Física experimental 1
|
|
|
- Ángela Gil Figueroa
- hace 8 años
- Vistas:
Transcripción
1 Física experimental 1 PRÁCTICA 3 - Leyes de los gases 1. Objetivos a. Comprobación experimental de las leyes de los gases. En este caso nos vamos a concentrar en el estudio de las Leyes de Boyle y de Gay-Lussac. b. Determinación de la temperatura absoluta. c. Aplicación de la regresión lineal (mínimos cuadrados). d. Calibración de un termistor. 2. Introducción Dado un gas ideal contenido en un cierto recipiente, su volumen V, su temperatura T (en Kelvin) y su presión P obedecen la siguiente relación: P V = constante (1) T Además, esas variables están relacionadas entre sí por la ecuación de estado, o ley de gas ideal, expresada por: P V = nrt (2) donde n es el número de moles del gas contenido en el volumen, y R es conocida como la constante universal de los gases. Dependiendo de las unidades de la presión y el volumen, R tiene los siguientes valores: R = 8,314 J mol 1 K 1 R = 0,0824 l atm mol 1 K 1 (3) Ejercicio 1: Mostrar que el primer valor de R puede ser convertido para dar el segundo valor. La cantidad de gas presente en un recipiente es expresada comúnmente en términos del número de moles de sustancia. Recordar que un mol de cualquier sustancia es equivalente a 6, moléculas de dicha sustancia (6, es conocido como el número de Avogadro, N A ). Entonces, la masa de dicha sustancia estará dada por: 1
2 m = nm (4) donde M es la masa molar de la sustancia (masa de un mol de sustancia). Si asumimos que el recipiente es hermético, el número de moles (y por ende la masa) de la sustancia permanecerá constante. Es de hacer notar que para todos los gases, cuando la presión es cero, la temperatura del gas es 273,15 C. Esa es la comúnmente llamada temperatura absoluta o cero absoluto. Si durante un experimento mantenemos la temperatura del gas constante, la ecuación 1 se denomina Ley de Boyle: P V = constante V 1 P (5) En cambio, si el volumen del gas es mantenido constante, entonces la ecuación 1 se denomina Ley de Gay-Lussac: P T = constante P T (6) Recordar: 1 atm = 101,325 KP a = 760 torr Donde 1 pascal es la presión resultante de aplicar una fuerza de 1 N sobre 1 m 2. Como nota de interés general, nuestra atmósfera cerca de la superficie está compuesta típicamente por los siguientes gases: Componentes del aire (vapor de agua no incluido) Constituyente Concentración ( % en volumen) N O Ar CO Tabla 1 2
3 3. Materiales de la práctica Ley de Boyle Ley de Gay-Lussac -Jeringa graduada -Jeringa graduada -Sensor de presión -Interfaz Vernier LabQuest -Baño termistatizado -Termómetro -Sensor de presión -Interfaz Vernier LabQuest -Tapa de acrílico -Agua destilada -Termistor -Multímetro 4. Procedimiento Ver fotos de los equipos en el apéndice A. Ley de Boyle Con la jeringa desconectada del sensor llevar el émbolo hasta la marca de 10 ml, luego conectarla. IMPORTANTE: La jeringa y el tapón se conectan al sensor de presión por medio de rosca. NO SON DE EMBUTIR. Use la interfaz Vernier LabQuest conectada al sensor de presión para adquirir los datos. Mueva el pistón hasta la posición 5 ml, mantenga firme el émbolo hasta que vea que el valor de la presión se ha estabilizado. Registrar el valor de presión. Repita el procedimiento anterior para distintos valores de volumen. Considera que hay algún error debido al dispositivo experimental de esta práctica en particular? Si es así, cómo podría estimarlo? Ley de Gay-Lussac Colocar el agua destilada en la cuba térmica. Con la jeringa desconectada del sensor, llevar el volumen a 10 ml. Ajustar el émbolo con la pieza de plástico con tornillos. Efectuar la conexión del sensor a la jeringa haciendo uso de la llave de plástico. Introducir el conjunto en la tapa de acrílico y luego en el baño de agua. Medir la temperatura inicial del baño (con el termómetro y con el termistor) y la presión en la jeringa. Graduar el termostatizador en 70 C y luego encenderlo. Repetir el proceso de adquisición para distintos valores de temperatura. 3
4 Calibración del termistor Sumergir el termistor en el baño termostatizado. Midiendo la temperatura T del agua con el termómetro de alcohol, y la resistencia R del termistor con un multímetro digital, determinaremos las constantes desconocidas en la relación R(T ). En el apéndice B se detalla el funcionamiento del termistor y la relación R(T ). Figura 1 5. Análisis y discusión de los resultados Para las dos partes de la práctica examine los pares de datos y construya las gráficas correspondientes. A partir de ellas evalúe qué relación matemática utilizaría para ajustar los datos en cada uno de los casos. Se cumplen las leyes de Boyle y Gay-Lussac? Justifique. Obtenga, utilizando el método de mínimos cuadrados, las constantes de proporcionalidad con su incertidumbre entre: a P, V para la ley de Boyle. b T, P para la ley de Gay-Lussac. Determine el número de moles y el número de moléculas de aire contenidas en el recipiente usado (con las incertidumbres correspondientes). Determine la temperatura del cero absoluto en grados Celsius. Use la tabla 1 para determinar la masa de oxígeno contenida en el volumen que utilizó en la comprobación de la ley de Gay-Lussac. Encuentre los parámetros característicos del termistor, usando el método de mínimos cuadrados. 4
5 6. Bibliografía [1] Física Vol. 1, Resnick-Halliday-Krane, 4ta. edición. [2] Física re-creativa, S. Gil y E. Rodríguez [3] Página web: 5
6 APÉNDICE A. Fotos Ley de Boyle Figura 2 Ley de Gay-Lussac Figura 3: Foto extraída de [3]. 6
7 B. Calibración de un termistor Objetivo Determinar los parámetros de un termistor, para poder utilizar el mismo como termómetro. Introducción Denominamos termistor a aquel sensor que es capaz de dar una indicación de la temperatura a través de la variación de su resistencia eléctrica. El termistor está formado por un material semiconductor, el cual presenta una estructura cristalina en forma de red (arreglo periódico de átomos). Esta red está, a su vez, formada por átomos con sus electrones. Cuando aportamos energía al material en forma de calor, el electrón la utiliza para vencer la fuerza de atracción del núcleo del átomo, y de esta forma se moverá libremente en la red formada por todos los átomos. Aquellos átomos que queden sin sus electrones quedarán cargados positivamente. Esta carga positiva puede migrar de un átomo a otro, comportándose esencialmente como un portador de carga similar al electrón libre, pero cargado positivamente. Por consiguiente, cada vez que un electrón abandona el átomo origen aparecerá un par de portadores de carga en libertad: un electrón y un hueco. El aumento de la temperatura del semiconductor produce un aumento del número de estos portadores libres. Consecuentemente se produce un aumento de la conductividad eléctrica del material, es decir, disminuye la resistencia eléctrica. La explicación anterior corresponde a los denominados termistores NTC (Negative Temperature Coefficient) en los que la resistencia eléctrica disminuye a medida que la temperatura aumenta ( R < 0). T Una expresión aproximada que se puede utilizar para vincular la temperatura T con la resistencia R de un termistor NTC es la siguiente: Donde: R = R 0 e B ( 1 T 1 T 0 ) (B.1) R 0 es la resistencia del termistor a una determinada temperatura T 0. En nuestro caso consideraremos que T 0 corresponde a 25 C, escrita en unidades absolutas, es decir, debemos expresarla en Kelvin. B es un parámetro positivo a priori desconocido. T es la temperatura, también absoluta, a la cual se encuentra el termistor, para la que presentará una resistencia eléctrica R. Determinando la constante B conoceremos completamente la relación anterior y su relación inversa (despejando T en función de R). Obtendremos así la dependencia T (R), al que llamaremos curva de calibración del termistor. Esta función nos permitirá, a través de la medida de la resistencia del termistor, conocer la temperatura a la que se encuentra. 7
8 El método que utilizaremos para determinar este parámetro B, es la medida de la resistencia del termistor a varias temperaturas. Haciendo un cambio de variable adecuado podremos linealizar la relación exponencial anterior lo que nos permitirá aplicar el método de mínimos cuadrados para el ajuste de la curva R(T ). Ejercicio 2: a De la ecuación B.1, realizar un cambio de variables adecuado de manera que quede de la forma y = Mx + N. b De los coeficientes M y N, despejar los parámetros del termistor R 0 y B. Ejercicio 3: A partir de la ecuación B.1, suponiendo conocidos R 0 y B despejar T = f(r). Esta es la curva de calibración del termistor que nos permitirá usarlo como termómetro. 8
9 PREINFORME Tabla de datos para la Ley de Boyle Volumen (ml) Presión (KP a) Constante (poner unidades correctas) Tabla de datos para la Ley de Gay-Lussac Temperatura ( C) Temperatura (K) Resistencia termistor (Ω) Presión (KP a) Constante 9
10 Calibración del termistor Cambios de variables para llevar a una relación lineal y = Mx + N: M(R 0, B) = N(R 0, B) = Inversión de las relaciones: R 0 (M, N) = B(M, N) = Relación inversa: T (R) = Resultados de la regresión lineal: M = M = N = N = Inversión de relaciones: R 0 = R 0 = B = B = Valor usado para T 0 : T 0 = 10
Ley de enfriamiento de Newton considerando reservorios finitos
Ley de enfriamiento de Newton considerando reservorios finitos María ecilia Molas, Florencia Rodriguez Riou y Débora Leibovich Facultad de Ingeniería, iencias Exactas y Naturales Universidad Favaloro,.
UNIVERSIDAD TECNOLÓGICA DE PUEBLA
TÉRMICA. PRÁCTICA NÚMERO 1 TEMPERATURA OBJETIVO: 1. Comprender el fundamento termodinámico de la medición de la temperatura. 2. Construirla curva de calentamiento del agua. 3. Obtener mediciones de temperatura
GASES IDEALES. Contiene una mezcla de gases CP + O 2. Volumen = 1 litro Temperatura = 23 C = ,15 = 298,15K =585 = 0,7697 =250 = 0,3289
GASES IDEALES PROBLEMA 10 Mezclas de los gases ciclopropano (C 3H 8) y oxígeno se utilizan mucho como anestésicos. a) Cuántos moles de cada gas están presentes en un recipiente de 1 litro a 23 C, si la
INTRODUCCIÓN: TERMÓMETROS A CALIBRAR: Termómetro de mercurio
FISICA GENERAL II 2013 Guía de Trabajo Practico N o 1 Calibración de termómetros INTRODUCCIÓN: La temperatura es una magnitud que toma el mismo valor en dos sistemas que son puestos en contacto térmico
GASES IDEALES. P. V = n. R. T
GASES IDEALES Lic. Lidia Iñigo A esta altura de tus estudios seguramente ya sabés que hay muchas sustancias formadas por moléculas, qué es una molécula, y que una sustancia determinada puede presentarse
Ecuación de estado del gas ideal
Prácticas de laboratorio de Física I Ecuación de estado del gas ideal Curso 2010/11 1 Objetivos Comprobación de la ecuación de estado del gas ideal experimentalmente Construcción de curvas a presión, temperatura
Práctica No 9. Ley Cero de la Termodinámica y su aplicación en El establecimiento de una escala empírica de temperatura.
Práctica No 9 Ley Cero de la Termodinámica y su aplicación en El establecimiento de una escala empírica de temperatura. 1. Objetivo general: Establecer empíricamente una escala de temperatura, aplicándose
GASES IDEALES. 1 atm = 760 mmhg = 760 Torr = 1013 hpa
GASES IDEALES Para comprender los problemas de este capítulo es necesario leer previamente la Teoría Cinética de los Gases, el concepto de Variables de Estado y las Leyes de los Gases. Ecuación general
UNIDAD Nº 2: GASES IDEALES Y CALORIMETRIA
UNIDAD Nº 2: GASES IDEALES Y CALORIMETRIA UNIVERSIDAD CATÓLICA DE SALTA FAC. DE CS AGRARIAS Y VETERINARIAS AÑO 2008 Farm. Pablo F. Corregidor 1 TEMPERATURA 2 TEMPERATURA Termoreceptores: Externos (piel)
TRABAJO PRÁCTICO N 0 3 TERMOQUÍMICA
TRABAJO PRÁCTICO N 0 3 TERMOQUÍMICA OBJETIVOS Determinación de la variación de entalpía asociada a procesos químicos. Aplicación de conceptos termodinámicos: temperatura, calor, entalpía. Verificación
Ley de Boyle. A temperatura constante, el volumen de una muestra dada de gas es inversamente proporcional a su presión
LOS GASES Un gas es una porción de materia cuya forma y volumen son variables ya que se adaptan a la del recipiente que lo contiene, el cual ocupan totalmente. LEYES DE LOS GASES Ley de Boyle Robert Boyle,
Instituto Carlos Tejedor Educación Secundaria Fisicaquímica Segundo año A Profesor Carlos Castañón. Trabajo Práctico: Leyes de los gases
Instituto Carlos Tejedor Educación Secundaria Fisicaquímica Segundo año A Profesor Carlos Castañón Trabajo Práctico: Leyes de los gases 1) La ley de Boyle establece que, a temperatura constante, la presión
Electricidad y calor
Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temario A. Termodinámica 1. Temperatura y Ley Cero. (3horas) 1. Equilibrio Térmico y ley
Electricidad y calor. Webpage: Departamento de Física Universidad de Sonora
Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temario A. Termodinámica 1. Temperatura y Ley Cero. (3horas) 1. Equilibrio Térmico y ley
LEYES DE LOS GASES. El volumen es directamente proporcional a la cantidad de gas:
LEYES DE LOS GASES LEY DE AVOGADRO: Esta ley, descubierta por Avogadro a principios del siglo XIX, establece la relación entre la cantidad de gas y su volumen cuando se mantienen constantes la temperatura
Determinación de entalpías de vaporización
Prácticas de Química. Determinación de entalpías de vaporización I. Introducción teórica y objetivos........................................ 2 II. Desarrollo experimental...............................................
TUBO DE KUNDT ONDAS ESTACIONARIAS
TUBO DE KUNDT ONDAS ESTACIONARIAS 1. OBJETIVO Estudio de ondas acústicas y su propagación en el interior del tubo de Kundt. Cálculo de la velocidad del sonido. 2.- FUNDAMENTO TEÓRICO La resultante de dos
GASES. Contenidos. Leyes de los gases y su aplicación en la resolución de problemas numéricos.
GASES Contenidos Postulados de la teoría cinética de los gases y su relación con las características (expansión, comprensión y difusión) y las propiedades ( presión, volumen y temperatura) que los definen.
C: GASES Y PRESIÓN DE VAPOR DEL AGUA
hecho el vacío. Calcula a) Cantidad de gas que se tiene ; b) la presión en los dos recipientes después de abrir la llave de paso y fluir el gas de A a B, si no varía la temperatura. C) Qué cantidad de
Incidencia de Anestesia General en Operación Cesárea: Registro de Tres Años. Castillo Alvarado, Frencisco Miguel. CAPÍTULO III
CAPÍTULO III ESTADÍSTICA DE LOS PORTADORES DE CARGA DEL SEMICONDUCTOR 1. Introducción. Cada material suele presentar varias bandas, tanto de conducción (BC) como de valencia (BV), pero las más importantes
Determinación de la Masa Molar del Magnesio
Determinación de la Masa Molar del Magnesio Introducción teórica Como en muchas reacciones químicas, los reactivos o sus productos o ambos son gases, es más común medir éstos en función del volumen usando
Profesora: Teresa Esparza Araña LA CANTIDAD DE SUSTANCIA EN QUÍMICA. UNIDAD 6: Los gases ideales
Departamento de Física y Química Profesora: Teresa Esparza Araña CEAD P. Félix Pérez Parrilla LA CANTIDAD DE SUSTANCIA EN QUÍMICA UNIDAD 6: Los gases ideales 1. LOS GASES SEGÚN LA TEORÍA CINÉTICA DE LA
PRACTICA No. 3 EL ESTADO GASEOSO
PRACTICA No. 3 EL ESTADO GASEOSO INTRODUCCION: Las sustancias en Estado Gaseoso tienen propiedades físicas y químicas que las hacen diferentes de otras que se encuentran en un estado físico distinto. A
La bombilla consume una potencia de 60 W y sabemos que la potencia viene dada por la ecuación:
Problema resuelto Nº 1 (Fuente Enunciado: IES VICTORIA KENT.ACL. : A. Zaragoza López) 1. Una bombilla lleva la inscripción 60 W, 220 V. Calcula: a) La intensidad de la corriente que circula por ella; la
ESTADOS DE LA MATERIA
ESTADOS DE LA MATERIA M en C Alicia Cea Bonilla 1 Existen tres estados de la materia: sólido, líquido y gaseoso, dependiendo de la distancia entre sus partículas, de las fuerzas de atracción entre éstas
Dispositivos Cilindro-Pistón
Presión ejercida sobre superficies sólidas: sistema cilindro-pistón Un sistema importante desde el punto de vista termodinámico es el sistema cilindro-pistón, ya que se puede estudiar con él el comportamiento
SESIÓN 13 EQUILIBRIO QUÍMICO EN FASE GASEOSA
I. CONTENIDOS: 1. Leyes de los gases. 2. Presión y temperatura. 3. Principio de Le Chatelier. 4. Constante de equilibrio. SESIÓN 13 EQUILIBRIO QUÍMICO EN FASE GASEOSA II. OBJETIVOS: Al término de la Sesión,
Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago. Química
Gases RECUERDEN QUE: En los ejercicios de gases SIEMPRE deben trabajar con la temperatura en K ( C + 273). Además, por conveniencia, en esta unidad cuando hablemos de masa molar en gases, usaremos la sigla
Objetivos: Principal: Investigar las propiedades de un gas a presión constante. Secundario: Determinar la tasa de enfriamiento de un cuerpo.
! " # $ %& ' () ) Objetivos: Principal: Investigar las propiedades de un gas a presión constante. Secundario: Determinar la tasa de enfriamiento de un cuerpo. Conceptos a afianzar: Descripción termodinámica
Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física
Electricidad y calor Dr. Roberto Pedro Duarte Zamorano Departamento de Física 2011 A. Termodinámica Temario 1. Temperatura y Ley Cero. (3horas) 2. Calor y transferencia de calor. (5horas) 3. Gases ideales
Variación de la resistencia con la temperatura
Variación de la resistencia con la temperatura Ignacio Arata Francisco Arrufat Pablo Palacios Santiago Folie [email protected] [email protected] [email protected] [email protected]
CARÁCTERÍSTICAS DE LOS GASES
DILATACIÓN EN LOS GASES - CARACTERÍSTICAS DE LOS GASES - PRESIÓN EN LOS GASES: CAUSAS Y CARACTERÍSTICAS - MEDIDA DE LA PRESIÓN DE UN GAS: MANÓMETROS - GAS EN CONDICIONES NORMALES - DILATACIÓN DE LOS GASES
GUÍA ACUMULATIVA/ 8º MEDIO ( Desarrollo de Ejercicios: Leyes de los Gases) Nombre del Alumno: Curso: Fecha:
Sector: Naturaleza Nivel: 8 Básico Nombre Profesora: Nancy Erazo Rosa Unidad V : Leyes de los gases GUÍA ACUMULATIVA/ 8º MEDIO ( Desarrollo de Ejercicios: Leyes de los Gases) Nombre del Alumno: Curso:
BLOQUE 1: ASPECTOS CUANTATIVOS DE LA QUÍMICA
BLOQUE 1: ASPECTOS CUANTATIVOS DE LA QUÍMICA Unidad 2: Los gases ideales Teresa Esparza araña 1 Índice 1. Los estados de agregación de la materia a. Los estados de la materia b. Explicación según la teoría
Reacciones Químicas. Homogéneas.
Como se sabe, la materia está formada por partículas, dependiendo el comportamiento de esta (la materia) del estado físico en que se encuentran las partículas. Igualmente, sabemos que la materia no es
En el siglo XVIII la química estableció las medidas precisas de masa y volúmenes que llevaron a enunciar las llamadas leyes ponderales.
1. LEYES PONDERALES En el siglo XVIII la química estableció las medidas precisas de masa y volúmenes que llevaron a enunciar las llamadas leyes ponderales. Ley de conservación de la masa de Lavoisier Lavosier
Los gases y la Teoría Cinética
Para practicar Utiliza tu cuaderno y trata de resolver los siguientes ejercicios: 1.-En una tabla similar a la siguiente, introduce las propiedades características de un SÓLIDO, un LÍQUDO o un GAS, como
FÍSICA APLICADA Y FISICOQUÍMICA I. Tema 2. El Primer Principio de la Termodinámica
María del Pilar García Santos GRADO EN FARMACIA FÍSICA APLICADA Y FISICOQUÍMICA I Tema 2 El Primer Principio de la Termodinámica Esquema Tema 2. Primer Principio de la Termodinámica 2.1 Primer Principio
GUÍA DE EJERCICIOS GASES
GUÍA DE EJERCICIOS GASES Área Química Resultados de aprendizaje Aplicar conceptos básicos de gases en la resolución de ejercicios. Desarrollar pensamiento lógico y sistemático en la resolución de problemas.
LOS GASES Y LAS DISOLUCIONES. Departamento de Física y Química 3º ESO
LOS GASES Y LAS DISOLUCIONES Departamento de Física y Química 3º ESO 0. Mapa conceptual SÓLIDO ESTADOS DE LA MATERIA LÍQUIDO Presión atmosférica GAS Solubilidad Disolución saturada Disoluciones Soluto
PRÁCTICA NÚMERO 13 DETERMINACIÓN DE CALOR ESPECÍFICO
PRÁCTICA NÚMERO 13 DETERMINACIÓN DE CALOR ESPECÍFICO I. Objetivo Determinar el calor especíico de algunos materiales sólidos, usando el calorímetro y agua como sustancia cuyo valor de calor especíico es
Director de Curso Francisco J. Giraldo R.
Director de Curso Francisco J. Giraldo R. EL AIRE El aire seco es una mezcla de gases: El 78% es Nitrógeno. El 21% es Oxígeno. El 1% es Argón. El Dioxido de carbono (CO 2 ), Helio (He), Neón (Ne), Kripton
VOLUMEN MOLAR PARCIAL DE UNA MEZCLA BINARIA
Práctica VOLUMEN MOLAR PARCIAL DE UNA MEZCLA BINARIA. INTRODUCCIÓN Las magnitudes termodinámicas como la entropía S, energía interna E, volumen V ó entalpía H son magnitudes extensivas, que dependen de
LABORATORIO DE ELECTRICIDAD Y MAGNETISMO LEY DE OHM
LABORATORIO DE ELECTRICIDAD Y MAGNETISMO LEY DE OHM OBJETIVO Estudiar empíricamente la relación existente entre el voltaje aplicado a un conductor y la corriente eléctrica que genera. EQUIPAMIENTO 1. Circuito
Física y Química 1º Bach.
Física y Química 1º Bach. Leyes de los gases. Teoría cinético-molecular 05/11/10 DEPARTAMENTO FÍSICA E QUÍMICA Nombre: OPCIÓN 1 1. Observa el aparato de la Figura. Si la temperatura del aceite se eleva
LEYES DE LOS GASES. Leyes de los gases. Leyes de los gases
LEYES DE LOS GASES Estado gaseoso Medidas en gases Ley de Avogadro Ley de Boyle y Mariotte Ley de Charles y Gay-Lussac (1ª) Ley de Charles y Gay-Lussac (2ª) Ecuación n general de los gases ideales Teoría
Gases. Sustancias que existen como gases a 1.0 atm y 25 C. Características físicas de los gases
Sustancias que existen como gases a 1.0 atm y 25 C Gases Basado en Capítulo 5 de Química (Chang, 2007) Dr. Hernández-Castillo Características físicas de los gases Toman la forma y volumen de sus recipientes
Unidad 16: Temperatura y gases ideales
Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 16: Temperatura y gases ideales Universidad Politécnica de Madrid 14 de abril de 2010
Dispositivos Electrónicos
Dispositivos Electrónicos AÑO: 2010 TEMA 3: PROBLEMAS Rafael de Jesús Navas González Fernando Vidal Verdú E.T.S. de Ingeniería Informática Ingeniero Técnico en Informática de Sistemas: Curso 1º Grupo
TERMODINÁMICA AVANZADA
ERMODINÁMICA AANZADA Cantidades fundamentales Cantidades básicas y unidaded Unidad I: ropiedades y Leyes de la ermodinámica Cantidades fundamentales ropiedades de estado Función de estado y ecuación de
PRÁCTICA 4: DETERMINACIÓN DE LA CONSTANTE UNIVERSAL DE LOS GASES
PRÁCTICA 4: DETERMINACIÓN DE LA CONSTANTE UNIVERSAL DE LOS GASES Prof. Elizabeth K. Galván Miranda Prof. Ximena Villegas Pañeda Facultad de Química, UNAM Departamento de Fisicoquímica Laboratorio de Termodinámica
PRÁCTICO 3: SOLUCIONES
Curso de Laboratorio Página: 1/6 DEPARTAMENTO ESTRELLA CAMPOS PRÁCTICO 3: SOLUCIONES Bibliografía: Química, La Ciencia Central, T.L. Brown, H.E.LeMay, Jr., B.Bursten; Ed. Prentice-Hall Hispanoamericana,
U.D. 2 LA MATERIA. Para describir un cuerpo o un sistema material, necesitamos conocer sus propiedades. Así, distinguimos entre:
U.D. 2 LA MATERIA 1. Propiedades de la materia La materia, o sistema material, es todo lo que posee una propiedad fundamental llamada masa, y que ocupa un espacio, es decir, un volumen. Para describir
Unidad 0 CÁLCULOS QUÍMICOS. Unidad 0. Cálculos químicos
Unidad 0 CÁLCULOS QUÍMICOS Unidad 0. Cálculos químicos 1 0. Leyes ponderales Leyes que rigen las combinaciones químicas. Se basan en la experimentación y miden cuantitativamente la cantidad de materia
QUÉ ES LA TEMPERATURA?
1 QUÉ ES LA TEMPERATURA? Nosotros experimentamos la temperatura todos los días. Cuando estamos en verano, generalmente decimos Hace calor! y en invierno Hace mucho frío!. Los términos que frecuentemente
TAREA 1. Nombre Núm. de lista Grupo Turno Núm. de Expediente Fecha
TAREA 1 Nombre Núm. de lista Grupo Turno Núm. de Expediente Fecha INSTRUCCIONES: Investiga como es el puente de Hidrógeno en las estructuras del H 2 O, NH 3 y HF. Dibuja los modelos resaltando con color
Campo magnético Ley de Ampere y Biot-Savart
Campo magnético Ley de Ampere y Biot-Savart Objetivo Esta práctica tiene un doble objetivo. Por una parte, se busca determinar del campo magnético terrestre en el laboratorio usando una brújula, un amperímetro,
Capítulo 17. Temperatura. t(h) = 100 h h 0
Capítulo 17 Temperatura t(h) = 100 h h 0 h 1 00 h 0 rincipio cero de la termodinámica. Temperatura empírica. La temperatura empírica de un sistema en equilibrio termodinámico se puede asignar mediante
Caudalímetro digital BOSCH HFM Multijet 8v. 1.9 Multijet 8v. Caudalímetro digital BOSCH HFM6 4.7
1.9 Multijet 8v Caudalímetro digital BOSCH HFM6 4.7 El caudalímetro digital del tipo HFM 6 4.7 es un componente, realizado por Bosch, ( N de recambio 55350048 para la versión de 480Kg/ h de caudal configuración
Soluciones. DESCRIPCION MACROSCOPICA DE UN GAS IDEAL (Serway, Cap 19, vol I)
Soluciones DESCRIPCION MACROSCOPICA DE UN GAS IDEAL (Serway, Cap 19, vol I) 1. Demuestre que 1 mol de cualquier gas a presión atmosférica de 101 kpa y temperatura de 0ºC ocupa un volumen de 22,4 L. n =
Mediciones Confiables con Termómetros de Resistencia i de Platino. Edgar Méndez Lango
Mediciones Confiables con Termómetros de Resistencia i de Platino Edgar Méndez Lango Termometría, Metrología Eléctrica, CENAM Noviembre 2009 Contenido 2 1. Concepto de temperatura 2. La Escala Internacional
Laboratorio de Fundamentos Físicos de la Ingeniería LEY DE OHM
Departamento de Física Aplicada E.T.S. Ingeniería Industrial U.C.L.M. Laboratorio de Fundamentos Físicos de la Ingeniería LEY DE OHM El objetivo fundamental de esta práctica es el conocimiento experimental
Ley de Boyle P 1/V (T y n constante) Ley de Charles Gay-Lussac V T (P y n constante) Ley de Amonton P T (V y n constante)
Práctica 6 Ecuación de los Gases Ideales 6.1 Objetivo El estado de un gas puede describirse en términos de cuatro variables (denominadas variables de estado): presión (P), volumen (V), temperatura (T)
No 10 LABORATORIO DE ELECTROMAGNETISMO CARGA Y DESCARGA DE CONDENSADORES. Objetivos
No 10 LABORATORIO DE ELECTROMAGNETISMO DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Determinar la constante de tiempo RC, utilizando valores calculados
Comprobar experimentalmente la ley de Ohm y las reglas de Kirchhoff. Determinar el valor de resistencias.
38 6. LEY DE OHM. REGLAS DE KIRCHHOFF Objetivo Comprobar experimentalmente la ley de Ohm y las reglas de Kirchhoff. Determinar el valor de resistencias. Material Tablero de conexiones, fuente de tensión
Manual de Prácticas. Práctica número 5 Algunas propiedades térmicas del agua
Práctica número 5 Algunas propiedades térmicas del agua Tema Correspondiente: Termodinámica Nombre del Profesor: Nombre completo del alumno Firma N de brigada: Fecha de elaboración: Grupo: Elaborado por:
UNIVERSIDAD TECNOLÓGICA DE PUEBLA
Térmica PRÁCTICA 7: Capacidad térmica específica de metales OBJETIVO: Identificar algunos metales de trabajo. Determinar cualitativamente el valor de la capacidad térmica específica de algunos metales
III. ESTADOS DE LA MATERIA
III. ESTADOS DE LA MATERIA Fuerzas Intermoleculares Las fuerzas intermoleculares Son fuerzas de atracción entre las moléculas y son mas débiles que las fuerzas intramoleculares (enlaces químicos). Ejercen
Procesos termodinámicos
Procesos termodinámicos Objetivo El objetivo de esta propuesta es el estudio experimental de distintos procesos termodínamicos simples para un gas ideal (aire). En particular se estudiarán procesos adiabáticos,
Ley de Boyle. Resumen
Ley de Boyle Dr. Guillermo Becerra Córdova Universidad Autónoma Chapingo Dpto. de Preparatoria Agrícola Área de Física Profesor-Investigador 5959521500 ext. 5239 E-mail: [email protected] Km. 38.5
EJERCICIOS DE TERMOQUÍMICA
EJERCICIOS DE TERMOQUÍMICA En los exámenes de Acceso a la Universidad se proponen una serie de cuestiones (más teóricas) y problemas (prácticos) para resolver. En estos apuntes vamos a resolver ambos tipos
Clase 2. Estructura de la Atmósfera
Clase 2 Estructura de la Atmósfera Preguntas claves 1. Qué es la presión y temperatura? 2. Cómo varían con la altura? 3. Cuál es la estructura de la atmósfera? La física y dinámica de la atmósfera puede
LAS MEDICIONES FÍSICAS. Estimación y unidades
LAS MEDICIONES FÍSICAS Estimación y unidades 1. Cuánto tiempo tarda la luz en atravesar un protón? 2. A cuántos átomos de hidrógeno equivale la masa de la Tierra? 3. Cuál es la edad del universo expresada
UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE QUÍMICA. Problemas resueltos de cambios de fase de la materia.
UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE QUÍMICA Problemas resueltos de cambios de fase de la materia. 1. Qué se entiende por sistema y alrededores? Un sistema se define como cualquier
TRANSIENTES EN CIRCUITOS RC y SU APLICACION A LA MEDIDA DE CAPACITANClAS
PRÁCTICA DE LABORATORIO II-09 TRANSIENTES EN CIRCUITOS RC y SU APLICACION A LA MEDIDA DE CAPACITANClAS OBJETIVOS Estudiar los fenómenos transientes que se producen en circuitos RC de corriente directa.
Práctica No 5. Capacidad calorífica de un sólido
Práctica No 5 Capacidad calorífica de un sólido 1. Objetivo general: Determinación de la capacidad calorífica especifica de un sólido en un proceso a presión constante. 2. Objetivos específicos: 1) Identificar
Física 2 Biólogos y Geólogos. Termometría-Sensores de temperatura
Física 2 Biólogos y Geólogos Curso de Verano 2007 Guía de laboratorio N 8 Termometría-Sensores de temperatura Objetivos Estudiar las características básicas de diferentes termómetros y sensores de temperatura.
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 QUÍMICA TEMA 4: ENERGÍA DE LAS REACCIONES QUÍMICAS
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 14 QUÍMICA TEMA 4: ENERGÍA DE LAS REACCIONES QUÍMICAS Junio, Ejercicio 5, Opción A Reserva 1, Ejercicio 5, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio
EQUILIBRIO LÍQUIDO-VAPOR PRESIÓN DE VAPOR Y ENTALPÍA DE VAPORIZACIÓN DEL AGUA
EQUILIBRIO LÍQUIDO-VAPOR PRESIÓN DE VAPOR Y ENTALPÍA DE VAPORIZACIÓN DEL AGUA I. OBJETIVO GENERAL Comprender e interpretar el significado de las variables termodinámicas involucradas en la ecuación de
1.1 Introducción a la naturaleza corpuscular de la materia y al cambio químico.
Unidad Educativa Monte Tabor-Nazaret Área de Ciencias Experimentales NNN Temario Exámen Supletorio Química NM II BACHILLERATO EXPERIMENTALES 1-2 2015-2016 Tema 1: Relaciones estequiométricas 1.1 Introducción
UNIVERIDAD DE LA SERENA DEPARTAMENTO DE FISICA Laboratorio 2:Comportamiento un gases ideales COMPORTAMIENTO DE UN GASES IDEALES.
COMPORTAMIENTO DE UN GASES IDEALES. INTRODUCCIÓN El siguiente trabajo se espera que sean capaces de plantearse hipótesis, planificar y diseñar una experiencia de laboratorio, discutir resultados y finalmente
UNIVERSIDAD DE LEÓN. ESyTIA y EIIIIyA. Prof. Dr. Miguel Celemín Matachana. Dilatación térmica de los gases
Cap. II: Termodinámica. Lección : Dilatación térmica de los gases Dilatación térmica de los gases La ecuación que proporciona la dilatación de un volumen no sirve para los gases si no se especifica la
LABORATORIO DE ELECTROMAGNETISMO RESISTIVIDAD
No 4 LABORATORIO DE ELECTROMAGNETISMO DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Comprender que la resistencia eléctrica de un elemento conductor
LEY CERO DE LA TERMODINÁMICA Y TEMPERATURA.
ara aprender Termodinámica resolviendo problemas Silvia érez Casas RESIÓN. F La presión se define como:. La presión ejercida por un gas se debe al A incesante choque de las moléculas que lo constituyen
8. DETERMINACIÓN DE LA DENSIDAD DE UN SÓLIDO
8. DETERMINACIÓN DE LA DENSIDAD DE UN SÓLIDO OBJETIVO El objetivo de la practica es determinar la densidad de un sólido. Para ello vamos a utilizar dos métodos: Método 1 : Cálculo de la densidad de un
GUÍA PARA CIENCIAS II (física) Alumno:
GUÍA PARA CIENCIAS II (física) 2013 Profesora: PAULINA BARRIOS Alumno: I.- CONTESTA LAS SIGUIENTES CUESTIONES 1.- Qué transformaciones de energía se presentan en los siguientes medios de transporte? (son
PRÁCTICA Nº 3 PROPIEDADES COLIGATIVAS: DETERMINACIÓN DE LA MASA MOLECULAR DE UN SOLUTO PROBLEMA POR CRIOSCOPIA
PRÁCTICA Nº 3 PROPIEDADES COLIGATIVAS: DETERINACIÓN DE LA ASA OLECULAR DE UN SOLUTO PROBLEA POR CRIOSCOPIA OBJETIVOS: El objetivo de la práctica es el estudio del efecto que produce la adición de un soluto
GASES 09/06/2011. La Tierra está rodeada por una mezcla de gases que se denomina atmósfera, cuya composición es la siguiente: La atmósfera
La Tierra está rodeada por una mezcla de gases que se denomina atmósfera, cuya composición es la siguiente: GASES Nitrógeno 78% Oxígeno 21% Otros gases 1% La atmósfera también almacena otros gases Vapor
Física y Química. 2º ESO. LA MATERIA Y SUS PROPIEDADES La materia. La materia es todo aquello que tiene masa y ocupa un espacio.
La materia es todo aquello que tiene masa y ocupa un espacio. Es materia por tanto el plástico, el carbón, la madera, el aire, el agua, el hierro, etc. y no lo es la alegría, la tristeza, la velocidad,
APLICACIÓN DE LA LEY DE OHM (I) Comprobación experimental de las leyes de Kirchhoff. Estudio experimental de la resistividad de conductores metálicos.
APLICACIÓN DE LA LEY DE OHM (I) MEDIDA DE ESISTENCIAS / PUENTE DE WHEATSTONE / MEDIDA DE LA ESISTIVIDAD 1. OBJETIVO Comprobación experimental de las leyes de Kirchhoff. Estudio experimental de la resistividad
INSTITUCIÓN EDUCATIVA FE Y ALEGRÍA NUEVA GENERACIÓN Formando para el amor y la vida - AREA CIENCIAS NATURALES: FISICA.
GUIA Nº 3 NOMBRE: GRADO: FECHA: El estado gaseoso La teoría cinética Comprensibilidad Expansibilidad Boyle Charles Gay-Lussac Dalton Graham V 1 V 2 = P 2 P 1 V 1 V 2 = T 1 T 2 P 1 P 2 = T 1 T 2 Mezclas
UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO
UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO 2: CAMPO Y POTENCIAL ELÉCTRICO Determinar la relación entre la
PRÁCTICA 1 PRESIÓN. Laboratorio de Termodinámica
PRÁCTICA 1 PRESIÓN Laboratorio de Termodinámica M del Carmen Maldonado Susano Enero 2015 Antecedentes Fluido Es aquella sustancia que debido a su poca cohesión intermolecular carece de forma propia y adopta
Fuerza de origen magnético en conductores
Práctica 10 Fuerza de origen magnético en conductores Elaborado por: Revisado por: Autorizado por: Vigente a partir de : M.I. Juan Carlos Cedeño Vázquez Ing. Juan Manuel Gil Pérez Ing. Francisco Miguel
Laboratorio de Termodinámica Clásica
Laboratorio de Termodinámica Clásica Sesión 3 Practica #4 Determinación del coeficiente de compresibilidad isotérmica del aire. Para esta práctica utilizaremos un equipo pasco llamado Aparato de ley adiabática
GUÍA DE CIENCIAS II (FÍSICA)
ESCUELA SECUNDARIA No. 765 JOSÉ VASCONCELOS GUÍA DE CIENCIAS II (FÍSICA) PROFESORA: PAULINA BARRIOS ALUMNO: 15 NOTA: ENTREGAR EN ESTE MISMO DOCUMENTO IMPRESO Y CONTESTADO A TINTA Y LÁPIZ COMPLETO (NO DEJAR
Resistencia de filamento 0,5 Ω Balanza Digital Calorímetro de Aluminio Conectores 120 ml de agua Revestimiento de lana para aislación
FIS-153 Electricidad y Magnetismo Efecto Joule Objetivo Estudiar la transferencia de energía entre una resistencia eléctrica energizada y el medio ambiente que está sumergida (agua), obteniendo, a partir
DETERMINACIÓN DE LA CONSTANTE UNIVERSAL DE LOS GASES
DETERMINACIÓN DE LA CONSTANTE UNIERSAL DE LOS GASES La ley general de los gases relaciona la presión P, el volumen, la temperatura T, el número de moles n, y la constante universal de los gases R, como
Práctica No 12. Determinación experimental de la Presión de vapor de un líquido puro
Práctica No 12 Determinación experimental de la Presión de vapor de un líquido puro 1. Objetivo general: Evaluar la entalpía de vaporización mediante el modelo de Clausius y Clapeyron. 2. Marco teórico:
Resistores en circuitos eléctricos
Resistores en circuitos eléctricos Experimento : Resistencias en circuitos eléctricos Estudiar la resistencia equivalente de resistores conectados tanto en serie como en paralelo. Fundamento Teórico. Cuando
