocidad.

Más detalles

En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca.

En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca. Página 1 de 7 TENSION ALTERNA En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca. Puede definirse un voltaje alterno como el que varía

Más detalles

Capacitores e Inductores

Capacitores e Inductores Capacitores e Inductores Introducción Resistor: es un elemento lineal pasio que disipa energía únicamente. Existen otros dos elementos lineales pasios: Capacitor Inductor Tanto el capacitor como el inductor

Más detalles

UniTrain. Cursos UniTrain. Cursos UniTrain. Lucas Nülle GmbH Página 1/13

UniTrain. Cursos UniTrain. Cursos UniTrain. Lucas Nülle GmbH Página 1/13 UniTrain Unitrain el sistema de aprendizaje multimedial con laboratorio de electrotecnía/electrónica móbil para la formación y el entrenamiento continuo integrado. Cursos UniTrain Cursos UniTrain Lucas

Más detalles

7. CARACTERIZACIÓN DE SOBREVOLTAJES DE BAJA FRECUENCIA TEMPORALES PRODUCIDOS POR FALLAS

7. CARACTERIZACIÓN DE SOBREVOLTAJES DE BAJA FRECUENCIA TEMPORALES PRODUCIDOS POR FALLAS 64 7. CARACTERIZACIÓN DE SOBREVOLTAJES DE BAJA FRECUENCIA TEMPORALES PRODUCIDOS POR FALLAS Otro tipo de sobrevoltajes que se presentan en un sistema eléctrico son los llamados temporales, que se caracterizan

Más detalles

Trabajo Práctico N o 4 Mediciones con Corriente Continua. Antonio, Pablo Oscar Frers, Wenceslao

Trabajo Práctico N o 4 Mediciones con Corriente Continua. Antonio, Pablo Oscar Frers, Wenceslao Física II A Trabajo Práctico N o 4 Mediciones con Corriente Continua Antonio, Pablo Oscar Frers, Wenceslao XXXXX XXXXX 2. do cuatrimestre 2006 ÍNDICE Índice 1. Resumen 2 2. Introducción 2 3. Método experimental

Más detalles

TEMA 7. Máquinas rotativas de corriente continua. Principio y descripción CONSTITUCIÓN DE UNA MÁQUINA DE CORRIENTE CONTINUA.

TEMA 7. Máquinas rotativas de corriente continua. Principio y descripción CONSTITUCIÓN DE UNA MÁQUINA DE CORRIENTE CONTINUA. TEMA 7. Máquinas rotativas de corriente continua. Principio y descripción. CONTENIDO: 7.1.- Constitución de una máquina de corriente continua. 7.2.- Principio de funcionamiento. 7.3.- Tipos de excitación.

Más detalles

Electrotécnica 1 Práctico 1

Electrotécnica 1 Práctico 1 Ejercicio 1.1 Electrotécnica 1 Práctico 1 IIE - Facultad de Ingeniería - Universidad de la República Hallar las fuentes equivalentes de las siguientes fuentes ideales, conectadas como en la figura siguiente:

Más detalles

Universidad Nacional Autónoma de Honduras. Escuela de Física. Electricidad y magnetismo II Fs-415. Filtros Eléctricos y sus aplicaciones

Universidad Nacional Autónoma de Honduras. Escuela de Física. Electricidad y magnetismo II Fs-415. Filtros Eléctricos y sus aplicaciones Universidad Nacional Autónoma de Honduras Escuela de Física Electricidad y magnetismo II Fs-415 Filtros Eléctricos y sus aplicaciones Introducción: Todo circuito eléctrico que tenga incluidas capacitancias

Más detalles

SOBRETENSIONES DE BAJA FRECUENCIA TEMPORALES PRODUCIDOS POR FALLAS

SOBRETENSIONES DE BAJA FRECUENCIA TEMPORALES PRODUCIDOS POR FALLAS SOBRETENSIONES DE BAJA FRECUENCIA TEMPORALES PRODUCIDOS POR FALLAS Cuando se presenta una falla en un sistema eléctrico de potencia se presenta una condición transitoria que se amortigua rápidamente, quedando

Más detalles

Circuitos de RF y las Comunicaciones Analógicas. Capítulo II: Circuitos resonantes y Redes de acople

Circuitos de RF y las Comunicaciones Analógicas. Capítulo II: Circuitos resonantes y Redes de acople Capítulo II: Circuitos resonantes y Redes de acople 21 22 2. Circuitos Resonantes y Redes de Acople En este capítulo se estudiaran los circuitos resonantes desde el punto de vista del factor de calidad

Más detalles

Tema 11: CIRCUITOS ELÉCTRICOS

Tema 11: CIRCUITOS ELÉCTRICOS Tema 11: CIRCUITOS ELÉCTRICOS Esquema 1. Estructura atómica 2. El circuito eléctrico 3. Magnitudes eléctricas básicas 4. Ley de Ohm 5. Energía eléctrica. Efecto Joule. 6. Potencia eléctrica. Tipos de resistencias

Más detalles

Obtención de parámetros del generador sincrónico bajo régimen dinámico

Obtención de parámetros del generador sincrónico bajo régimen dinámico ELÉCTRICA OBTENCIÓN DE PARÁMETROS DEL GENERADOR JA CASTILLO MARÍN - JO TRUJILLO GÓMEZ - AM MONTAÑO BEJARANO - EY RUIZ VARGAS Obtención de parámetros del generador sincrónico bajo régimen dinámico Jaime

Más detalles