PROBLEMAS VISUALES DE FÍSICA. PVF8-1** Cinemática. Delfines

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PROBLEMAS VISUALES DE FÍSICA. PVF8-1** Cinemática. Delfines"

Transcripción

1 PROBLEMAS VISUALES DE FÍSICA PVF8-** Cinemática. Delfines Fig. Fig. En las fotografías, tomadas desde mucha distancia, se observa a un grupo de delfines de la especie mular, retozar en la dársena de un muelle. En la fig, se aprecia el delfín A, de aproximadamente 00 kg que al cabo de 4 segundos se encuentra en la posición indicada por la fig.. El diámetro de la boya B es de m. a) En la fotografía, mide el diámetro de la boya L = cm. Determina el factor de escala f 00cm L

2 b) En la fotografía, se ha dibujado un vector que parte del origen de coordenadas y termina en la aleta del delfín. Teniendo en cuenta el factor de escala determina el módulo de ese vector. r = c) Determina el ángulo que forma ese vector con el eje de abscisas. d) Calcula las componentes del vector r respecto de los ejes coordenados dibujados en al fotografía x ; y e) En la fotografía, mide el diámetro de la boya L = cm. Determina el factor de escala f 00cm L f) En la fotografía, se ha dibujado un vector que parte del origen de coordenadas y termina en la aleta del delfín. Teniendo en cuenta el factor de escala determina el módulo de ese vector. r = g) Determina el ángulo que forma ese vector con el eje de abscisas. h) Calcula las componentes del vector r respecto de los ejes coordenados dibujados en al fotografía x ; y i) A partir de los datos obtenidos anteriormente determina el vector desplazamiento del delfín entre las fotografías y. d j ) Calcula el vector velocidad media del delfín v k) Calcula el módulo de la velocidad media del delfín v= l) Calcula la energía cinética promedio del delfín entre las fotografías y.

3 SOLUCIÓN: a) En la fotografía, mide el diámetro de la boya L = 3, cm. Determina el factor de escala 00cm 00 f L 3, b) En la fotografía, se ha dibujado un vector que parte del origen de coordenadas y termina en la aleta del delfín. Teniendo en cuenta el factor de escala determina el módulo de ese vector. 00 r = 8,9cm 78cm,78 m 3, c) Determina el ángulo que forma ese vector con el eje de abscisas. 40º d) Calcula las componentes del vector r respecto de los ejes coordenados dibujados en al fotografía x,78.cos 40º i,3i ; y,78 sen 40º j,79 j e) En la fotografía, mide el diámetro de la boya L = 3,0 cm. Determina el factor de escala 00cm 00cm f L 3,0cm f) En la fotografía, se ha dibujado un vector que parte del origen de coordenadas y termina en la aleta del delfín. Teniendo en cuenta el factor de escala determina el módulo de ese vector. 00 r = 0,3cm 343cm 3,43m 3,0 g) Determina el ángulo que forma ese vector con el eje de abscisas. 0º h) Calcula las componentes del vector r respecto de los ejes coordenados dibujados en al fotografía x 3,43 cos0º i 3, i ; y 3, sen 0º j,0 j i) A partir de los datos obtenidos anteriormente determina el vector desplazamiento del delfín entre las fotografías y. x x y y 3,,3 i,0,79 j,09 i 0,69 j d j) Calcula el vector velocidad media del delfín d,09 i 0,69 j v 0,7 i 0,3 j Δt 4 m s k) Calcula el módulo de la velocidad del delfín v 0, 7 03, 0, 30 m s

4 l) Calcula la energía cinética promedio del delfín entre las fotografías y. E m v C 00 0,30 9,0J

5 PVF8-*.Plano inclinado antiguo Fig. Fotografía. La fotografía es la de un plano inclinado didáctico de los que se conservan en los gabinetes de física. Sobre el plano inclinado está situado un cuerpo A de masa m A =40 gramos. El cuerpo B lo forman un portapesas y una pesa y la masa de ambos es: m B = 0 gramos. La cuerda forma un ángulo de 0 º con el plano y el ángulo del plano con la horizontal es 5º. El sistema se encuentra en equilibrio. Se admite que entre la cuerda y la polea no hay rozamiento y que la masa de la poles es despreciable. Dato g = 9,8 m/s Calcular: a) Las fuerzas que actúan sobre la masa B que se encuentra en equilibrio b) La fuerza F B con que la cuerda actúa sobre el cuerpo A. c) La componente de la fuerza F B proyectada en la dirección del plano, F H d) La componente de la fuerza F B proyectada en dirección perpendicular al plano. F V e) El peso de la masa A f) La componente del peso de la masa A perpendicular al plano F AP g) La componente del peso de la masa A paralela al plano F AV h) Considerando dos ejes cartesianos, el X paralelo al plano y el Y perpendicular al plano indicar las fuerzas medidas sobre esos ejes que actúan sobre la masa A. Hacer un esquema de esas fuerzas. i) El coeficiente de rozamiento estático del cuerpo A con el plano inclinado.

6 SOL a) Sobre la masa B actúan dos fuerzas: una en dirección vertical y hacia abajo que es el peso de la masa B y otra en sentido vertical y hacia arriba del mismo valor que el peso de B y que se denomina tensión de la cuerda. T m g 0 B T mg ,8 0,96 N b) La polea se limita a cambiar la dirección de la fuerza T. Sobre la masa A, la cuerda ejerce una fuerza de T= F B =0,96 N en la dirección de la cuerda y en sentido ascendente como se indica en la figura inferior. c) Observando la figura del apartado b) se deduce que F H F B cos0º 0,96 cos 0º 0,84 N d) Observando la figura del apartado b) se deduce que F V F B sen 0º 0,96 sen 0º 0,067 N 3 e) El peso de la masa A es : P m g ,8 0,39 N A A f) Observando la figura inferior se deduce que:

7 F AP P A cos5º 0,39 cos5º 0,379 N g) Observando la figura el apartado f) se deduce que: F AV P A sen5º 0,39 sen5º 0,0N h) En la figura inferior se indican las fuerzas y la dirección y sentido en que actúan En la figura están las componentes sobre los ejes de F B (F H y F V ) y las componentes del peso P A (F AP y F AV ). Además está, la fuerza N que es la fuerza con que el plano inclinado empuja al cuerpo A y la fuerza de rozamiento F R = N, que se produce entre el cuerpo A y el plano inclinado.

8 i) Al estar la cuerpo A en equilibrio las sumas de las fuerzas sobre los ejes X e Y han de ser nulas. F H F N F V R F F AP AV 0 0 Sustituyendo en las ecuaciones anteriores los valores numéricos resulta: 0,84 μn 0,0 0 N 0,067 0,379 0 N 0,379-0,067 0,3 N Llevando el valor de N a la primera ecuación 0,84 0,0 0,84 μ 0,3 0,0 0 μ 0,7 0,3

9 PVF8-3* *. Osciloscopio en CA Fotografía En un circuito de corriente alterna CA, el generador se caracteriza porque entre sus bornes la diferencia de potencial varía con el tiempo y en el caso de las CA sinusoidales el voltaje se representa mediante una función armónica (seno o coseno). El voltaje entre los bornes de un generador de CA se puede visualizar con un aparato llamado osciloscopio.(fotografía ). Con un polímetro se mide una de las características, que luego veremos, de la corriente alterna y que se denomina voltaje eficaz. En la fotografía se ve un osciloscopio y un polímetro, los cuales están unidos a un circuito de CA. Observe que en la pantalla del osciloscopio aparece una traza ondulada, esto es, la señal de una corriente alterna sinusoidal, mientras que en el polímetro aparece un número A la derecha de la pantalla del osciloscopio, en la figura, se observan tres diales, el superior se refiere a tiempos y los dos inferiores a voltajes. Estos diales sirven para controlar la pantalla y realizar medidas cuantitativas, tal como se hace a continuación. En la fotografía aparece aumentada de tamaño la pantalla de la fotografía y al lado el dial (Foto.), cuya rayita blanca está colocada en 5 Voltios. Esto significa que la distancia vertical de un cuadrado de la pantalla vale 5 voltios. El número 6,8 V (foto.3) es lo que indica el polímetro de la fotografía.

10 Fig. Fotografía. Fotografía. Fotografía.3 a) Haz una fotocopia de la fotografía.. Determina el factor de escala vertical, para ello mide la distancia en vertical de seis cuadrados. L= cm. Como cada lado del cuadrado en vertical son 5 voltios. f 30V L b) Mide sobre la pantalla la distancia entre un máximo y un mínimo de la traza ondulada. El máximo se ha señalado con la letra A y el mínimo con la letra B. D = cm c) El voltaje pico a pico de la corriente alterna es la distancia medida en voltios entre un máximo y un mínimo. Calcula el voltaje pico a pico de la corriente visualizada en la pantalla. Vpp= El voltaje máximo es el voltaje pico a pico dividido por. Calcula el voltaje máximo de la CA visualizada en pantalla Vm= e) El voltaje eficaz se obtiene dividiendo el voltaje máximo por la raíz cuadrada de. Calcula el voltaje eficaz de la CA visualizada en pantalla. Vef= Compara el voltaje eficaz medido con el osciloscopio con el indicado por el polímetro.

11 Observa la figura 3. es una señal de una corriente alterna que aparece en la pantalla del osciloscopio. A su derecha está la fotografía 3. del dial que controla el voltaje. Fotografía 3. Fotografía.3. Teniendo en cuenta en qué lugar está la rayita blanca del dial, determina el voltaje pico a pico, el máximo y el eficaz, para la señal que aparece en la pantalla (fotografía 3..

12 SOLUCIÓN a) Haz una fotocopia de la fotografía.. Determina el factor de escala vertical, para ello mide la distancia en vertical de seis cuadrados. L= 5,0 cm. Como cada lado del cuadrado en vertical son 5 voltios. El factor de escala depende del tamaño de la fotocopia f 30V L 30V 5,0cm b) Mide sobre la pantalla la distancia entre un máximo y un mínimo de la traza ondulada. El máximo se ha señalado con la letra A y el mínimo con la letra B. D =3,3 cm c) El voltaje pico a pico de la corriente alterna es la distancia medida en voltios entre un máximo y un mínimo. Calcula el voltaje pico a pico de la corriente visualizada en la pantalla. 30V Vpp= 3,3cm 9,8 V 5,0cm El voltaje máximo es el voltaje pico a pico dividido por. Calcula el voltaje máximo de la CA visualizada en pantalla 9,8V Vm= 9,9 V e) El voltaje eficaz se obtiene dividiendo el voltaje máximo por la raíz cuadrada de. Calcula el voltaje eficaz de la CA visualizada en pantalla. 9,9V Vef= 7,0 V El polímetro indica el voltaje eficaz (Vef) y marca 6,8 V. La diferencia entre una medida y otra se debe a los errores inevitables que se cometen al realizar las medidas. Teniendo en cuenta en qué lugar está la rayita blanca del dial, determina el voltaje pico a pico, el máximo y el eficaz, para la señal que aparece en la pantalla (fotografía 3..) Observando la fotografía 3, se deduce que ahora un el lado vertical de un cuadrado de la pantalla equivale a voltio La distancia en vertical de seis cuadrados es: L=4,6 cm. El factor de escala: f 6V 4,6cm. D =3, cm Vpp 3,cm 6V 4,6cm 4,0 V ; Vm 4,0V,0V ; Vef,0V,4V

PVF12-1** Caída de una esfera de acero en glicerina

PVF12-1** Caída de una esfera de acero en glicerina PVF1-1** Caída de una esfera de acero en glicerina Esta fotografía corresponde a una bola de acero cayendo en glicerina. La bola aparece en la fotografía como una mancha brillante. Entre dos posiciones

Más detalles

Iniciación a la corriente alterna I Fundamento

Iniciación a la corriente alterna I Fundamento Iniciación a la corriente alterna I Fundamento Un generador de corriente continua se caracteriza porque entre sus bornes se establece una diferencia de potencial constante con el tiempo. Un borne está

Más detalles

Física e Química 1º Bach.

Física e Química 1º Bach. Física e Química 1º Bach. Dinámica 15/04/11 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Resuelve dos de los siguientes Problemas 1. Un cuerpo de 2,0 kg de masa reposa sobre un plano inclinado 30º unido por

Más detalles

PROBLEMAS VISUALES DE FÍSICA Y QUÍMICA FÍSICA. Problema 1

PROBLEMAS VISUALES DE FÍSICA Y QUÍMICA FÍSICA. Problema 1 PROBLEMAS VISUALES DE FÍSICA Y QUÍMICA FÍSICA Problema 1 Las dos fotografías de un carguero se tomaron con un intervalo de 20s, tomando el eje de referencia vertical dado, y conociendo que su eslora real

Más detalles

Examen parcial de la 3ª evaluación de 4º ESO C

Examen parcial de la 3ª evaluación de 4º ESO C Examen parcial de la 3ª evaluación de 4º ESO C Nombre: Fecha: 1. Francisco empuja una caja de 80 kg utilizando una fuerza horizontal de 100 N que es paralela al suelo, también horizontal. Su hermana Susana

Más detalles

DINÁMICA II - Aplicación de las Leyes de Newton

DINÁMICA II - Aplicación de las Leyes de Newton > INTRODUCCIÓN A EJERCICIOS DE FUERZAS Como ya vimos en el tema anterior, las fuerzas se producen en las interacciones entre los cuerpos. La fuerza es la magnitud física vectorial, que nos informa de esas

Más detalles

Fuerza de rozamiento en un plano inclinado

Fuerza de rozamiento en un plano inclinado Fuerza de rozamiento en un plano inclinado En esta página analizamos detalladamente un problema muy común en un curso de Física cuya solución no se suele presentar de forma completa. Un bloque de masa

Más detalles

LAS FUERZAS y sus efectos

LAS FUERZAS y sus efectos LAS FUERZAS y sus efectos Definición de conceptos La Dinámica es una parte de la Física que estudia las acciones que se ejercen sobre los cuerpos y la manera en que estas acciones influyen sobre el movimiento

Más detalles

Fuerza de roce. Multiplicación de vectores. Impulso Momentum Torque Trabajo Potencia

Fuerza de roce. Multiplicación de vectores. Impulso Momentum Torque Trabajo Potencia Multiplicación de vectores Fuerza de roce Impulso Momentum Torque Trabajo Potencia Disipación de energía y roce. Coeficientes de roce estático y dinámico. Magnitud y dirección de la fuerza de roce en cada

Más detalles

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre:

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: Física moderna 9/11/7 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: 1. Un muelle de constante k =, 1 3 N/m está apoyado en una superficie horizontal sin rozamiento. A 1, m hay un bucle vertical de

Más detalles

3 Movimiento vibratorio armónico

3 Movimiento vibratorio armónico 3 Movimiento vibratorio armónico Actividades del interior de la unidad. Una partícula que oscila armónicamente inicia su movimiento en un extremo de su trayectoria y tarda 0, s en ir al centro de esta,

Más detalles

Magnitudes y Unidades. Cálculo Vectorial.

Magnitudes y Unidades. Cálculo Vectorial. Magnitudes y Unidades. Cálculo Vectorial. 1. Se tiene las expresiones siguientes, x es posición en el eje X, en m, v la velocidad en m/s y t el tiempo transcurrido, en s. Cuáles son las dimensiones y unidades

Más detalles

Examen global del 3 er trimestre de 4º ESO C

Examen global del 3 er trimestre de 4º ESO C Examen global del 3 er trimestre de 4º ESO C Nombre: Fecha: 1. Desde el comienzo de un plano inclinado 30º se sube por el plano, con una fuerza F=180 N paralela al plano, una caja de 30 kg, hasta una altura

Más detalles

Ejercicios de Física 4º de ESO

Ejercicios de Física 4º de ESO Ejercicios de Física 4º de ESO 1. Sobre un cuerpo actúan dos fuerzas de la misma dirección y sentidos contrarios de 36 y 12 N Qué módulo tiene la fuerza resultante? Cuál es su dirección y su sentido? R

Más detalles

Física Ondas 10/11/06

Física Ondas 10/11/06 Física Ondas 10/11/06 I.E.S. Elviña DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre Problemas [5 Ptos.] 1. Para el proyectil de la figura, calcula: (a) El vector velocidad con que se incrusta en el suelo. [1]

Más detalles

FÍSICA. 2º BCN CONTROL BLOQUE I Examen 1

FÍSICA. 2º BCN CONTROL BLOQUE I Examen 1 Examen 1 1. La ley de la gravitación universal de Newton. 2. Dibuja la órbita de un planeta alrededor del Sol y las fuerzas que intervienen en el movimiento de aquél, así como la velocidad del planeta

Más detalles

TEMA 8. FUERZAS FÍSICA Y QUÍMICA 4º ESO

TEMA 8. FUERZAS FÍSICA Y QUÍMICA 4º ESO TEMA 8. FUERZAS FÍSICA Y QUÍMICA 4º ESO 1. Introducción. 2. La fuerza es un vector. 2.1. Fuerza resultante. 2.2. Composición de fuerzas. 2.3. Descomposición de una fuerza sobre dos ejes perpendiculares.

Más detalles

A) Composición de Fuerzas

A) Composición de Fuerzas A) Composición de Fuerzas 2. Representa las fuerzas que actúan mediante vectores y halla la fuerza resultante en cada caso: a) Dos fuerzas de la misma dirección y sentido contrario de 5 N y 12 N. b) Dos

Más detalles

EJERCICIOS DE DINÁMICA DE ROTACIÓN.-

EJERCICIOS DE DINÁMICA DE ROTACIÓN.- SEDINOT -10 1 UNIVESIDAD DE VALPAAISO FACULTADE CIENCIAS INSTITUTO DE MATEMATICAS Y FÍSICA EJECICIOS DE DINÁMICA DE OTACIÓN.- 1. Una varilla de longitud "L" está pivoteada en O, se aplican 3 fuerzas, tal

Más detalles

20 [kg] Fuerza friccional = 20 N 60 [kg] 3. Resultado: Resultado:2 m/s 2

20 [kg] Fuerza friccional = 20 N 60 [kg] 3. Resultado: Resultado:2 m/s 2 1. 1. (OI febrero 01) Dos bloques situados sobre una superficie horizontal lisa (rozamiento despreciable) son empujados hacia la derecha por una fuerza. La fuerza que el bloque de mayor masa ejerce sobre

Más detalles

PRUEBA ESPECÍFICA PRUEBA 2017

PRUEBA ESPECÍFICA PRUEBA 2017 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES PRUEBA ESPECÍFICA PRUEBA 2017 PRUEBA SOLUCIONARIO Aclaraciones previas: Tiempo de duración de la prueba: 1 hora Contesta 4 de los 5 ejercicios propuestos (Cada

Más detalles

Regresar Wikispaces. Siglo XXI

Regresar Wikispaces. Siglo XXI ísica IV 1 Serie de uerza y Estática Regresar ikispaces Siglo XXI 1. Un cuerpo de 25 kp cuelga del extremo de una cuerda. Hallar la aceleración de dicho cuerpo si la tensión en la cuerda es de: a) 25 kp

Más detalles

Unidad 4. Dinámica de la partícula

Unidad 4. Dinámica de la partícula Unidad 4. Dinámica de la partícula Qué es una fuerza? Una influencia externa sobre un cuerpo que causa su aceleración con respecto a un sistema de referencia inercial. La fuerza F se define en función

Más detalles

FÍSICA GENERAL I GUIA DE TRABAJOS PRÁCTICOS Nº 2

FÍSICA GENERAL I GUIA DE TRABAJOS PRÁCTICOS Nº 2 FÍSICA GENERAL I - 2017 GUIA DE TRABAJOS PRÁCTICOS Nº 2 Problema 1: Dos cuerdas A y B soportan un cuerpo cúbico de 20 cm de lado y una masa de 100 kg. Un extremo de la cuerda A está unido a una pared y

Más detalles

PROBLEMAS VISUALES DE FÍSICA 4. Problema 1. Foto 1. Foto 2

PROBLEMAS VISUALES DE FÍSICA 4. Problema 1. Foto 1. Foto 2 PROBLEMAS VISUALES DE FÍSICA 4 Problema 1 Foto 1 Foto Las dos fotografías de un barco de asalto anfibio se tomaron con un intervalo de 10s, tomando el eje de referencia vertical dado, y conociendo que

Más detalles

GRADO EN INGENIERIA INFORMATICA FÍSICA HOJA 1. Conceptos de cinemática y dinámica.

GRADO EN INGENIERIA INFORMATICA FÍSICA HOJA 1. Conceptos de cinemática y dinámica. 1. Un objeto experimenta una aceleración de 3 m/s cuando sobre él actúa una fuerza uniforme F 0. a) Cuál es su aceleración si la fuerza se duplica? b) Un segundo objeto experimenta una aceleración de 9

Más detalles

Cinemática: parte de la Física que estudia el movimiento de los cuerpos.

Cinemática: parte de la Física que estudia el movimiento de los cuerpos. CINEMÁTICA Cinemática: parte de la Física que estudia el movimiento de los cuerpos. Movimiento: cambio de posición de un cuerpo respecto de un punto de referencia que se supone fijo. Objetivo del estudio

Más detalles

( ) 2 = 0,3125 kg m 2.

( ) 2 = 0,3125 kg m 2. Examen de Física-1, 1 Ingeniería Química Examen final Enero de 2014 Problemas (Dos puntos por problema) Problema 1: Un bloque de masa m 1 2 kg y un bloque de masa m 2 6 kg están conectados por una cuerda

Más detalles

PROBLEMAS VISUALES DE FÍSICA PVF27-1*- Fotografía 1. Fotografía 2. Fotografía 3

PROBLEMAS VISUALES DE FÍSICA PVF27-1*- Fotografía 1. Fotografía 2. Fotografía 3 PROBLEMAS VISUALES DE FÍSICA PVF7-1*- Fotografía 1 Fotografía Fotografía 3 Las fotografías dadas, corresponden al vuelo de un helicóptero apagaincendios A, de 14,0m de longitud del que cuelga la vasija

Más detalles

Física y Química 1º Bachillerato LOMCE. FyQ 1. Tema 10 Trabajo y Energía. Rev 01. Trabajo y Energía

Física y Química 1º Bachillerato LOMCE. FyQ 1. Tema 10 Trabajo y Energía. Rev 01. Trabajo y Energía Física y Química 1º Bachillerato LOMCE IES de Castuera Tema 10 Trabajo y Energía FyQ 1 2015 2016 Rev 01 Trabajo y Energía 1 El Trabajo Mecánico El trabajo mecánico, realizado por una fuerza que actúa sobre

Más detalles

1- Determina el módulo y dirección de la resultante de los siguientes

1- Determina el módulo y dirección de la resultante de los siguientes PROBLEMAS DE DINÁMICA 1- Determina el módulo y dirección de la resultante de los siguientes r sistemas r r de r fuerzas: r r r r r r r r r r r a) F 1 = 3i + 2j ; F 2 = i + 4j ; F 3 = i 5j b) F 1 = 3i +

Más detalles

DINÁMICA. Un cuerpo modifica su velocidad si sobre él se ejerce una acción externa.

DINÁMICA. Un cuerpo modifica su velocidad si sobre él se ejerce una acción externa. DINÁMICA La Dinámica es la parte de la Física que estudia las acciones que se ejercen sobre los cuerpos y la manera en que estas acciones influyen sobre el movimiento de los mismos. Un cuerpo modifica

Más detalles

FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA

FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA Prof. Olga Garbellini Dr. Fernando Lanzini Para resolver problemas de dinámica es muy importante seguir un orden, que podemos resumir en los

Más detalles

E1.3: Energía mecánica

E1.3: Energía mecánica I.E.S. ARQUITECTO PEDRO GUMIEL Física y Química BA1 E1.3: Energía mecánica 1. Se deja caer verticalmente una piedra de kg desde 50 m de altura. Calcula: a) Su energía mecánica en el punto inicial. En el

Más detalles

a) el momento de inercia de la rueda, b) el momento de la fuerza de fricción y c) el número total de revoluciones hechas por la rueda en los 110 s.

a) el momento de inercia de la rueda, b) el momento de la fuerza de fricción y c) el número total de revoluciones hechas por la rueda en los 110 s. Dinámica de sistemas en rotación 1) Momento y aceleración angular. Sobre una rueda actúa durante 10 s un momento constante de 20 N m, y durante ese tiempo la velocidad angular de la rueda crece desde cero

Más detalles

4.2. FUERZAS Y MOMENTOS EN DINÁMICA DE ROTACIÓN.

4.2. FUERZAS Y MOMENTOS EN DINÁMICA DE ROTACIÓN. 4.2. FUERZAS Y MOMENTOS EN DINÁMICA DE ROTACIÓN. 4.2.1. El momento de inercia de un cilindro respecto del eje que pasa por el centro de sus bases es mr 2 /2, siendo m su masa y R el radio. Si se aplica

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Fuerzas

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Fuerzas 1(8) Ejercicio nº 1 Una fuerza de 45 N actúa sobre un cuerpo de 15 kg, inicialmente en reposo, durante 10 s. Calcular la velocidad final del cuerpo. Ejercicio nº 2 Sobre un cuerpo de 75 kg actúa una fuerza

Más detalles

Distancia focal de una lente convergente (método del desplazamiento) Fundamento

Distancia focal de una lente convergente (método del desplazamiento) Fundamento Distancia focal de una lente convergente (método del desplazamiento) Fundamento En una lente convergente delgada se considera el eje principal como la recta perpendicular a la lente y que pasa por su centro.

Más detalles

PROBLEMAS VISUALES DE FÍSICA. PVF25-1**- Bola de acero en un plano inclinado **

PROBLEMAS VISUALES DE FÍSICA. PVF25-1**- Bola de acero en un plano inclinado ** POBLMAS VISUALS D FÍSICA PVF5-**- Bola de acero en un plano inclinado ** La fotografía estroboscópica corresponde a una bola desplazándose hacia abajo de un plano inclinado de ángulo 70º. La bola es de

Más detalles

INSTITUTO TECNOLOGICO DE SALTILLO

INSTITUTO TECNOLOGICO DE SALTILLO INSTITUTO TECNOLOGICO DE SALTILLO SEGUNDA LEY DE NEWTON PROBLEMAS COMPLEMENTARIOS 1.- Se muestran 3 bloques de masas m1 = 2 kg. m2 = 3 kg. m3 = 8 kg. Si se supone nulo el roce, calcular la aceleración

Más detalles

Iniciación a la corriente alterna II Solucionario

Iniciación a la corriente alterna II Solucionario Iniciación a la corriente alterna II Solucionario a) Voltaje pico a pico y voltaje eficaz En la fotografía se ha unido al osciloscopio un generador de frecuencias que proporciona corriente alterna senoidal,

Más detalles

1. Triángulos semejantes. 2. Las razones trigonométricas. 3. Las leyes de Newton. 4. La ley de la gravitación universal Teorema de Pitágoras

1. Triángulos semejantes. 2. Las razones trigonométricas. 3. Las leyes de Newton. 4. La ley de la gravitación universal Teorema de Pitágoras 1. Triángulos semejantes 1.1. Teorema de Pitágoras 1.2. Semejanza de triángulos 2. Las razones trigonométricas 2.1. Definición 2.2. Relación fundamental de la trigonometría 2.3. Resolución de triángulos

Más detalles

PULSACIONES. Fundamento

PULSACIONES. Fundamento PULSACIONES Fundamento En la fig.1 se encuentra el esquema de un dispositivo eléctrico que consta de dos generadores de corriente alterna que producen ondas sinusoidales. Se observa cómo se han unido entre

Más detalles

II - MOVIMIENTO: TAREAS - resueltas

II - MOVIMIENTO: TAREAS - resueltas II - MOVIMIENTO: TAREAS - resueltas Movimiento en dos dimensiones en la superficie de la tierra. II.1 En los campeonatos mundiales de lanzamiento de huesos de olivas de 2005 celebrados en Cieza, Juanjo

Más detalles

DINÁMICA. m 3 m 2 m 1 T 2 T 1 50N. Rpta. a) 2,78m/s 2 b) T 1 =38,9N y T 2 = 22,2N

DINÁMICA. m 3 m 2 m 1 T 2 T 1 50N. Rpta. a) 2,78m/s 2 b) T 1 =38,9N y T 2 = 22,2N DINÁMICA 1. Sobre una masa de 2Kg actúan tres fuerzas tal como se muestra en la figura. Si la aceleración del bloque es a = -20i m/s 2, determinar: a) La fuerza F 3. Rpta. (-120i-110j)N b) La fuerza resultante

Más detalles

DEPARTAMENTO DE FÍSICA Y QUÍMICA 1

DEPARTAMENTO DE FÍSICA Y QUÍMICA 1 Asignatura: FÍSICA Y QUÍMICA EJERCICIOS DE AMPLIACIÓN - SOLUCIONES Fecha finalización: Viernes, 3 de diciembre de 2010 Nombre y Apellidos JRC 1 Resuelve los siguientes apartados: a) Se tiene una fuerza

Más detalles

B. REPASO DE MECÁNICA ÍNDICE

B. REPASO DE MECÁNICA ÍNDICE BACHILLERATO FÍSICA B. REPASO DE MECÁNICA R. Artacho Dpto. de Física y Química B. REPASO DE MECÁNICA ÍNDICE 1. Las magnitudes cinemáticas 2. Movimientos en una dimensión. Movimientos rectilíneos 3. Movimientos

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 014 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Un cuerpo de masa 10 g se desliza bajando por un plano inclinado

Más detalles

Olimpiadas de Física Córdoba 2010

Olimpiadas de Física Córdoba 2010 E n el interior encontrarás las pruebas que componen esta fase local de las olimpiadas de Física 2010. Están separadas en tres bloques. Uno relativo a dinámica y campo gravitatorio (obligatorio) y otros

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Estudio del movimiento armónico simple. Desde el punto de vista dinámico, es el movimiento de una partícula que se mueve sobre una recta, sometida a la acción de una fuerza atractiva

Más detalles

DINÁMICA. Física 1º bachillerato Dinámica 1

DINÁMICA. Física 1º bachillerato Dinámica 1 DINÁMICA 1. Fuerzas. 2. Principios de la dinámica. 3. Momento lineal (o cantidad de movimiento). 4. Impulso mecánico. 5. Interacción gravitatoria. 6. Fuerza centrípeta. 7. Fuerza elástica. 8. Fuerza de

Más detalles

1. Calcúlese la posición del centro de masas de la letra L mayúscula, de densidad de masa superficial homogénea, mostrada en la figura.

1. Calcúlese la posición del centro de masas de la letra L mayúscula, de densidad de masa superficial homogénea, mostrada en la figura. 1. Calcúlese la posición del centro de masas de la letra L mayúscula, de densidad de masa superficial homogénea, mostrada en la figura. Solución: x C = 1,857 cm; yc= 3,857cm (medidas respecto a la esquina

Más detalles

BOLETÍN EJERCICIOS TEMA 2 FUERZAS

BOLETÍN EJERCICIOS TEMA 2 FUERZAS BOLETÍN EJERCICIOS TEMA 2 FUERZAS 1. Al aplicar una fuerza de 20 N sobre un cuerpo adquiere una aceleración de 4 m/s 2. Halla la masa del cuerpo. Qué aceleración adquirirá si se aplica una fuerza de 100

Más detalles

Teniendo en cuenta las fuerzas que actúan sobre cada eje, podemos plantear:

Teniendo en cuenta las fuerzas que actúan sobre cada eje, podemos plantear: 4. Dos bloques están en contacto sobre una mesa como muestra la figura. Si se le aplica una fuerza constante: 1) horizontal y 2) formando un ángulo de 30 con la horizontal, despreciando el rozamiento calcular:

Más detalles

TEMA 0: INTRODUCCIÓN

TEMA 0: INTRODUCCIÓN TEMA 0: INTRODUCCIÓN 0.1 CÁLCULO VECTORIAL... 2 0.2 DERIVADAS E INTEGRALES... 6 0.3 REPASO DE CINEMÁTICA Y DINÁMICA... 9 Física 2º Bachillerato 1/21 Tema 0 0.1 CÁLCULO VECTORIAL 0.1.1 MAGNITUDES ESCALARES

Más detalles

Física 2º Bachillerato Curso Cuestión ( 2 puntos) Madrid 1996

Física 2º Bachillerato Curso Cuestión ( 2 puntos) Madrid 1996 1 Cuestión ( 2 puntos) Madrid 1996 Un protón y un electrón se mueven perpendicularmente a un campo magnético uniforme, con igual velocidad qué tipo de trayectoria realiza cada uno de ellos? Cómo es la

Más detalles

Seminario de Física. 2º bachillerato LOGSE. Unidad 2. Campo Eléctrico. A) Interacción Electrostática: Principio de Superposición de campos eléctricos.

Seminario de Física. 2º bachillerato LOGSE. Unidad 2. Campo Eléctrico. A) Interacción Electrostática: Principio de Superposición de campos eléctricos. A) Interacción Electrostática: Principio de Superposición de campos eléctricos. 1.- La distancia entre el electrón y el protón en el átomo de hidrógeno es 5,3 10-11 m. Compara los módulos de las fuerzas

Más detalles

Estática. Fig. 1. Problemas números 1 y 2.

Estática. Fig. 1. Problemas números 1 y 2. Estática 1. Un bote está amarrado mediante tres cuerdas atadas a postes en la orilla del río, tal como se indica en la figura 1(a). La corriente del río ejerce una fuerza sobre este bote en la dirección

Más detalles

EJERCICIOS DEL CAPÍTULO 5 - CAMPOS ESCALARES Y VECTORIALES. C5. 1 Hallar el momento del vector v respecto al punto M (2, 1, 1), siendo v = - grad φ en

EJERCICIOS DEL CAPÍTULO 5 - CAMPOS ESCALARES Y VECTORIALES. C5. 1 Hallar el momento del vector v respecto al punto M (2, 1, 1), siendo v = - grad φ en EJERCICIOS DEL CAPÍTULO 5 - CAMPOS ESCALARES Y VECTORIALES C5. 1 Hallar el momento del vector v respecto al punto M (2, 1, 1), siendo v = - grad φ en el punto P (1, 3, 0) y siendo φ=. C5. 2 Dado un campo

Más detalles

PRUEBA DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS PRUEBA ESPECÍFICA

PRUEBA DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS PRUEBA ESPECÍFICA PRUEBA DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 5 AÑOS FÍSICA 1.- Cuál es el período de un péndulo simple de 1 m de longitud? a) 4 s b) 8 s c) s d) 6 s.- Un cuerpo de 15 kg se deja caer por un plano

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividades del final de la unidad. Un cuerpo baja por un plano inclinado y sube, a continuación, por otro con igual inclinación, alcanzando en ambos la misma altura al deslizar sin rozamiento. Este movimiento,

Más detalles

Fr = 12,5 N. F t P t F r = ma. a = (80 Nx kg x 9,8 m/s 2 x 0,5 12,5 N) / 10 kg. a = 0,778 m/s 2

Fr = 12,5 N. F t P t F r = ma. a = (80 Nx kg x 9,8 m/s 2 x 0,5 12,5 N) / 10 kg. a = 0,778 m/s 2 PRIMER PROBLEMA En un plano inclinado 30º sobre la horizontal hay un cuerpo de 10 kg. Sobre dicho cuerpo actúa una fuerza horizontal de 80 N. El coeficiente de rozamiento entre plano y cuerpo es de 0,1.

Más detalles

EXAMEN DE FISICA I (GTI)

EXAMEN DE FISICA I (GTI) EXAMEN DE FISICA I GTI) 6-9-07 CUESTIONES ) a) Relación entre las coordenadas espaciales, velocidades y aceleraciones en el movimiento relativo de traslación uniforme Transformaciones Galileanas) 06) b)

Más detalles

PRUEBA ESPECÍFICA PRUEBA 201

PRUEBA ESPECÍFICA PRUEBA 201 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES PRUEBA ESPECÍFICA PRUEBA 201 PRUEBA SOLUCIONARIO Aclaraciones previas: Tiempo de duración de la prueba: 1 hora Contesta 4 de los 5 ejercicios propuestos (Cada

Más detalles

EXAMEN FINAL DE FÍSICA I ( ) TOPOGRAFÍA

EXAMEN FINAL DE FÍSICA I ( ) TOPOGRAFÍA EXAMEN FINAL DE FÍSICA I (31-1-0) TOPOGRAFÍA Apellidos:...Nombre:... La duración del examen es de 3 oras. Cada problema está valorado sobre 10 puntos. Problema 1.- Un cuerpo de masa 50 kg se apoya sobre

Más detalles

1. El objeto que se muestra en la figura está en equilibrio y tiene un peso W = 80 N. Encuéntrense las tensiones T 1, T 2, T 3 y T 4.

1. El objeto que se muestra en la figura está en equilibrio y tiene un peso W = 80 N. Encuéntrense las tensiones T 1, T 2, T 3 y T 4. TALLER DE DINÁMICA 1. El objeto que se muestra en la figura está en equilibrio y tiene un peso W = 80 N. Encuéntrense las tensiones T 1, T 2, T 3 y T 4. Respuestas: (T1 =37 N; T2=88 N; T 3 =77 N; T4=139

Más detalles

Física 2º Bto. (A y B) Movimiento ondulatorio. Campos gravitatorio y eléctrico 19 marzo 2008

Física 2º Bto. (A y B) Movimiento ondulatorio. Campos gravitatorio y eléctrico 19 marzo 2008 Alumno o alumna: Puntuación: 1. El oscilador armónico Una partícula de 1,4 kg de masa se conecta a un muelle de masa despreciable y constante recuperadora k = 15 N/m, de manera que el sistema se mueve

Más detalles

Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía

Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía Física y Química 1º Bachillerato LOMCE Bloque 3: Trabajo y Energía Trabajo y Energía 1 El Trabajo Mecánico El trabajo mecánico, realizado por una fuerza que actúa sobre un cuerpo que experimenta un desplazamiento,

Más detalles

Julián Moreno Mestre tlf

Julián Moreno Mestre  tlf www.juliweb.es tlf. 69381836 Ejercicios de dinámica, fuerzas (º de ESO/ 1º Bachillerato): 1º Calcular la masa de un cuerpo que al recibir una fuerza de 0 N adquiere una aceleración de 5 m/s. Sol: kg º

Más detalles

EXAMEN DE FISICA I (GTI)

EXAMEN DE FISICA I (GTI) EXAMEN DE FISICA I GI) 5-9-2013 CUESIONES 1) Los vectores 3, 2, 1), 1, 3, 5) y 2, 1, 4), están aplicados en los puntos a 2, 1, 2), b 1, 0, 1) y c 1, 2, 0) respectivamente. Calcular: a) la resultante 0.2).

Más detalles

a) Trazamos el diagrama del sólido libre correspondiente a todo el sistema y aplicamos la ecuación fundamental de la Dinámica: N C m g

a) Trazamos el diagrama del sólido libre correspondiente a todo el sistema y aplicamos la ecuación fundamental de la Dinámica: N C m g 1. res bloques A, B y C de masas 3, 2 y 1 kg se encuentran en contacto sobre una superficie lisa sin rozamiento. a) Qué fuerza constante hay que aplicar a A para que el sistema adquiera una aceleración

Más detalles

Física I. Estática y Dinámica. Leyes de Newton. Ejercicios. Ing. Alejandra Escobar

Física I. Estática y Dinámica. Leyes de Newton. Ejercicios. Ing. Alejandra Escobar Física I Estática y Dinámica. Leyes de Newton. Ejercicios UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA Ing. Alejandra Escobar 15 cm 10 cm 6 cm GUÍA DE EJERCICIOS 1. Encontrar

Más detalles

CONTESTAR: 1 ó 2; 3 ó 4; 6 ó 7; 8 ó 9 ó 10; 5 ó 11

CONTESTAR: 1 ó 2; 3 ó 4; 6 ó 7; 8 ó 9 ó 10; 5 ó 11 NOMBRE APELLIDOS FÍSICA y QUÍMICA 1º DE BACHILLERATO NA 1DA GLOBAL 1ª EVALUACIÓN 015-16 CONTESTAR: 1 ó ; 3 ó 4; 6 ó 7; 8 ó 9 ó 10; 5 ó 11 1- Sobre un cuerpo cuya masa es m = 5,0 kg, actúan una fuerza hacia

Más detalles

UD 2: Dinámica. =40000 kg arrastra dos vagones de masas iguales m V

UD 2: Dinámica. =40000 kg arrastra dos vagones de masas iguales m V IES ARQUITECTO PEDRO GUMIEL BA1 Física y Química UD 2: Dinámica 1. Una máquina de tren de masa m M =40000 kg arrastra dos vagones de masas iguales m V =30000 kg cada uno. Si la aceleración del tren es

Más detalles

EXAMEN DE PRÁCTICA. Física

EXAMEN DE PRÁCTICA. Física EXAMEN DE PRÁCTICA El Examen de práctica tiene como propósito te familiarices con el tipo de preguntas que integran la prueba; es decir, su función es la de ser un recurso de apoyo. Por esta razón, el

Más detalles

TALLER SOBRE EQUILIBRIO

TALLER SOBRE EQUILIBRIO UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE CIENCIAS - ESCUELA DE FÍSICA FÍSICA MECÁNICA (1000019) TALLER SOBRE EQUILIBRIO Preparado por: Diego Luis Aristizábal Ramírez y Roberto Restrepo

Más detalles

Compendio de Problemas e Interrogantes III (Aplicaciones de la Segunda Ley de Newton. Diagrama de Cuerpo Libre)

Compendio de Problemas e Interrogantes III (Aplicaciones de la Segunda Ley de Newton. Diagrama de Cuerpo Libre) U.E.P. INSTITUTO EDUCACIONAL ARAGUA MARACAY - ARAGUA Asignatura: Física Prof.: Jesús Sánchez Interrogantes Compendio de Problemas e Interrogantes III (Aplicaciones de la Segunda Ley de Newton. Diagrama

Más detalles

FICHA 5_1. LEYES DE NEWTON.

FICHA 5_1. LEYES DE NEWTON. 1. Si un cuerpo observamos que se mueve con velocidad constante, podemos asegurar que sobre él no actúan fuerzas? Explicación. No. Si un cuerpo se mueve con velocidad constante, lo que sabemos es que su

Más detalles

PRUEBA ESPECÍFICA PRUEBA 2018

PRUEBA ESPECÍFICA PRUEBA 2018 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES PRUEBA ESPECÍFICA PRUEBA 2018 PRUEBA SOLUCIONARIO Aclaraciones previas Tiempo de duración de la prueba: 1 hora. Responder a cuatro de los siguientes cinco ejercicios:

Más detalles

DINÁMICA. Es la rama de la mecánica que estudia el movimiento de los cuerpos analizando la causa que lo produce.

DINÁMICA. Es la rama de la mecánica que estudia el movimiento de los cuerpos analizando la causa que lo produce. INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : CIENCIAS NATURALES ASIGNATURA: FISICA. NOTA DOCENTE: EDISON MEJIA MONSALVE. TIPO DE GUIA: CONCEPTUAL-EJERCITACION. PERIODO GRADO N FECHA DURACION

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 2018 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 2018 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 018 Problemas (Dos puntos por problema). Problema 1: Un esquiador de 80 kg de masa deja una rampa de salto con una velocidad de 10 m/s formando

Más detalles

Resolución de problemas aplicando leyes de Newton y consideraciones energéticas

Resolución de problemas aplicando leyes de Newton y consideraciones energéticas UIVERSIDAD TECOLÓGICA ACIOAL Facultad Regional Rosario UDB Física Cátedra FÍSICA I Resolución de problemas aplicando lees de ewton consideraciones energéticas 1º) Aplicando lees de ewton (Dinámica) Pasos

Más detalles

TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE

TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE Un movimiento periódico es aquel que describe una partícula cuando las variables posición, velocidad y aceleración de su movimiento toman los mismos valores después de

Más detalles

Física y Química. A = 7 u. B = 5 u

Física y Química. A = 7 u. B = 5 u Introducción Cálculo con Vectores [a] Vectores con la misma dirección y con el mismo sentido El módulo del vector resultante será la suma de los módulos de los vectores participantes. La dirección y el

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 2015 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 2015 Problemas (Dos puntos por problema). Examen de Física-, Ingeniería Química Examen final. Enero de 205 Problemas (Dos puntos por problema). Problema : La posición de una partícula móvil en el plano Oxy viene dada por : x(t) = 2 t 2 y(t) =

Más detalles

Examen Dinámica 1º Bach Nombre y Apellidos:

Examen Dinámica 1º Bach Nombre y Apellidos: Examen Dinámica 1º Bach Nombre y Apellidos: 1. Sobre una masa m actúa una fuerza F produciéndole una aceleración a. Dos fuerzas F, formando un ángulo de 90º, actúan sobre la misma masa y le producen una

Más detalles

PROBLEMAS INTERACCIÓN ELECTROMAGNÉTICA

PROBLEMAS INTERACCIÓN ELECTROMAGNÉTICA PROBLEMAS INTERACCIÓN ELECTROMAGNÉTICA 1) Dadas dos cargas eléctricas positivas, iguales, situadas a una distancia r, calcula el valor que ha de tener una carga negativa situada en el punto medio del segmento

Más detalles

EJERCICIOS SOBRE DINÁMICA: FUERZAS Y MOVIMIENTO

EJERCICIOS SOBRE DINÁMICA: FUERZAS Y MOVIMIENTO EJERCICIOS SOBRE DINÁMICA: FUERZAS Y MOVIMIENTO 1.- Sobre una partícula de masa 500 g actúan las fuerzas F 1 = i 2j y F 2 = 2i + 4j (N). Se pide: a) Dibuje dichas fuerzas en el plano XY. b) La fuerza resultante

Más detalles

3.- LAS FUERZAS (DINÁMICA DE LA PARTÍCULA)

3.- LAS FUERZAS (DINÁMICA DE LA PARTÍCULA) 3.- LAS FUERZAS (DINÁMICA DE LA PARTÍCULA) 1) Clasifica los siguientes cuerpos como elásticos, rígidos o plásticos para una fuerza que puedas hacer con tus manos: a) Muelle e) Taco de madera b) Bloque

Más detalles

Ejercicios de la acción de un campo magnético sobre un conductor rectilíneo

Ejercicios de la acción de un campo magnético sobre un conductor rectilíneo Ejercicios de la acción de un campo magnético sobre un conductor rectilíneo Ejercicio resuelto nº 1 Un conductor rectilíneo de 15 cm de longitud, por el que circula una corriente eléctrica de intensidad

Más detalles

1. Sobre un cuerpo actúan las dos fuerzas que se indican. 2.- Las tres fuerzas de la figura actúan sobre un cuerpo. 200N 30º

1. Sobre un cuerpo actúan las dos fuerzas que se indican. 2.- Las tres fuerzas de la figura actúan sobre un cuerpo. 200N 30º 1. Sobre un cuerpo actúan las dos fuerzas que se indican. 20 N 10 N 150º Halla la fuerza total en módulo, dirección y sentido. 2.- Las tres fuerzas de la figura actúan sobre un cuerpo. 300N 45 º 53 º 200N

Más detalles

F 28º 1200 N ESTÁTICA Y DINÁMICA

F 28º 1200 N ESTÁTICA Y DINÁMICA COLEGIO NUESTRO SEÑOR DE LA BUENA ESPERANZA Asignatura: ISICA 11º Profesor: Lic. EDUARDO DUARTE SUESCÚN TALLER DE ESTÁTICA SITUACIÓN PROBLEMA Cuando un barco de gran tamaño entra a un puerto o atraviesa

Más detalles

Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos:

Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: CONOCIMIENTOS PREVIOS. Vectores.. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Trigonometría. Resolución de ecuaciones de primer grado. Sería

Más detalles

1. Cuántas baldosas cuadradas de 20cm de lado serán necesarias para embaldosar un patio cuadrado de 5,20 m de diagonal?

1. Cuántas baldosas cuadradas de 20cm de lado serán necesarias para embaldosar un patio cuadrado de 5,20 m de diagonal? 1 REPASO Capitulo I 1. Cuántas baldosas cuadradas de 20cm de lado serán necesarias para embaldosar un patio cuadrado de 5,20 m de diagonal? Solución: la sup de cada baldosa es 400 cm 2 y la sup del patio

Más detalles

OLIMPIADA DE FÍSICA. FASE LOCAL UNIVERSIDAD DE JAÉN 15 DE MARZO CUESTIONES

OLIMPIADA DE FÍSICA. FASE LOCAL UNIVERSIDAD DE JAÉN 15 DE MARZO CUESTIONES PRIMERA CUESTIÓN 15 DE MARZO 013. CUESTIONES En una montaña rusa, como la de la figura, la vagoneta arranca sin velocidad inicial de O, desciende por la pista indicada, y tras superar el punto E se frena

Más detalles

Guía 6 DINÁMICA. Pontificia Universidad Católica de Chile Facultad de Física FIS1503 Física General

Guía 6 DINÁMICA. Pontificia Universidad Católica de Chile Facultad de Física FIS1503 Física General Pontificia Universidad Católica de Chile Facultad de Física FIS1503 Física General Guía 6 DINÁMICA 1. Dos fuerzas F 1 y F 2 actúan sobre un objeto de 5 kg. Si F 1 =20 N y F 2 = 15 N, encuentre la aceleración

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO TERCERA EVALUACIÓN DE FÍSICA A.

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO TERCERA EVALUACIÓN DE FÍSICA A. ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO 2011-2012 TERCERA EVALUACIÓN DE FÍSICA A Nombre: Paralelo: PRIMERA PARTE: Preguntas de opción múltiple (3 puntos c/u) 1)

Más detalles

UD 10. Leyes de la dinámica

UD 10. Leyes de la dinámica UD 10. Leyes de la dinámica 1- Concepto de fuerza. 2- Primer principio de la dinámica. 3- Segundo principio de la dinámica. 4- Tercer principio de la dinámica. 5- Momento lineal. 6- Fuerzas: Peso, Normal,

Más detalles