#define MAX 1024 void escala_vect (float A[MAX], float B[MAX], float k) { int i; for (i=0; i < MAX; i++) B[i]=k*A[i]; }

Tamaño: px
Comenzar la demostración a partir de la página:

Download "#define MAX 1024 void escala_vect (float A[MAX], float B[MAX], float k) { int i; for (i=0; i < MAX; i++) B[i]=k*A[i]; }"

Transcripción

1 PROBLEMA 1 Memoria Cache (10 puntos) Supongamos un sistema con un procesador que lanza direcciones de 32 bits. Dispone de dos caches, una para instrucciones y otra para datos, de 8 KBytes cada una. La cache de datos está organizada en bloques de 32 bytes, correspondencia directa. Considera la función: #define MAX 1024 void escala_vect (float A[MAX], float B[MAX], float k) { int i; for (i=0; i < MAX; i++) B[i]=k*A[i]; Supondremos que el tipo de dato float ocupa 4 bytes, que los vectores A y B están contiguos en memoria principal a partir de 0x7fff3380 (ver figura 1) y que las variables i y k se guardan en registros (no se almacenan en memoria principal). Considera 2 políticas distintas en la cache de datos: P1: escritura inmediata (write through) en acierto de escritura, no write allocate, no fetch en write miss (write around) en fallo de escritura. P2: escritura retardada (write-back) en acierto de escritura, y write allocate, fetch on write-miss (política convencional) en fallo en escritura. Teniendo en cuenta solamente los accesos de datos generados por la función escala_next(), calcula las tasas de fallos de datos. Supón que la cache de datos está inicialmente vacía. POLÍTICA TASA DE FALLOS BREVE EXPLICACIÓN / CUENTAS p1 p2

2 PROBLEMA 2 Estudio de un procesador segmentado (30 puntos) Considera un procesador en orden que ejecuta un repertorio de instrucciones como el subsparc visto en clase (arquitectura ld/st de 32 bits) con el añadido de instrucciones aritméticas complejas que requieren 2 ciclos de cálculo (alu). Las 6 etapas de la segmentación son las siguientes: E1: cache de isntrucciones: lectura de tag e isntrucción (B). E2: decodificación y control de dependencias (D); evaluación de condición y cálculo de salto condicional (relativo al PC). Esta etapa y la anterior son las únicas en las que puede bloquearse una instrucción. E3: lectura de banco de registros o de la red de cortocircuitos (L). E4: ALU(A); cálculo de salto incondicional; cálculo de memoria (@). E5: transparente para operaciones sencillas de ALU; ALU 2 para operaciones complejas de ALU (A2); lectura de cache de datos y comprobación de acierto/fallo (M). En caso de store, la escritura es en el ciclo siguiente. E6: escritura en banco de registros (ciclo completo). Escritura en cache de datos (E). Al detectar un riesgo en E2, el procesador bloquea la búsqueda y decodificación de instrucciones hasta que desaparece el riesgo. Se suponen los cortocircuitos necesario para minimizar las detenciones. Una instrucción dependiente de un load sólo pasa a E3 cuando se confirma que el load ha acertado en cache. Las instrucciones de salto condicional e incondicional son 1-retrardadas. Las operaciones aritméticas complejas están completamente segmentadas (latencia de iniciación=1). Importante: en los diagramas temporales no utilices E1, E2 para referenciar las etapas, sino la actividad que realizan (B,D,L ) a) Salto incondicional: calcula los ciclos perdidos. Dibuja diagramas de tiempos y aclara que instrucciones deben ser emuladas, detenidas b) Salto condicional. b1) Calcula los ciclos perdidos para los casos de salto no tomado y de salto tomado. Supón que la instrucción anterior al salto no modifica los códigos de condición. Dibuja el diagrama de tiempos (con uno es suficiente para ambos casos) y aclara que instrucciones deben ser anuladas, detenidas b2) Calcula los ciclos perdidos para los casos de salto no tomado y de salto tomado. Supón que la instrucción anterior al salto es una aritmética sencilla que sí modifica los códigos de condificón. Dibuja el diagrama de tiempos (con uno es suficiente para ambos casos) y aclara que instrucciones deben ser anuladas c) Calcula los ciclos que debe detenerse la siguiente isntrucción a un ld en caso de ser dependiente. Suponer acierto en cache de datos. Adjuntar diagrama. d) En caso de fallo en la cache de datos se necesitan 4 ciclos más para leer el bloque correspondiente en el 2º nivel de cache (siempre será acierto y el hardware lo sabe) y escribirlo en el primer nivel. En paralelo con esta última acción se realiza el suministro a la instrucción dependiente (si lo hay). Calcular la penalización (ciclos adicionales) debidos al fallo) y dibujar el diagrama de tiempos para este código: i: ld r1, ; Fallo en L1 de calculada por ld i+1: add r2, r3, r1; r2=r3+r1 e) Dibuja una dependencia alu compleja/uso entre una instrucción i y una instrucción i+k, k={1,2,3,4, mostrar los cortes utilizados y los ciclos de detención en cada caso. Recuerda: el diagrama condensa los posibles casos, no representa como se secuencia el código.

3 f) Se ejecuta un programa de prueba y se observa la distribución de instrucciones mostrada en la tabla. También se sabe que el 10% de los loads fallan en LiD. Supongamos que no hay detenciones por riesgo productor-consumidor (incluyendo aritmética-salto condicional). Sólo hay detención por fallo en cache y por riesgos de control. Calcula los ciclso por instrucción (CPI): CPI = INSTRUCCIÓN % INSTRUCCIÓN % load 30 jmpi 10 st 20 br 10 alu (sencilla+comp) 20,20+10 noop 0 g) Suponer ahora que el compilador ha insertado nops en los huecos de retardo y en todos los casos susceptibles de provocar riesgos por dependencias (load-uso, aritmética-salto condicional, aritmética compleja). Obtener la nueva distribución de instrucciones y calcular el valor de CPI. CPI = INSTRUCCIÓN % INSTRUCCIÓN % load jmpi st br alu (sencilla+comp) noop

4 a) Dibuja el grafo de dependencias del siguiente código: PROBLEMA 3 Estudio de un procesador con lanzamiento fuera de orden (30 puntos) ini ld r1, [r6] add r1, r1, r2 sub r1, r1, r3 st r1, 512[r6] add r6, #4, 16 sub r5, r5, 1 bnz ini b) Se ejecuta el código anterior con el procesador con lanzamiento fuera de orden visto en clase. Rellenar el diagrama temporal y obtener el CPI de la primera iteración. Pintar los cortocircuitos utilizados y especificar el renombre de registros (asignación y liberación) siguiendo la convención habitual del curso. Estado inicial: 1 ini: ld r1, [r6] 2 add r1, r1, r2 3 sub r1, r1, r3 4 st r1, 512[r6] 5 add r6, #4, 16 6 sub r5, r5, 1 7 ini: ld, r1, [r6] 8 <r1,p1>,<r1,p1>,<r1,p1>; resto de registros físicos disponibles B D B c) Codifica un 2-desenrollado del bucle planificando las instrucciones para minimizar riesgo de datos.

5 PROBLEMA 4 Prácticas (30 puntos) a) Práctica 1: Simulador de memoria cache (4 puntos) Señala sobre el siguiente esquema de de 32 bits que lanza el procesador, los 3 campos necesarios para la organización de la cache: marca (tag), conjunto (set) y byte dentro del bloque, en el caso de la cache unificada de 64 kb, mapeo directo y bloque de 32 B que has usado en la 1ª práctica b) Práctica 2: Análisis de organizaciones de memoria cahce (8 puntos) b.1) Calcula el número de ciclos que requiere un fallo de escritura que provoca el reemplazo de un bloque sucio (política copy-back con buffer de escrituras). b.2) Escribe la expresión que has utilizado para calcular el CPI en la segunda práctica. c) Práctica 3: Simulador de un procesador segmentado (8 puntos; contestar mal pruede restar hasta 8 puntos) Supón que el código de detección de riesgo y activación de los posibles cortocircuitos (i.e. incremento del correspondiente contador de uso) se ha encapsulado en una función cuentacortos. Abajo se muestran cuatro fragmentos de posibles codificaciones de la etapa de decodificación usando esa función. Escribe a continuación cuál de los fragmentos es el correcto [A, B, C ó D]: [A] if (etapa_ain.co==load && (etapa_ain.rd==etapa_ain.rs1 etapa_ain.rd==etapa_ain.rs2)){ [B] if (etapa_ain.co==load && (etapa_ain.rd==etapa_ain.rs1 etapa_ain.rd==etapa_ain.rs2)){ [C] if (etapa_ain.co==load && (etapa_ain.rd==etapa_ain.rs1 etapa_ain.rd==etapa_ain.rs2)){

6 [D] if (etapa_ain.co==load && (etapa_ain.rd==etapa_ain.rs1 etapa_ain.rd==etapa_ain.rs2)){ d) Práctica 4: Análisis de prestaciones (MIPS y MFLOPS) (10 puntos) Se ha obtenido este código SPARC para el bucle más interno for (j=0 )- de gauss.c:.l : ldd [%02], %f40 add %q3, 1, %95 add %02, 8, %02 ldd [%01], %f46 cmp %q5, %16 fmuld %f42, %f40, %f44 fsubd %f46, %f44, %f48 std %f48, [%01] add %01, 8, %01 bl,a, pt %icc,.l ldd [%q2], %f42 Al ejecutar gauss 32x en un procesador con frecuencia 1165 MHz, obtenemos la siguiente salida: xxxxxx Resultados xxxxxx Tiempo medio de ejecución de L/U: µseg Tiempo medio de ejecución limit: µseg Tiempo total de ejecución de repeat: µseg Suponiendo que el tiempo de ejecución se debe principalmente a la ejecución del bucle más interno (despreciamos el coste temporal de las instrucciones que implementan el bucle externo), qué velocidad en MIPS y MFLOPS se está alcanzando? Especifica fórmula y resultado. MIPS = MFLOPS = e) Asumiendo las mismas hipótesis del apartado anterior, cuál es el ancho de banda de memoria consumido por las instrucciones buscadas? Cuál es el ancho de banda para los datos de coma flotante (agregado de lecturas y escrituras)? Especifica las fórmulas utilizadas para calcular ambos resultados: BWi = BWd= f) Calcula el IPC del bucle:

Arquitectura de Computadores Problemas (hoja 4). Curso

Arquitectura de Computadores Problemas (hoja 4). Curso Arquitectura de Computadores Problemas (hoja 4). Curso 2006-07 1. Sea un computador superescalar similar a la versión Tomasulo del DLX capaz de lanzar a ejecución dos instrucciones independientes por ciclo

Más detalles

Arquitectura e Ingeniería de Computadores. Examen Parcial. 7/02/2012

Arquitectura e Ingeniería de Computadores. Examen Parcial. 7/02/2012 Apellidos Nombre Grupo: Arquitectura e Ingeniería de Computadores. Examen Parcial. 7/02/2012 Instrucciones.- Cada pregunta consta de cinco afirmaciones, y cada una de las afirmaciones puede ser cierta

Más detalles

Definición de prestaciones

Definición de prestaciones Definición de prestaciones En términos de velocidad. Diferentes puntos de vista: Tiempo de ejecución. Productividad (throughput) Medidas utilizadas En función de la duración del ciclo de reloj y del número

Más detalles

3. SEGMENTACIÓN DEL CAUCE

3. SEGMENTACIÓN DEL CAUCE 3. SEGMENTACIÓN DEL CAUCE 1 SEGMENTACIÓN DEL CAUCE 1. Conceptos básicos 2. Etapas del MIPS64 3. Riesgos 4. Operaciones muticiclo 2 SEGMENTACIÓN DEL CAUCE 1. Conceptos básicos 3 Conceptos básicos Ciclo

Más detalles

Arquitectura de Computadoras Trabajo Práctico N 8 Pipeline de Instrucciones 1 Primer Cuatrimestre de 2016

Arquitectura de Computadoras Trabajo Práctico N 8 Pipeline de Instrucciones 1 Primer Cuatrimestre de 2016 Departamento de Cs. e Ingeniería de la Computación Universidad Nacional del Sur Ejercicios Arquitectura de Computadoras Trabajo Práctico N 8 Pipeline de Instrucciones 1 Primer Cuatrimestre de 2016 1. La

Más detalles

Universidad Euskal Herriko del País Vasco Unibertsitatea Arquitectura de Computadores I Sistema de memoria 1

Universidad Euskal Herriko del País Vasco Unibertsitatea Arquitectura de Computadores I Sistema de memoria 1 Arquitectura I Sistema de memoria 1 1. En un espacio de direcciones de 64 Kbytes deben colocarse los s de memoria que se indican. Suponer que el direccionamiento de la memoria se hace al byte. Dibujar

Más detalles

Arquitectura de Computadoras Trabajo Práctico N 7 Pipeline de Instrucciones Primer Cuatrimestre de 2010

Arquitectura de Computadoras Trabajo Práctico N 7 Pipeline de Instrucciones Primer Cuatrimestre de 2010 Departamento de Cs. e Ingeniería de la Computación Universidad Nacional del Sur Ejercicios Arquitectura de Computadoras Trabajo Práctico N 7 Pipeline de Instrucciones Primer Cuatrimestre de 2010 1. La

Más detalles

Trabajo Práctico Número 6

Trabajo Práctico Número 6 Página 1 de 6 Trabajo Práctico Número 6 Arquitectura de Computadoras 24/05/2014 Instrucciones Los problemas de ejercitación propuestos en el presente trabajo práctico pueden ser resueltos en forma individual

Más detalles

Ejercicios de Paralelismo a Nivel de Instrucción

Ejercicios de Paralelismo a Nivel de Instrucción Ejercicios de Paralelismo a Nivel de Instrucción J. Daniel García Sánchez (coordinador) David Expósito Singh Javier García Blas Óscar Pérez Alonso J. Manuel Pérez Lobato Arquitectura de Computadores Grupo

Más detalles

Arquitectura de Computadores Problemas (hoja 2). Curso

Arquitectura de Computadores Problemas (hoja 2). Curso Arquitectura de Computadores Problemas (hoja 2). Curso 2006-07 1. El siguiente fragmento de código se ejecuta en un DLX con segmentación: SUB R1,R2,R3 ADD R4,R5,R6 SUB R5,R4,R8 ADD R7,R2,R3 ADD R9,R7,R3

Más detalles

Arquitectura de Computadoras

Arquitectura de Computadoras Arquitectura de Computadoras Clase 7 Memoria Sistema de Memoria Los programadores desean acceder a cantidades ilimitadas de memoria rápida!! Solución práctica: Jerarquía de memoria organizada en niveles

Más detalles

Práctica 5 - Memoria Cache

Práctica 5 - Memoria Cache Práctica 5 - Memoria Cache Organización del Computador 1 Verano 2008 Aclaración: siempre que se informa del tamaño de una memoria cache o de una línea, se está haciendo referencia a la capacidad útil de

Más detalles

Tutorías con Grupos Reducidos (TGR) Sesión 2: Paralelismo a Nivel de Instrucción

Tutorías con Grupos Reducidos (TGR) Sesión 2: Paralelismo a Nivel de Instrucción Tutorías con Grupos Reducidos (TGR) Sesión 2: Paralelismo a Nivel de Instrucción ESTRUCTURA DE COMPUTADORES Grupo de Arquitectura de Computadores (GAC) Dyer Rolán García (GAC) Paralelismo a nivel de instrucción

Más detalles

Ejercicios Jerarquía de Memoria

Ejercicios Jerarquía de Memoria Ejercicios Jerarquía de Memoria Grupo ARCOS Estructura de Computadores Grado en Ingeniería Informática Universidad Carlos III de Madrid Contenidos 1. Memoria caché CPU cache Memoria principal 2. Memoria

Más detalles

Organización lógica Identificación de bloque

Organización lógica Identificación de bloque Cómo se encuentra un bloque si está en el nivel superior? La dirección se descompone en varios campos: Etiqueta (tag): se utiliza para comparar la dirección requerida por la CPU con aquellos bloques que

Más detalles

TEORÍA (5 puntos) Puntuación: Desplazamiento

TEORÍA (5 puntos) Puntuación: Desplazamiento No se considerarán como válidas las respuestas en las que no se justifiquen los cálculos realizados No se permite el uso de ningún tipo de documentación, ni de calculadora Sólo existe una única opción

Más detalles

Jerarquía de memoria y memoria caché Ejercicios resueltos

Jerarquía de memoria y memoria caché Ejercicios resueltos Jerarquía de memoria y memoria caché Ejercicios resueltos Ejercicio 1. Sea un computador de 32 bits con una memoria caché de 256 KB, líneas de 64 bytes y un tiempo de acceso de 5 ns. La caché es asociativa

Más detalles

ARQUITECTURA DE COMPUTADORES Problemas TEMA 4: Microprocesadores avanzados

ARQUITECTURA DE COMPUTADORES Problemas TEMA 4: Microprocesadores avanzados Departament d Informàtica Sistemes i Computadors ARQUITECTURA DE COMPUTADORES Problemas TEMA 4: Microprocesadores avanzados SUGERENCIAS PARA LA RESOLUCIÓN DE LOS PROBLEMAS La ruta datos propuesta en todos

Más detalles

2. SEGMENTACIÓN ENCAUZADA AVANZADA Y PARALELISMO DE INSTRUCCIONES: EJERCICIOS Y CUESTIONES

2. SEGMENTACIÓN ENCAUZADA AVANZADA Y PARALELISMO DE INSTRUCCIONES: EJERCICIOS Y CUESTIONES 2. SEGMENTACIÓN ENCAUZADA AVANZADA Y PARALELISMO DE INSTRUCCIONES: EJERCICIOS Y CUESTIONES 2.1. Completa tus conocimientos del MIPS64 (una versión de MIPS). Debes aprender qué registros tiene, tipos de

Más detalles

Arquitectura de Computadores I. Sistema de memoria 3 (Solución): Segmentación + Bancos

Arquitectura de Computadores I. Sistema de memoria 3 (Solución): Segmentación + Bancos Universidad del País Vasco Facultad de Informática Departamento de Arquitectura y Tecnología de Computadores Arquitectura de Computadores I Sistema de memoria 3 (Solución): Segmentación + Bancos En un

Más detalles

Tema 1: PROCESADORES SEGMENTADOS

Tema 1: PROCESADORES SEGMENTADOS Tema 1: PROCESADORES SEGMENTADOS 1.1. Procesadores RISC frente a procesadores CISC. 1.2. Clasificación de las arquitecturas paralelas. 1.3. Evaluación y mejora del rendimiento de un computador. 1.4. Características

Más detalles

Ejercicios de jerarquía de memoria

Ejercicios de jerarquía de memoria Ejercicios de jerarquía de memoria J. Daniel García Sánchez (coordinador) David Expósito Singh Javier García Blas Óscar Pérez Alonso J. Manuel Pérez Lobato Arquitectura de Computadores Grupo ARCOS Departamento

Más detalles

Tutorías con Grupos Reducidos (TGR) Parte 1: Evaluación de prestaciones

Tutorías con Grupos Reducidos (TGR) Parte 1: Evaluación de prestaciones Tutorías con Grupos Reducidos (TGR) Parte 1: Evaluación de prestaciones ESTRUCTURA DE COMPUTADORES Grupo de Arquitectura de Computadores (GAC) Dyer Rolán García (GAC) Evaluación de Prestaciones Curso 2011/2012

Más detalles

Sistema electrónico digital (binario) que procesa datos siguiendo unas instrucciones almacenadas en su memoria

Sistema electrónico digital (binario) que procesa datos siguiendo unas instrucciones almacenadas en su memoria 1.2. Jerarquía de niveles de un computador Qué es un computador? Sistema electrónico digital (binario) que procesa datos siguiendo unas instrucciones almacenadas en su memoria Es un sistema tan complejo

Más detalles

Resolución de los Ejercicios de la Hoja 4

Resolución de los Ejercicios de la Hoja 4 Resolución de los Ejercicios de la Hoja 4 José Miguel Montañana Aliaga. Fernando Castro Rodríguez. Francisco Tirado Fernández. Dpto. de Arquitectura de Computadores y Automática Facultad de Informática.

Más detalles

Ejercicios del Tema 3. Fundamentos de la programación en ensamblador

Ejercicios del Tema 3. Fundamentos de la programación en ensamblador Ejercicios del Tema 3. Fundamentos de la programación en ensamblador Ejercicio 1. Dada la siguiente expresión de un lenguaje de alto nivel int a = 6; int b = 7; int c = 3; int d; d = (a+b) * (a+b); Indique

Más detalles

Departamento de Automática

Departamento de Automática Departamento de Automática Tema 3 Paralelismo a nivel de instrucción (I) Prof. Dr. José Antonio de Frutos Redondo Dr. Raúl Durán Díaz Curso 2010-2011 Tema 3. Paralelismo a Nivel de Instrucción I Planificación

Más detalles

Ejercicios del Tema 3. Fundamentos de la programación en ensamblador

Ejercicios del Tema 3. Fundamentos de la programación en ensamblador Ejercicios del Tema 3. Fundamentos de la programación en ensamblador Ejercicio 1. Escriba un programa en ensamblador del MIPS 32 para calcular la suma de los 100 primeros números naturales. El programa

Más detalles

Ejercicios del tema 5. Jerarquía de de Memoria

Ejercicios del tema 5. Jerarquía de de Memoria Ejercicios del tema 5. Jerarquía de de Memoria Ejercicio 1. Considere un computador de 32 bits con una caché de 64 KB asociativa por conjuntos de 4 vías y un tiempo de acceso de 4 ns. El tamaño de la línea

Más detalles

2. SEGMENTACIÓN ENCAUZADA AVANZADA Y PARALELISMO DE INSTRUCCIONES: EJERCICIOS Y CUESTIONES

2. SEGMENTACIÓN ENCAUZADA AVANZADA Y PARALELISMO DE INSTRUCCIONES: EJERCICIOS Y CUESTIONES 2. SEGMENTACIÓN ENCAUZADA AVANZADA Y PARALELISMO DE INSTRUCCIONES: EJERCICIOS Y CUESTIONES 2.1. Completa tus conocimientos del MIPS64 (una versión de MIPS). Debes aprender qué registros tiene, tipos de

Más detalles

Memoria. Otros temas sobre cachés

Memoria. Otros temas sobre cachés Memoria Otros temas sobre cachés Otros temas 1. Estrategias de búsqueda de bloque. 2. Estrategias de reemplazo de bloque. 3. Cachés multinivel. Universidad de Sonora Arquitectura de Computadoras 2 Localizando

Más detalles

FUNDAMENTOS DE COMPUTADORES 18 de junio de Examen parcial del 2º cuatrimestre.

FUNDAMENTOS DE COMPUTADORES 18 de junio de Examen parcial del 2º cuatrimestre. FUNDAMENTOS DE COMPUTADORES 18 de junio de 2014. Examen parcial del 2º cuatrimestre. Nombre DNI Apellidos Grupo Ejercicio 1 (2.5 puntos) Para el computador MIPS estudiado en clase, responder a las siguientes

Más detalles

Aspectos avanzados de arquitectura de computadoras Pipeline. Facultad de Ingeniería - Universidad de la República Curso 2017

Aspectos avanzados de arquitectura de computadoras Pipeline. Facultad de Ingeniería - Universidad de la República Curso 2017 Aspectos avanzados de arquitectura de computadoras Pipeline Facultad de Ingeniería - Universidad de la República Curso 2017 Objetivo Mejorar el rendimiento Incrementar frecuencia de reloj? Ancho de los

Más detalles

Trabajo Práctico Número 6 Arquitectura de Computadoras

Trabajo Práctico Número 6 Arquitectura de Computadoras Trabajo Práctico Número 6 Arquitectura de Computadoras http://www.herrera.unt.edu.ar/arqcom De qué trataba este TP? Memoria caché: Políticas de escritura: write-back, write-through Métricas de performance:

Más detalles

202 PROBLEMAS DE ARQUITECTURA DE COMPUTADORES

202 PROBLEMAS DE ARQUITECTURA DE COMPUTADORES 202 PROBLEMAS DE ARQUITECTURA DE COMPUTADORES César Represa Pérez Carmen Rodríguez Clavería Nº de Asiento Registral 00/2013/1733 Burgos, 2013 202 Problemas de Arquitectura de Computadores 2º G.I.I 202

Más detalles

Ejercicios de Arquitectura de Computadoras

Ejercicios de Arquitectura de Computadoras Ejercicios Arquitectura Computadoras José Garzía 9 En este tipo ejercicios bemos tener siempre presentes estas tres ecuaciones: MP ( en Memoria Principal ) Cantidad en la Memoria Principal por Cantidad

Más detalles

Introducción a memorias cache

Introducción a memorias cache Introducción a memorias cache Lección 6 Ing. Cristina Murillo Miranda Arquitectura de Sistemas Embebidos Programa de Maestría en Electrónica Énfasis en Sistemas Embebidos Escuela de Ingeniería en Electrónica

Más detalles

Procesadores segmentados. El DLX.

Procesadores segmentados. El DLX. Procesadores segmentados. El DLX. Curso 2011-2012 Características de las Arquitecturas Tipos de Arquitectura Organización de la Memoria Direccionamiento de Memoria Operaciones en el Repertorio de Instrucciones

Más detalles

Práctica 5 - Memoria

Práctica 5 - Memoria Práctica 5 - Memoria Organización del Computador 1 Primer Cuatrimestre 2011 Aclaración: siempre que se informa del tamaño de una memoria cache o de una línea, se está haciendo referencia a la capacidad

Más detalles

Tema 6: Memoria virtual. Óscar David Robles Sánchez Sofía Bayona Beriso David Miraut Andrés Luis Rincón Córcoles

Tema 6: Memoria virtual. Óscar David Robles Sánchez Sofía Bayona Beriso David Miraut Andrés Luis Rincón Córcoles Tema 6: Memoria virtual Óscar David Robles Sánchez Sofía Bayona Beriso David Miraut Andrés Luis Rincón Córcoles Contenidos Introducción. Localización de páginas. Fallos de página. TLB. Gestión de fallos

Más detalles

PRINCIPIOS GENERALES DE JERARQUÍA DE MEMORIA

PRINCIPIOS GENERALES DE JERARQUÍA DE MEMORIA PRINCIPIOS GENERALES DE JERARQUÍA DE MEMORIA REGULARIDADES EN LOS ACCESOS A MEMORIA PRINCIPIO DE LOCALIDAD - ESPACIAL: Si se referencia un elemento, los elementos cercanos a él se volverán a referenciar

Más detalles

MEMORIA EJERCICIO 1 EJERCICIO 2

MEMORIA EJERCICIO 1 EJERCICIO 2 MEMORIA EJERCICIO 1 Determinar el mapa de memoria de un procesador con 16 señales de bus de direcciones, una señal de asentimiento de bus de direcciones AS, una señal de lectura R, otra de escritura W

Más detalles

Aspectos avanzados de arquitectura de computadoras Jerarquía de Memoria II. Facultad de Ingeniería - Universidad de la República Curso 2017

Aspectos avanzados de arquitectura de computadoras Jerarquía de Memoria II. Facultad de Ingeniería - Universidad de la República Curso 2017 Aspectos avanzados de arquitectura de computadoras Jerarquía de Memoria II Facultad de Ingeniería - Universidad de la República Curso 2017 Técnicas Básicas (1/5) Mayor Tamaño de Caché Mejora obvia: Aumentar

Más detalles

Organización de Computadoras. Clase 6

Organización de Computadoras. Clase 6 Organización de Computadoras Clase 6 Tema de Clase Ciclo de Instrucción Notas de Clase 6 2 Función de la computadora(1) Ejecutar programas El programa está compuesto de instrucciones almacenadas en memoria

Más detalles

Paralelismo al nivel de instrucciones

Paralelismo al nivel de instrucciones Paralelismo al nivel de instrucciones Arquitectura de Computadoras M. C. Felipe Santiago Espinosa Mayo de 2017 Qué es la segmentación o pipelining? O Técnica para la generación de paralelismo en microprocesadores.

Más detalles

int vector[100]; // en principio vector tiene al menos // cien elementos aunque pueda tener más... for (i=0; i<100; i++) vector[i] = vector[i] + 1;

int vector[100]; // en principio vector tiene al menos // cien elementos aunque pueda tener más... for (i=0; i<100; i++) vector[i] = vector[i] + 1; ARQUITECTURA DE SISTEMAS PARALELOS. 3º INGENIERIA TECNICA EN INFORMATICA DE SISTEMAS. BOLETÍN DE EJERCICIOS DE Introducción al paralelismo. Curso 04/05 (SOLUCIONES) 1. Inicialmente R3 = R2 + 400. como

Más detalles

Tema 5. Segmentación: conceptos básicos

Tema 5. Segmentación: conceptos básicos Tema 5. Segmentación: conceptos básicos Organización de Computadores LUIS ENRIQUE MORENO LORENTE RAÚL PÉRULA MARTÍNEZ ALBERTO BRUNETE GONZALEZ DOMINGO MIGUEL GUINEA GARCIA ALEGRE CESAR AUGUSTO ARISMENDI

Más detalles

Práctica 1 - Rendimiento *

Práctica 1 - Rendimiento * Práctica 1 - Rendimiento * Organización del Computador 1 Verano 2014 Subconjunto mínimo de ejercicios recomendado: 1 a 11 Ejercicio 1 Considere tres procesadores distintos P 1, P 2 y P 3 que ejecutan el

Más detalles

Arquitectura de Computadoras

Arquitectura de Computadoras 4-1 Arquitectura de Computadoras Tema 4: Arquitectura del Set de Instrucciones Eduardo Daniel Cohen dcohen@arnet.com.ar http://www.herrera.unt.edu.ar/arqcom 4-2 Arquitectura del Set de Instrucciones Indice

Más detalles

TEMA 3 PROCESADORES VECTORIALES

TEMA 3 PROCESADORES VECTORIALES TEMA 3 PROCESADORES VECTORIALES A T 5 1 1 8 A r q u i t e c t u r a e I n g e n i e r í a d e C o m p u t a d o r e s I J u a n A n t o n i o M a e s t r o PROCESADORES VECTORIALES V e n t a j a s d e

Más detalles

OBJETIVOS ALGUNAS CONSIDERACIONES SOBRE WINDLX

OBJETIVOS ALGUNAS CONSIDERACIONES SOBRE WINDLX Arquitectura de Sistemas Paralelos 3 er curso de Ingeniería Técnica en Informática de Sistemas Práctica: Procesador segmentado DLX. Técnicas de optimización Curso 2005/2006 OBJETIVOS En esta práctica se

Más detalles

Autor: Longinos Recuero Bustos

Autor: Longinos Recuero Bustos Actividad 1.1 Autor: Longinos Recuero Bustos Suponiendo que se aplica una mejora a una máquina de tal forma que el rendimiento es 20 veces superior al que tenía y considerando que la mejora únicamente

Más detalles

UNIDAD TEM ATICA 3: ACELERACI ON DEL ACCESO A MEMORIA.

UNIDAD TEM ATICA 3: ACELERACI ON DEL ACCESO A MEMORIA. UNIDAD TEMÁTICA 3: ACELERACIÓN DEL ACCESO A MEMORIA. 10. Evaluación de las prestaciones del subsistema de memoria. 11. Mejora de las prestaciones de las antememorias. 12. Mejora de las prestaciones de

Más detalles

Soluciones a ejercicios de jerarquía de memoria

Soluciones a ejercicios de jerarquía de memoria Soluciones a ejercicios de jerarquía de memoria J. Daniel García Sánchez (coordinador) David Expósito Singh Javier García Blas Óscar Pérez Alonso J. Manuel Pérez Lobato Arquitectura de Computadores Grupo

Más detalles

Introducción a la arquitectura de computadores

Introducción a la arquitectura de computadores Introducción a la arquitectura de computadores Departamento de Arquitectura de Computadores Arquitectura de computadores Se refiere a los atributos visibles por el programador que trabaja en lenguaje máquina

Más detalles

Estructura de Computadores. Problemas de Instrucciones y Direccionamientos

Estructura de Computadores. Problemas de Instrucciones y Direccionamientos Estructura de Computadores. Problemas de Instrucciones y Direccionamientos Departamento de Arquitectura y Tecnología de Sistemas Informáticos Octubre 2009 1. Sea un computador con palabras y direcciones

Más detalles

Repaso concepto de programa

Repaso concepto de programa Repaso concepto de programa ANTES se tenían sistemas cableados Datos Secuencia de funciones aritmético/lógicas Resultados Programación en hardware: cuando cambiamos las tareas, debemos cambiar el hardware

Más detalles

3 - Arquitectura interna de un up

3 - Arquitectura interna de un up cei@upm.es 3 - Arquitectura interna un up Componentes básicos Lenguaje ensamblador y código máquina Ciclo básico ejecución una instrucción Algunos ejemplos Universidad Politécnica Madrid Componentes básicos

Más detalles

Arquitectura de Computadoras. Clase 4 Segmentación de Instrucciones

Arquitectura de Computadoras. Clase 4 Segmentación de Instrucciones Arquitectura de Computadoras Clase 4 Segmentación de Instrucciones Segmentación de cauce: Conceptos básicos La segmentación de cauce (pipelining) es una forma particularmente efectiva de organizar el hardware

Más detalles

TEMA 4. ARQUITECTURA IA-64

TEMA 4. ARQUITECTURA IA-64 TEMA 4. ARQUITECTURA IA-64 Stalling, W.Computer Organization and Architecture cap. 15 Intel IA-64 Architecture Software Developer s Manual Generalidades IA-64 Desarrollo conjunto Intel-HP Nueva arquitectura

Más detalles

CAPÍTULO 2 PROCESADORES SUPERESCALARES

CAPÍTULO 2 PROCESADORES SUPERESCALARES CAPÍTULO 2 PROCESADORES SUPERESCALARES LECTURA DE INSTRUCCIONES (etapa if) Falta de alineamiento Rotura de secuencialidad Tratamiento de los saltos Estrategias de predicción dinámica Pila de dirección

Más detalles

Tema 2: Conceptos básicos. Escuela Politécnica Superior Ingeniería Informática Universidad Autónoma de Madrid

Tema 2: Conceptos básicos. Escuela Politécnica Superior Ingeniería Informática Universidad Autónoma de Madrid Tema 2: Conceptos básicos Ingeniería Informática Universidad Autónoma de Madrid 1 O B J E T I V O S Introducción a la Informática Adquirir una visión global sobre la Informática y sus aplicaciones. Conocer

Más detalles

Estrategias de predicción dinámicas.

Estrategias de predicción dinámicas. Estrategias de predicción dinámicas. Las técnicas que vamos a ver ahora para predicción de saltos se basan en información conocida sólo en tiempo de ejecución. Dos estructuras son necesarias para realizar

Más detalles

ARQUITECTURA DE COMPUTADORES. Práctica 8

ARQUITECTURA DE COMPUTADORES. Práctica 8 ARQUITECTURA DE COMPUTADORES Práctica 8 Procesadores Segmentados: Introducción al simulador DLXIDE Evaluación de las prestaciones de la segmentación en el DLX Práctica 8: Procesadores Segmentados 1 de

Más detalles

ADDI R4,R0,#2 ADDI R1,R0,#40 LOOP: LW R2,0(R1) SUBI R3,R2,#1 MUL R2,R3,R2 DIV R2,R3,R4 SW 0(R1),R2 SUBI R1,R1,#4 BNEZ R1, LOOP ADDI R4,R0,#0

ADDI R4,R0,#2 ADDI R1,R0,#40 LOOP: LW R2,0(R1) SUBI R3,R2,#1 MUL R2,R3,R2 DIV R2,R3,R4 SW 0(R1),R2 SUBI R1,R1,#4 BNEZ R1, LOOP ADDI R4,R0,#0 P2. (3 puntos) El siguiente código en ensamblador recorre un vector v, que comienza en la posición 0, calculando para cada v[i] el número de combinaciones que pueden darse con v[i] elementos tomados de

Más detalles

6. PROCESADORES SUPERESCALARES Y VLIW

6. PROCESADORES SUPERESCALARES Y VLIW 6. PROCESADORES SUPERESCALARES Y VLIW 1 PROCESADORES SUPERESCALARES Y VLIW 1. Introducción 2. El modelo VLIW 3. El cauce superescalar 4. Superescalar con algoritmo de Tomasulo 2 PROCESADORES SUPERESCALARES

Más detalles

Contenidos. Arquitectura de ordenadores (fundamentos teóricos) Elementos de un ordenador. Periféricos

Contenidos. Arquitectura de ordenadores (fundamentos teóricos) Elementos de un ordenador. Periféricos Arquitectura de ordenadores (fundamentos teóricos) Representación de la información Estructura de un microprocesador Memorias Sistemas de E/S Elementos de un ordenador Microprocesador Placa base Chipset

Más detalles

HISTORIA DEL PIPELINE. Juan Antonio Romano Largo. Arquitectura de Computadores.

HISTORIA DEL PIPELINE. Juan Antonio Romano Largo. Arquitectura de Computadores. HISTORIA DEL PIPELINE CRONOLOGÍA Introducción ppo. S. XX IBM 704 1955 IBM 7030 (proyecto Stretch) 1956-1961 CDC 6600 1964 VAX 8800 1987 RISC vs CISC (MIPS vs VAX 8700) 1989 R4000 (Supersegmentado) 1991

Más detalles

Estructura de Computadores Tema 1. Introducción a los computadores

Estructura de Computadores Tema 1. Introducción a los computadores Estructura de Computadores Tema 1. Introducción a los computadores Departamento de Informática Grupo de Arquitectura de Computadores, Comunicaciones y Sistemas UNIVERSIDAD CARLOS III DE MADRID Contenido

Más detalles

EJERCICIOS DE MEMORIA:

EJERCICIOS DE MEMORIA: EJERCICIOS DE MEMORIA: 1) Un sistema realiza una gestión de memoria virtual mediante paginación por demanda, con la memoria dividida en cinco marcos de 512 posiciones cada uno. En un momento determinado,

Más detalles

Organización de computadoras. Clase 11. Universidad Nacional de Quilmes. Lic. Martínez Federico

Organización de computadoras. Clase 11. Universidad Nacional de Quilmes. Lic. Martínez Federico Organización de computadoras Clase 11 Universidad Nacional de Quilmes Lic. Martínez Federico Qué vimos? Mascaras Qué vimos? Qué vimos? Mascaras Repeticiones controladas Qué vimos? Mascaras Repeticiones

Más detalles

TEMA 2: PARALELISMO INTERNO EN SISTEMAS COMPUTADORES SEGMENTACION

TEMA 2: PARALELISMO INTERNO EN SISTEMAS COMPUTADORES SEGMENTACION SEGMENTACION SEGMENTACION SEGMENTACION I I I I I 1 2 3 4 5 IF ID EX MEM WB IF ID EX MEM WB IF ID EX MEM WB IF ID EX MEM WB IF ID EX MEM WB SEGMENTACION INTRODUCIR NUEVA INSTRUCCIÓN CADA CICLO 1 CICLO,

Más detalles

ARQUITECTURA DE COMPUTADORES. 2º INGENIERÍA INFORMÁTICA. Problemas de Gestión de Memoria.

ARQUITECTURA DE COMPUTADORES. 2º INGENIERÍA INFORMÁTICA. Problemas de Gestión de Memoria. ARQUITECTURA DE COMPUTADORES 2º INGENIERÍA INFORMÁTICA Problemas de Gestión de Memoria 1 Se tiene un procesador de tamaño de palabra 16 bits con un espacio de direcciones de 2 16 posiciones de memoria

Más detalles

Ejercicios del tema 4. El procesador

Ejercicios del tema 4. El procesador jercicios del tema 4. l procesador jercicio 1. Considere un procesador de 32 bits con una frecuencia de reloj de 500 MHz con la estructura del mostrado en el jercicio 3. La memoria se direcciona por bytes

Más detalles

CPU MEMORIAS CACHE. Memorias caché. Memoria caché = memoria de tamaño pequeño y acceso rápido situada entre la CPU y la memoria principal.

CPU MEMORIAS CACHE. Memorias caché. Memoria caché = memoria de tamaño pequeño y acceso rápido situada entre la CPU y la memoria principal. MEMORIAS CACHE Memoria caché = memoria de tamaño pequeño y acceso rápido situada entre la CPU y la memoria principal. Tiempo ciclo memoria > tiempo de ciclo del procesador la CPU debe esperar a la memoria

Más detalles

Arquitectura del MIPS: Introducción

Arquitectura del MIPS: Introducción Arquitectura del MIPS: Introducción Montse Bóo Cepeda Este trabajo está publicado bajo licencia Creative Commons Attribution- NonCommercial-ShareAlike 2.5 Spain. Estructura del curso 1. Evolución y caracterización

Más detalles

ORGANIZACIÓN Y ESTRUCTURA DE LA MEMORIA: CACHÉS Y MEMORIA VIRTUAL

ORGANIZACIÓN Y ESTRUCTURA DE LA MEMORIA: CACHÉS Y MEMORIA VIRTUAL 3.1.1. Una máquina que utiliza un reloj de 50 MHz, dispone de un sistema de memoria de dos niveles. La tasa de aciertos en el primer nivel es del 95% y la penalización total por fallo es de 20 ciclos de

Más detalles

Diseño de la jerarquía de memoria

Diseño de la jerarquía de memoria Diseño de la jerarquía de memoria William Stallings, Organización y Arquitectura de Computadores Andrew S. Tanenbaum, Organización de Computadoras Linda Null y Julia Lobur, Computer Organization and Architecture

Más detalles

Arquitectura de Computadores II Clase #5

Arquitectura de Computadores II Clase #5 Arquitectura de Computadores II Clase #5 Facultad de Ingeniería Universidad de la República Instituto de Computación Curso 2010 Algunas ideas para mejorar el rendimiento Obvio: incrementar la frecuencia

Más detalles

Tratamiento de Excepciones en MIPS

Tratamiento de Excepciones en MIPS Tratamiento de en MIPS Elías Todorovich Arquitectura I - Curso 2013 Riesgos de Control Las direcciones del PC no son secuenciales (PC = PC + 4) en los siguientes casos: Saltos condicionales (beq, bne)

Más detalles

Mapa de memoria. memoria CACHÉ

Mapa de memoria. memoria CACHÉ Mapa de memoria memoria CACHÉ Miguel Ángel Asensio Hernández, Profesor de Electrónica de Comunicaciones. Departamento de Electrónica, I.E.S. Emérita Augusta. 06800 MÉRIDA. Segmentación de la memoria Estructuración

Más detalles

Arquitectura de Computadores

Arquitectura de Computadores Curso 2006/07 Arquitectura de Computadores 1. Introducción 2. La CPU 3. Lenguaje Máquina 4. 5. Sistema de Entrada/Salida 6. Buses Informática Aplicada Arquitectura de Computadores 1 Características generales

Más detalles

Arquitectura de Computadoras para Ingeniería

Arquitectura de Computadoras para Ingeniería Departamento de Cs. e Ingeniería de la Computación Universidad Nacional del Sur Arquitectura de Computadoras para Ingeniería Ejercicios Trabajo Práctico N 7 Jerarquía de Memoria Primer Cuatrimestre de

Más detalles

5. Procesador: camino de datos y control

5. Procesador: camino de datos y control Fundamentos de Computadores Ingeniería de Telecomunicación Departamento de Automática Escuela Politécnica Superior Curso académico 2009 2010 Contenidos 1 Control de operaciones elementales 2 3 4 5 Objetivos

Más detalles

Sección de procesamiento: El camino de datos

Sección de procesamiento: El camino de datos Sección de procesamiento: El camino de datos Montse Bóo Cepeda Este trabajo está publicado bajo licencia Creative Commons Attribution- NonCommercial-ShareAlike 2.5 Spain. Estructura del curso 1. Evolución

Más detalles

Unidad 5 Unidad central de proceso

Unidad 5 Unidad central de proceso Unidad 5 Unidad central de proceso Objetivo El objetivo de esta unidad es que el alumno logre: entender el funcionamiento básico de la Unidad Central de Proceso (UCP), definir las componentes básicas de

Más detalles

Arquitectura del CPU. Organización del Computador 1 Verano 2016

Arquitectura del CPU. Organización del Computador 1 Verano 2016 Arquitectura del CPU Organización del Computador 1 Verano 2016 Agenda De dónde venimos? Introducción: esquema de una computadora Representación de la información Circuitos Combinatorios Circuitos Secuenciales

Más detalles

Estructura de Computadores

Estructura de Computadores Estructura de Computadores Tema 5 Jerarquía de memoria Departamento de Informática Grupo de Arquitectura de Computadores, Comunicaciones y Sistemas UNIVERSIDAD CARLOS III DE MADRID Contenido Tipos de memoria

Más detalles

Arquitecturas Paralelas Examen de Febrero 24 Enero 2005

Arquitecturas Paralelas Examen de Febrero 24 Enero 2005 Universidad del País Vasco Facultad de Informática Dpto. de Arquitectura y Tecnología de Computadores Arquitecturas Paralelas Examen de Febrero 24 Enero 2005 Apellidos: Nombre: Grupo: Firma: 1 / 2 / 3

Más detalles

Introducción. Universidad de Sonora Arquitectura de Computadoras 2

Introducción. Universidad de Sonora Arquitectura de Computadoras 2 Memoria virtual Introducción Memoria virtual es un mecanismo que permite que la memoria principal parezca mas grande que su tamaño físico. Permite ejecutar programas mas grandes que la memoria física disponible.

Más detalles

Capitulo 1 Fundamentos de Computadores - I.T.Telecomunicación - Segundo cuatrimestre. INTRODUCCION A LOS FUNDAMENTOS DE COMPUTADORES

Capitulo 1 Fundamentos de Computadores - I.T.Telecomunicación - Segundo cuatrimestre. INTRODUCCION A LOS FUNDAMENTOS DE COMPUTADORES INTRODUCCION A LOS FUNDAMENTOS DE COMPUTADORES Hoja 1 PRIMERA APROXIMACION AL CONCEPTO DE COMPUTADOR Computador: máquina que procesa la información para obtener unos resultados. La información a procesar

Más detalles

Tema 4. Condiciones para el paralelismo: Dependencias

Tema 4. Condiciones para el paralelismo: Dependencias Tema 4. Condiciones para el paralelismo: Dependencias Organización de Computadores LUIS ENRIQUE MORENO LORENTE RAÚL PÉRULA MARTÍNEZ ALBERTO BRUNETE GONZALEZ DOMINGO MIGUEL GUINEA GARCIA ALEGRE CESAR AUGUSTO

Más detalles

Práctica 4 - Microarquitectura del CPU

Práctica 4 - Microarquitectura del CPU Práctica 4 - Microarquitectura del CPU Organización del Computador 1 Verano 2011 Ejercicio 1 El siguiente esquema muestra algunos de los componentes de la microarquitectura de un modelo del procesador

Más detalles

TEMA VI DISEÑO DEL PROCESADOR

TEMA VI DISEÑO DEL PROCESADOR TEMA VI DISEÑO DEL PROCESADOR Diseño del procesador 6.1 Repertorio de instrucciones 6.1.1 Procesadores de tres direcciones 6.1.2 Procesadores de dos direcciones 6.1.3 Procesadores de una dirección (procesadores

Más detalles

Examen de Estructura de Computadores ( ) Solución teoría

Examen de Estructura de Computadores ( ) Solución teoría Eamen de Estructura de Computadores (--) teoría ) Calcula las funciones de selección que determinan la ubicación de una ROM de K a partir de la dirección (CSrom), una RAM de 8K a partir de la dirección

Más detalles

Memoria Virtual. Ing. Jorge Castro-Godínez

Memoria Virtual. Ing. Jorge Castro-Godínez Memoria Virtual Lección 7 Ing. Jorge Castro-Godínez MT7003 Microprocesadores y Microcontroladores Área de Ingeniería Mecatrónica Instituto Tecnológico de Costa Rica I Semestre 2014 Jorge Castro-Godínez

Más detalles

Soluciones a los problemas impares. Tema 5. Memorias. Estructura de Computadores. I. T. Informática de Gestión / Sistemas

Soluciones a los problemas impares. Tema 5. Memorias. Estructura de Computadores. I. T. Informática de Gestión / Sistemas Tema 5. Soluciones a los problemas impares Estructura de Computadores I. T. Informática de Gestión / Sistemas Curso 28-29 Tema 5 Hoja: 2 / 36 Tema 5 Hoja: 3 / 36 Base teórica La memoria es el lugar en

Más detalles

Diseño de un computador sencillo. Ejercicios

Diseño de un computador sencillo. Ejercicios Escola Politècnica Superior d Enginyeria de Vilanova I la Geltrú Diseño de un computador sencillo. Ejercicios Sergio Sánchez Xavier Masip Departament d Arquitectura de Computadors 1. Dado el siguiente

Más detalles

Optimizaciones avanzadas de memoria caché

Optimizaciones avanzadas de memoria caché de memoria caché Arquitectura de Computadores J. Daniel García Sánchez (coordinador) David Expósito Singh Javier García Blas Óscar Pérez Alonso J. Manuel Pérez Lobato Grupo ARCOS Departamento de Informática

Más detalles