LABORATORIO NO. 5 SISTEMAS EQUILIBRADOS CUATRO HILOS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "LABORATORIO NO. 5 SISTEMAS EQUILIBRADOS CUATRO HILOS"

Transcripción

1 LABORATORIO NO. 5 SISTEMAS EQUILIBRADOS CUATRO HILOS 4.1. OBJETIVO DEL LABORATORIO OBJETIVO GENERAL. Conocer operativamente el principio de operación de cargas trifásicas equilibradas en un sistema eléctrico trifásico Cuatro Hilos, con neutro físico OBJETIVOS ESPECÍFICOS. Para alcanzar los objetivos generales debemos manejar adecuadamente los siguientes parámetros eléctricos involucrados en la práctica de laboratorio: Operación trifásica de carga resistiva en conexión estrella. Operación trifásica de carga inductiva en conexión estrella. Operación trifásica de carga capacitiva en conexión estrella. Diagramas Fasoriales y Senoidales de cargas trifásicas equilibradas, individuales y globales. Interpretación de la Compleja por Fase y por tres fases Interpretación adecuada de placa de características técnicas de cargas estática y rotatorias Medición de Activa y Reactiva, con la ayuda de vatímetros monofásicos Diagramación Fasorial de s por fase y trifásico Interpretación adecuada del Factor de. Compensación de la Reactiva de un sistema eléctrico trifásico, cuatro hilos PUNTUALIZACIOES TEÓRICAS EQUILIBRIO SENOIDAL IDEAL. Surge la necesidad de discriminar los sistemas equilibrados estrictamente senoidales, ello quiere decir, que tanto la fuente como la carga no contienen distorsión armónica muy pronunciada, es decir podemos explicitar básicamente lo siguiente: Que las tres fuerzas electromotrices generadas sólo dependen temporalmente de la función seno o coseno fundamental más sus desfases respectivos, característica de un sistema trifásico. Que las cargas son lineales ó realmente tienen o poseen un % de THD permisible por norma 5 7 %, según ANSI, CEI, que hacen que se considere a la carga como equilibrado. Aclarado tanto en la fuente como en la carga podemos concluir que un sistema se considera equilibrado si: El desfase entre f.e.m. y/o tensiones de Línea ó de Fase es de 120º. Conexión Estrella. El desfase entre corrientes de Línea ó de Fase es de 120º. Conexión Triángulo. La relación entre Tensiones de Línea y Tensiones de Fase es. Conexión Estrella. La relación entre Corrientes de Línea y Corrientes de Fase es. Conexión Triángulo. Las Impedancias de las tres fases de la carga son iguales, tanto en magnitud como en fase. La diferencia de potencial entre el Neutro fuente y Neutro carga, es igual a cero. Conexión Estrella. Las Tensiones de línea son iguales en magnitud y desfasados entre sí, 120º. Las Tensiones de fase son iguales en magnitud y desfasados entre sí, 120º. Las Corrientes de línea son iguales en magnitud y desfasados entre sí, 120º. Las Corrientes de fase son iguales en magnitud y desfasados entre sí, 120º. La corriente en el neutro es igual a cero. La suma fasorial de corrientes de línea, es igual a cero. -1-

2 La suma fasorial de corrientes de fase, es igual a cero. La suma fasorial de Tensiones de línea, es igual a cero. La suma fasorial de Tensiones de fase, es igual a cero. La suma de dos fasores es igual en magnitud a ellas pero no en fase. La diferencia de dos fasores, es igual a la magnitud de ellas, pero, no se encuentran en fase. En circuitos trifásicos, es necesario tener conocimiento y dominio de los análisis fasoriales y senoidales monofásicos de cargas Resistivas puras, Inductivas puras, Capacitivas puras e Impedancias Inductivas e Impedancias Capacitivas. AN - BN - CN - Son fasores de tensión de fase de la carga Las mismas pueden representarse en forma senoidal ó temporal como: Cuya representación en función del tiempo ó senoidal será: Y cuyo diagrama fasorial de secuencia positiva del circuito será: -2-

3 REDUCCIÓN AL CIRCUITO EQUIVALENTE MONOFÁSICO. A partir de la conexión estrella podemos seguir analizándolo como fuente y como carga en estrella, en el que se puede ver claramente la existencia de tres circuitos independientes con neutro de retorno común para cada circuito, como se puede ver a continuación. Luego podemos escribir las ecuaciones de voltaje de Kirchhoff para cada circuito independiente, en base a los esquemas siguientes por fase: 4.3. MATERIAL Y EQUIPO A UTILIZAR. CARGA CARGA RESISTIVA CARGA INDUCTIVA CARGA CAPACITIVA CARACTERÍSTICAS Lámparas Incandescentes: : 200 W Tensión: 220 V 6 Unidades ( 2/fase) Motor de Inducción: : 3 KW Tensión: 220/380 V Corriente: Frecuencia: 50 Hz Capacitor Monofásico: Capacidad: 24 μf Tensión: 380 V : VA Frecuencia: Hz -3-

4 CARGA CARGA CAPACITIVA CARGA INDUCTIVA CARGA INDUCTIVA CARACTERÍSTICAS Capacitor Monofásico: Capacidad: 40 μf Tensión: 380 V : VA Frecuencia: Hz Motor de Inducción: : 5.5 KW Tensión: 380 V Corriente: 11.8 A Frecuencia: 50 Hz Cos = 0.84 Motor de Inducción: : 2 3 HP Tensión: 220 V Corriente: 8.7/9.5 A Frecuencia: 50 Hz Cos = 0.72/0.85 Velocidad 690/1390 rpm CARGA CARGA INDUCTIVA CARGA INDUCTIVA CARGA INDUCTIVA CARACTERÍSTICAS Motor de Inducción: : 3 KW Tensión: 220/380 V Corriente: 9.57/5.5 A Frecuencia: 50 Hz Cos = 0.82 Motor de Inducción: : 3 KW Tensión: 220/380 V Corriente: 9.57/5.5 A Frecuencia: 50 Hz Cos = 0.82 Motor de Inducción: : 4.4 KW Tensión: 220/380 V Corriente: 14/8.5 A Frecuencia: 50 Hz Cos = 0.82 EQUIPOS DE MEDICIÓN, MATERIAL Y ACCESORIOS Fuente de Alimentación 380 V, 4 Hilos (Tres fases + Neutro) 2 Transformadores trifásicos, reductor de 380/380 V 1 Transformador Trifásico reductor 380/220 V 2 Transformadores de Corriente relación 2.5, 10, 25 / 5 A Multímetro Electrónico, parámetros requeridas, Voltaje, escala 600 V; Corriente, Shunt Amperimétrico 20 A ; Óhmetro, escala 200 Ω Pinza Amperimétrica, Escala A Vatímetro Monofásico: Escalas: Voltaje 300 V, Corriente 5-10 A Calculadora Científica Chicotillos con terminales tipo Tenaza, Banana, Mixto con y sin derivación Alicates: de Fuerza, de Punta, de Corte Destornilladores: Plano y Estrella Pelacable -4-

5 4.4. CIRCUITOS DE ANÁLISIS. FIGURA 1-5-

6 FIGURA 2-6-

7 FIGURA 3-7-

8 4.5. MONTAJE DEL SISTEMA. Sistema de Alimentación: Asegúrese del sistema de alimentación principal, % % 380+ V, 4 Hilos. El sistema bajo prueba, es Estrella 4 Hilos, 380 V, por lo que debemos recurrir a dos transformadores aisladores de 380 a 380 V. Se debe conectar dos transformadores en paralelo para proteger a éstos contra sobrecorriente magnetizantes, para ello suficiente conectar bornes homólogos entre sí, tanto en el arrollamiento primario como en el secundario y las conexiones de ambos arrollamientos deben ser indénticos, es decir, Yy0. Medición de Activa. Vatímetro. Identifique terminales de la bobina de corriente y terminales de la bobina de tensión, en el vatímetro monofásico. Seleccione la escala de 300 V y la corriente de 5 A, ahora, si la corriente supera los 10 A, conecte la bobina de corriente a través de un transformador de corriente, en la relación 25-10:5. Para identificar los lados de ambas bobinas correspondientes a lado de la carga y los correspondientes al lado de la fuente, medir potencia monofásica en un circuito resistivo. Cuando se alimente deberá registrar una potencia positiva, o sea, despliegue normal, ante cualquier despliegue negativo, sólo debe intercambiar terminales de la bobina de corriente lo que era línea ahora, será fuente y viceversa. En base al circuito de la figura 1 conectar el vatímetro monofásico al circuito de prueba, si el registro fuera negativo, sólo intercambiar terminales de la bobina de corriente ó de las bobinas de tensión. Lámparas Incandescentes: Identifique el tablero de trabajo, dónde se encuentran las lámparas incandescentes. Copie fielmente los datos de placa del receptor. Con el multímetro, en la escala de continuidad 200 Ω, probar continuidad de las lámparas seleccionadas para la conexión, recuerde que son dos por fase. Proceda a conectar las cargas, para ello, verifique que cada lámpara posea dos terminales accesibles, principio y final, conecte en paralelo dos de ellas y obtendrá cuatro terminales accesibles donde dos de ellas se encuentran al mismo potencial, consecuencia de la conexión en paralelo y listos para realizar el arreglo estrella. Repita lo mismo con las otras dos fases restantes. Ver Circuito de Análisis. Realice el neutro artificial uniendo un terminal de cada fase, las que se encuentran al mismo potencial, no interesa la polaridad de la carga, con lo que habrá unido las tres fases en un solo punto, denominado neutro. Ahora tiene dos terminales accesible, con el mismo potencial, por fase, más el neutro que acaba de realizar. Conecte a la fuente un terminal común, mismo potencial, a cada fase de la alimentación R,S,T, N. Ver figura 1. Cierre el interruptor principal de la línea energizando su carga, deberán iluminar las lámparas con el flujo luminoso nominal, si existe diferencia de iluminación, fíjese las fases se encuentran desequilibradas y el neutro se encuentra abierto. Si todo resulta normal proceda a levantar las lecturas de los diferentes parámetros eléctricos indicados en la parte de Circuito de Análisis. Realice su trabajo con el respectivo cuidado, la línea de alimentación es de 380 V y se encuentra cerca al transformador principal de suministro eléctrico al Laboratorio. -8-

9 Figura 1 Si todo resulta normal proceda a levantar las lecturas de los diferentes parámetros eléctricos indicados en la parte de Circuito de Análisis y Lectura de Datos. Realice su trabajo con el respectivo cuidado, la línea de alimentación es de 380 V, usted trabaja con 220 V, cualquier falla serás importante porque se encuentra cerca al transformador principal de suministro eléctrico al Laboratorio. Motores de Inducción: Identifique los motores trifásicos con el que llevará adelante su experimento. Copie fielmente los datos de placa del receptor. Fíjese la conexión del transformador usado anteriormente, ahora lo volverá a utilizar. Coloque el motor en una posición, que le permita manipular con toda comodidad. Existe un motor en conexión Dahlander, este no debe conectarse físicamente, sólo debe alimentarse en los terminales superiores de la bornera y luego en los terminales inferiores de la bornera Desconecte los puentes de conexión del motor a experimentar, hágalo con mucho cuidado, no pierda de vista los tornillos, tuercas y puentes de la bornera del motor. Con el multímetro, en la parte del óhmetro, escala de 200 Ω, pruebe la continuidad de los tres devanados existentes en el motor, dibuje el circuito en su hoja de prueba. Habrá identificado los terminales de los devanados del motor, cuya simbología será U1, V1 y W1 U2,V2 y W2 ó U, V y W x, y, z, el primero para los motores actuales y el segundo para motores antiguos. Para realizar la conexión triángulo, el motor ya viene con terminales definidos, como lo verificó anteriormente, ahora, sólo debe apelar a sus puentes, éstos son tres, y justamente para hacer la conexión triángulo, coloque los puentes en forma vertical, de esta forma el motor que conectado en triángulo. Si se fija sus apuntes, se están uniendo U1 con W2, V1 con U2 y W1 con V2. En los motores antiguos se unen U con z, V con x y W con y. Realizado la conexión triángulo conecte 3 chicotillos a los 3 puentes, uno por cada uno, ya sea en la parte superior o en la parte inferior, estos tres chicotillos irán a conectarse a la fuente de alimentación de 220 V. Energizar a la carga, motor de inducción, con la tensión de alimentación de 220 V y en 3 hilos, observar el sentido de giro y la velocidad adquirida por el motor. Proceda a levantar lecturas de parámetros eléctricos, característicos. Invierta el sentido de giro del motor con sólo intercambiar dos fases, pueden ser cualquiera de ellas. Verifique las lecturas obtenidas en el punto anterior, según Lectura de Datos. El desfase entre la tensión y corriente en la fase de la carga, denominado Factor de Potecia, se obtendrá no de la placa del motor, sino más bien, por medición. Identifique el Vatímetro a utilizar en esta medida, en lo que principalmente concierne a los terminales de línea y de carga, en sus respectivas bobinas de tensión ( 300 V) y de corriente ( 5 A ). Para ello pruebe el instrumento con una carga resistiva, en forma monofásica. Conecte dos vatímetros según indica la figura 1 y proceda de la siguiente forma: Con el vatímetro monofásico identificado, línea y carga, conectar en base a la figura 3, registre la primera lectura, vatímetro 1. Luego proceda a registrar la lectura del vatímetro 2, siempre en base a la figura 3. Una de las lecturas registrará en forma negativa, ante ello, invierta la bobina de corriente, es decir, lo que es línea a la carga y viceversa, esta lectura debe restar de la anterior lectura positiva, la potencia será la diferencia de lecturas de los dos vatímetros. -9-

10 Figura 1 La diferencia de lecturas nos dará la potencia activa real consumida por el motor y en base a él y las lecturas de corriente y voltaje de línea se determinará, el factor de potencia con la siguiente fórmula: Donde: P - total resultante de la diferencia de lecturas V - Voltaje de línea medido con el voltímetro del multímetro I - Corriente de línea medido con el amperímetro del multímetro. Carga Capacitiva: Identifique el capacitor monofásico con el que llevará adelante su experimento. Copie fielmente los datos de placa del receptor. El capacitor sólo tiene dos terminales no polarizados. Use tres capacitores de iguales características técnicas, para formar el lazo cerrado, usando tres chicotillos y de éstos derive tres chicotillos para la alimentación de la carga. En las diferentes conexiones del capacitor, actúe tomando siempre el terminal activo para conectar, ello con el respectivo cuidado, así preservará el terminal activo del capacitor. Alimente a los tres restantes terminales accesible, una por fase, la alimentación trifásica de la Red, vale decir, 220 V en 3 Hilos. Para la realización de la medición de corriente en línea tenga cuidado con las corriente IRUSH, en cada conexión y desconexión. Para el descargado del capacitor sométalo a una resistencia ó una bobina y logrará descargar el capacitor sin causar daño al receptor LECTURA DE DATOS. Lectura de Cargas Individuales: CARGA Corriente Linea (A) Voltaje de Línea Voltaje de Fase (W) (VA) Cos % Lámparas Incandescentes Motor de Inducción -10-

11 Motor de Inducción Motor de Inducción Motor de Inducción CAPACITIVA 1 CAPACITIVA 2 Lectura del Sistema Trifásico Sin Compensación: SISTEMA TRIFÁSICO Corriente Linea (A) Voltaje Línea Voltaje de Fase (W) (VA) Cos % Sin Compensación Lectura del Sistema Trifásico Con Compensación 1: SISTEMA TRIFÁSICO Con Compensación 1 Corriente Linea (A) Voltaje Línea Voltaje de Fase (W) (VA) Cos % Lectura del Sistema Trifásico Con Compensación 2: SISTEMA TRIFÁSICO Con Compensación 2 Corriente Linea (A) Voltaje Línea Voltaje de Fase (W) (VA) Cos % -11-

12 4.7. CUESTIONARIO. 1. Realice un diagrama trifilar en hoja tamaño pliego (ploteado), que muestre los siguientes parámetros involucrados en el experimento: Diagrama Fasorial de Tensiones, Corrientes y Factor de, Secuencia positiva, a escala. Diagrama Senoidal de Tensiones, Corrientes y Factor de, Secuencia positiva a escala. Diagrama Fasorial de s; Activa, Reactiva, Aparente y Factor de, a escala. Diagrama Senoidal de s, Activa Reactiva, Aparente y Factor de, a escala. Cálculo analítico y fasorial de la lectura de los tres vatímetros monofásicos. Placa de característica de equipos componentes del sistema trifásico, cuatro hilos, 380 V. Parámetros de tensión, corriente, factor de potencia y potencia calculados. Circuito representativo de impedancias, tensiones y corrientes equivalentes. Errores cometidos entre los parámetros lecturados y los calculados. Errores cometidos entre los parámetros lecturados y de Placa de características. En los siguientes casos: En la mitad de la totalidad de cargas involucradas en el circuito de análisis. En la alimentación al sistema trifásico tres hilos 220 V. En cada carga participante del sistema trifásico, cuatro hilos, 380 V. 1. Encontrar el Equivalente Monofásico del Sistema y muestre en un plano, lo siguiente: Diagrama Fasorial de Tensiones, Corrientes y Factor de, Secuencia positiva, a escala. Diagrama Senoidal de Tensiones, Corrientes y Factor de, Secuencia positiva a escala. Diagrama Fasorial de s; Activa, Reactiva, Aparente y Factor de, a escala. Diagrama Senoidal de s, Activa Reactiva, Aparente y Factor de, a escala. Cálculo analítico y fasorial de la lectura de los tres vatímetros monofásicos. Placa de característica de equipos componentes del sistema trifásico, cuatro hilos, 380 V. Parámetros de tensión, corriente, factor de potencia y potencia calculados. Circuito representativo de impedancias, tensiones y corrientes equivalentes. Errores cometidos entre los parámetros lecturados y los calculados. Errores cometidos entre los parámetros lecturados y de Placa de características. En los siguientes casos: En la mitad de la totalidad de cargas involucradas en el circuito de análisis. En la alimentación al sistema trifásico cuatro hilos, 380 V. En cada carga participante del sistema trifásico, cuatro hilos, 380 V CONCLUSIONES BIBLIOGRAFÍA. En Clases de Laboratorio se aclarará las dudas que tenga, no olvide leer al respecto. Fecha de Entrega : Tres semanas después de la realización del Laboratorio. -12-

LABORATORIO NO. 1 CONEXIÓN ESTRELLA DE CARGAS EQUILIBRADAS

LABORATORIO NO. 1 CONEXIÓN ESTRELLA DE CARGAS EQUILIBRADAS LABORATORIO NO. 1 CONEXIÓN ESTRELLA DE CARGAS EQUILIBRADAS 1.1. OBJETIVO DEL LABORATORIO. 1.1.1. OBJETIVO GENERAL. Conocer las características de operación de la Conexión Estrella en un sistema trifásico

Más detalles

LABORATORIO NO. 3 CONEXIÓN TRIÁNGULO DE CARGAS EQUILIBRADAS

LABORATORIO NO. 3 CONEXIÓN TRIÁNGULO DE CARGAS EQUILIBRADAS LABORATORIO NO. 3 CONEXIÓN TRIÁNGULO DE CARGAS EQUILIBRADAS 1.1. OBJETIVO DEL LABORATORIO. 1.1.1. OBJETIVO GENERAL. Conocer las características de operación de la Conexión Triángulo y la derivada Delta

Más detalles

LABORATORIO NO. 6 CIRCUITOS DESEQUILIBRADOS Y COMPONENTES SIMÉTRICAS

LABORATORIO NO. 6 CIRCUITOS DESEQUILIBRADOS Y COMPONENTES SIMÉTRICAS LABORATORIO NO. 6 CIRCUITOS DESEQUILIBRADOS Y COMPONENTES SIMÉTRICAS 6.1. OBJETIVO DEL LABORATORIO. 6.1. OBJETIVO GENERAL. Conocer básica y operativamente el desplazamiento del neutro en los diferentes

Más detalles

LABORATORIO No 8 CUADRIPOLOS RED DE DOS PUERTOS

LABORATORIO No 8 CUADRIPOLOS RED DE DOS PUERTOS 8.1. OBJETIVO GENERAL. LABORATORIO No 8 CUADRIPOLOS RED DE DOS PUERTOS Finalizada la presente práctica estaremos en condiciones de determinar y cuantificar los parámetros Z, Y, h, g, Transmisión Directos

Más detalles

ELT-2510 CIRCUITOS ELÉCTRICOS II GESTIÓN 2010 DOCENTE: ING. OSCAR W. ANAVE LEÓN LABORATORIO NO. 2 APLICACIÓN DE DIAGRAMAS FASORIALES TRIFÁSICOS A LA

ELT-2510 CIRCUITOS ELÉCTRICOS II GESTIÓN 2010 DOCENTE: ING. OSCAR W. ANAVE LEÓN LABORATORIO NO. 2 APLICACIÓN DE DIAGRAMAS FASORIALES TRIFÁSICOS A LA LABORATORIO NO. 2 APLICACIÓN DE DIAGRAMAS FASORIALES TRIFÁSICOS A LA CONEXIÓN DE TRANSFORMADORES TRIFÁSICOS 2.1. OBJETIVO DEL LABORATORIO. 2.1.1. OBJETIVO GENERAL. Aplicar características de los Diagramas

Más detalles

Circuitos trifásicos equilibrados

Circuitos trifásicos equilibrados GUIA DE PROBLEMAS Nº 5 Circuitos trifásicos equilibrados PROBLEMA Nº 1: Un generador trifásico suministra un total de 1800 W, con una corriente de línea de 10 A, a una carga trifásica equilibrada conectada

Más detalles

PRÁCTICA Nro. 9 MEDICIÓN DE POTENCIA Y FACTOR DE POTENCIA EN SISTEMAS TRIFÁSICOS BALANCEADOS CON CARGAS RESISTIVAS, CAPACITIVAS E INDUCTIVAS

PRÁCTICA Nro. 9 MEDICIÓN DE POTENCIA Y FACTOR DE POTENCIA EN SISTEMAS TRIFÁSICOS BALANCEADOS CON CARGAS RESISTIVAS, CAPACITIVAS E INDUCTIVAS PRÁCTICA Nro. 9 MEDICIÓN DE POTENCIA Y FACTOR DE POTENCIA EN SISTEMAS TRIFÁSICOS BALANCEADOS CON CARGAS RESISTIVAS, CAPACITIVAS E INDUCTIVAS A. OBJETIVOS: 1. Determinar en forma teórica y experimentalmente;

Más detalles

Circuitos Trifásicos con receptores equilibrados

Circuitos Trifásicos con receptores equilibrados FACULTAD DE INGENIERIA U.N.M.D.P. DEPARTAMENTO DE INGENIERIA ELECTRICA. ASIGNATURA: Electrotecnia 2 (Plan 2004) CARRERA: Ingeniería Eléctrica y Electromecánica Circuitos Trifásicos con receptores equilibrados

Más detalles

Circuitos Trifásicos con receptores equilibrados

Circuitos Trifásicos con receptores equilibrados FACULTAD DE INGENIERIA U.N.M.D.P. DEPARTAMENTO DE INGENIERIA ELECTRICA. ASIGNATURA: Electrotecnia 2 (Plan 2004) CARRERA: Ingeniería Eléctrica y Electromecánica Circuitos Trifásicos con receptores equilibrados

Más detalles

Facultad de Ingeniería (U.N.M.D.P.) - Dpto. de Ingeniería Eléctrica - Area Electrotecnia Electrotecnia General

Facultad de Ingeniería (U.N.M.D.P.) - Dpto. de Ingeniería Eléctrica - Area Electrotecnia Electrotecnia General GUÍA DE PROBLEMAS Nº 5 Circuitos trifásicos equilibrados PROBLEMA Nº 1: Se dispone de un sistema trifásico equilibrado, de distribución tetrafilar, a la que se conectan tres cargas iguales en la configuración

Más detalles

LABORATORIO No. 7 INDUCCIÓN AUTOINDUCCIÓN E INDUCTANCIA MUTUA ACOPLAMIENTO MAGNÉTICO

LABORATORIO No. 7 INDUCCIÓN AUTOINDUCCIÓN E INDUCTANCIA MUTUA ACOPLAMIENTO MAGNÉTICO LABORATORIO No. 7 INDUCCIÓN AUTOINDUCCIÓN E INDUCTANCIA MUTUA ACOPLAMIENTO MAGNÉTICO 7.1. OBJETIVO DEL LABORATORIO. 7.1.1. OBJETIVO GENERAL. Conocer operativamente los fenómenos de Autoinducción, Inductancia

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A Dos pilas iguales de fuerza electromotriz 1,5 V y resistencia interna 0,1 Ω. a) Si se asocian en serie y se conectan a una resistencia exterior, la intensidad que circula es de 3 A, cuál es el

Más detalles

Trabajo Práctico N 4: Medición de potencia en sistemas trifásicos

Trabajo Práctico N 4: Medición de potencia en sistemas trifásicos < DEPARTAMENTO DE INGENIERÍA ELÉCTRICA ÁREA MÁQUINAS ELÉCTRICAS MÁQUINAS Y ACCIONAMIENTOS ELÉCTRICOS (3M4) Trabajo Práctico N 4: Medición de potencia en sistemas trifásicos Objetivos Realizar diferentes

Más detalles

LABORATORIO Nº2 MEDICION DE PARAMETROS EN UNA RESIDENCIA

LABORATORIO Nº2 MEDICION DE PARAMETROS EN UNA RESIDENCIA LABORATORIO Nº2 MEDICION DE PARAMETROS EN UNA RESIDENCIA 2.1 OBJETIVO Finalizada la presente práctica los estudiantes mostraran solvencia y habilidad técnica para la medición de parámetros de tensión,

Más detalles

ALTERNA (III) TRIFÁSICA: Problemas de aplicación

ALTERNA (III) TRIFÁSICA: Problemas de aplicación ALTERNA (III) TRIFÁSICA: Problemas de aplicación 1º.- Determinar la tensión compuesta que corresponde a un sistema trifásico que posee una tensión simple de 127 V. Solución: 220 V 2º.- Si la tensión de

Más detalles

EXAMEN DE CIRCUITOS NOMBRE: TEST DE CIRCUITOS 1ª PREGUNTA RESPUESTA

EXAMEN DE CIRCUITOS NOMBRE: TEST DE CIRCUITOS 1ª PREGUNTA RESPUESTA NOMRE: TEST DE CIRCUITOS 1ª PREGUNT RESPUEST El circuito de la figura está formado por 12 varillas conductoras de igual material y sección, con resistencia R. La resistencia equivalente entre los terminales

Más detalles

PRÁCTICA Nro. 10 MEDICIÓN DE POTENCIA Y FACTOR DE POTENCIA EN SISTEMAS TRIFÁSICOS DESBALANCEADOS. INSTALACIONES ELÉCTRICAS.

PRÁCTICA Nro. 10 MEDICIÓN DE POTENCIA Y FACTOR DE POTENCIA EN SISTEMAS TRIFÁSICOS DESBALANCEADOS. INSTALACIONES ELÉCTRICAS. PRÁCTICA Nro. 10 MEDICIÓN DE POTENCIA Y FACTOR DE POTENCIA EN SISTEMAS TRIFÁSICOS DESBALANCEADOS. INSTALACIONES ELÉCTRICAS. A. OBJETIVOS : 1. Determinar en forma teórica y experimentalmente; las relaciones

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A OPCIÓN A Una batería con una tensión a circuito abierto E=100 V tiene una resistencia interna Rin=25 Ω y se conecta a una resistencia R=590 Ω junto a un voltímetro y un amperímetro como indica la figura.

Más detalles

EXAMEN DE CIRCUITOS NOMBRE: TEST DE CIRCUITOS 1ª PREGUNTA RESPUESTA. A. 0.2 A D. 7.5 A B. 5 A E. Indeterminada ( g?) C. 10 A F.

EXAMEN DE CIRCUITOS NOMBRE: TEST DE CIRCUITOS 1ª PREGUNTA RESPUESTA. A. 0.2 A D. 7.5 A B. 5 A E. Indeterminada ( g?) C. 10 A F. EXAMEN DE CICUITOS NOMBE: TEST DE CICUITOS 1ª PEGUNTA ESPUESTA E gv V 1 1 A En el circuito de la figura, el generador E proporciona una tensión de 100V y =10Ω. El generador Equivalente de Norton del circuito

Más detalles

GUÍA DE TRABAJO CIRCUITOS TRIFÁSICOS

GUÍA DE TRABAJO CIRCUITOS TRIFÁSICOS Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Eléctrica EL3003 Laboratorio de Ingeniería Eléctrica GUÍA DE TRABAJO CIRCUITOS TRIFÁSICOS Contenido 1. Temas a

Más detalles

Segundo parcial - Electrotécnica 1

Segundo parcial - Electrotécnica 1 Segundo parcial - Electrotécnica 1 IIE - Facultad de Ingeniería - Universidad de la República 01 de julio de 011 1. Problema 1 Se cuenta con un sistema de fuentes trifásico, perfecto, secuencia positiva

Más detalles

SISTEMAS TRIFASICOS RESTA DE VECTORES: VAB VCD -1-

SISTEMAS TRIFASICOS RESTA DE VECTORES: VAB VCD -1- CONVENCIONES GENERALES Para la representación vectorial y fasorial utilizaremos un par de ejes cartesianos (eje real a 0 y eje imaginario a 90 ) como se muestra en la Figura 1.1. y en la Figura 1.2: DESIGNACIÓN

Más detalles

Ejercicio Nº 601: En el siguiente circuito calcular las tensiones, corrientes y dibujar en escala el diagrama fasorial de corrientes y tensiones.

Ejercicio Nº 601: En el siguiente circuito calcular las tensiones, corrientes y dibujar en escala el diagrama fasorial de corrientes y tensiones. UNIDAD EAICA 06: IEA IFÁICO DE ENIONE ALENA ENOIDALE Ejercicio Nº 601: En el siguiente circuito calcular las tensiones, corrientes y dibujar en escala el I 10 60 ecuencia directa I I 10 60 10 60 Ejercicio

Más detalles

SISTEMAS TRIFASICOS.

SISTEMAS TRIFASICOS. SISTEMAS TRIFASICOS. Indice: 1. SISTEMAS TRIFASICOS...2 1.1. Producción de un sistema trifásico de tensiones equilibradas...2 1.2. Secuencia de fases...3 2. CONEXIONES DE FUENTES EN ESTRELLA Y EN TRIÁNGULO...3

Más detalles

SISTEMA TRIFASICO. Mg. Amancio R. Rojas Flores

SISTEMA TRIFASICO. Mg. Amancio R. Rojas Flores SISTEMA TRIFASICO Mg. Amancio R. Rojas Flores GENERACION DE VOLTAJE TRIFASICO (b) Forma de onda de voltaje (a) Generador Básico de CA (c) Fasor Un generador monofásico básico 2 (b) Forma de onda de voltaje

Más detalles

BOLETÍN DE PROBLEMAS SISTEMAS TRIFÁSICOS EQUILIBRADOS

BOLETÍN DE PROBLEMAS SISTEMAS TRIFÁSICOS EQUILIBRADOS TECNOLOGÍA ELÉCTRICA Ingeniero Químico Curso 2004/2005 BOLETÍN DE PROBLEMAS SISTEMAS TRIFÁSICOS EQUILIBRADOS Problema 1. En el circuito de la figura, calcular: a) Las intensidades de línea. b) Las tensiones

Más detalles

UNIVERSIDAD DE ALCALÁ Escuela Politécnica Superior Grado en Electrónica y Automática Industrial

UNIVERSIDAD DE ALCALÁ Escuela Politécnica Superior Grado en Electrónica y Automática Industrial 1.- Un establecimiento alimentado por un sistema trifásico equilibrado de secuencia directa a 400V y 50 Hz con neutro, dispone de los siguientes grupos de equipos: - 24 tubos fluorescentes de 36W y 230V,

Más detalles

Circuitos. Sistemas Trifásicos Mayo 2003

Circuitos. Sistemas Trifásicos Mayo 2003 Mayo 00 PROBLEMA 8. La carga trifásica de la figura está constituida por tres elementos simples ideales cuyas impedancias tienen el mismo I C I módulo, 0 Ω, y se conecta a una red trifásica equilibrada

Más detalles

MEDICIONES ELÉCTRICAS I

MEDICIONES ELÉCTRICAS I 1- Para medir la impedancia de entrada de un circuito lineal se realiza el montaje de la Fig. 1. El generador de funciones se ajusta para que entregue en vacío una señal sinusoidal de 2 V. de tensión pico.

Más detalles

9 José Fco. Gómez Glez., Benjamín Glez. Díaz, María de la Peña Fabiani, Ernesto Pereda de Pablo

9 José Fco. Gómez Glez., Benjamín Glez. Díaz, María de la Peña Fabiani, Ernesto Pereda de Pablo PROBLEMAS DE CIRCUITOS EN CORRIENTE ALTERNA 25. Una fuente de voltaje senoidal, de amplitud Vm = 200 V y frecuencia f=500 Hz toma el valor v(t)=100 V para t=0. Determinar la dependencia del voltaje en

Más detalles

TEST. EXAMEN DE CIRCUITOS 22 de junio de 2000 NOMBRE: 1ª PREGUNTA RESPUESTA 2ª PREGUNTA RESPUESTA 3ª PREGUNTA RESPUESTA

TEST. EXAMEN DE CIRCUITOS 22 de junio de 2000 NOMBRE: 1ª PREGUNTA RESPUESTA 2ª PREGUNTA RESPUESTA 3ª PREGUNTA RESPUESTA NOMBRE: TEST 1ª PREGUNTA RESPUESTA Una capacidad C y una impedancia Z están en serie. Las tensiones en C, en Z y en el conjunto en serie tienen igual módulo. La impedancia Z tiene que ser: A. Impedancia

Más detalles

Laboratorio 1. Circuitos en serie y en paralelo en corriente alterna

Laboratorio 1. Circuitos en serie y en paralelo en corriente alterna Laboratorio 1. Circuitos en serie y en paralelo en corriente alterna Objetivos: 1. Comprobar experimentalmente la validez de los cálculos teóricos, por medio del análisis de un circuito RL en serie y de

Más detalles

Práctica de Laboratorio. Tema: Medición de Potencia Activa en Sistemas Trifásicos.

Práctica de Laboratorio. Tema: Medición de Potencia Activa en Sistemas Trifásicos. Universidad Nacional de Mar del lata. ráctica de Laboratorio Tema: Medición de otencia Activa en Sistemas Trifásicos. Cátedra: Medidas Eléctricas I º año de la carrera de Ingeniería Eléctrica. Área Medidas

Más detalles

Sistemas trifásicos Jhon J. Padilla A.

Sistemas trifásicos Jhon J. Padilla A. Sistemas trifásicos Jhon J. Padilla A. Motivación Hasta ahora hemos estudiado sistemas monofásicos: utilizan dos conductores eléctricos para su distribución y consumo. En la práctica no existen alternadores

Más detalles

BOLETÍN DE PROBLEMAS SISTEMAS MONOFÁSICOS

BOLETÍN DE PROBLEMAS SISTEMAS MONOFÁSICOS Dpto. de Ingeniería Eléctrica E.T.S. de Ingenieros Industriales Universidad de Valladolid TECNOLOGÍA ELÉCTRICA Ingeniero Químico Curso 2004/2005 BOLETÍN DE PROBLEMAS SISTEMAS MONOFÁSICOS Problema 1 Calcular

Más detalles

Item Cantidad Descripción. 1 1 Fuente de energía ST S. 2 1 Amplificador de separación LM Osciloscopio con puntas de medición

Item Cantidad Descripción. 1 1 Fuente de energía ST S. 2 1 Amplificador de separación LM Osciloscopio con puntas de medición Facultad: Ingeniería Escuela: Ingeniería Eléctrica Asignatura: Sistemas eléctricos lineales II Tema: Sistemas Polifásicos y Medición de Potencia Contenidos ❿ Voltaje RMS. ❿ Voltaje máximo. ❿ Desfase de

Más detalles

MEDIDA DE POTENCIA EN TRIFÁSICA MÉTODO DE LOS DOS VATÍMETROS

MEDIDA DE POTENCIA EN TRIFÁSICA MÉTODO DE LOS DOS VATÍMETROS Práctica Nº 6 MEDID DE POTENI EN TRIFÁSI MÉTODO DE OS DOS VTÍMETROS 1. Objetivos a) Medida de la potencia activa, reactiva y el factor de potencia, en una red trifásica a tres hilos (sin neutro), utilizando

Más detalles

MEDICIONES ELÉCTRICAS I

MEDICIONES ELÉCTRICAS I 1- Para medir la impedancia de entrada de un circuito lineal se realiza el montaje de la Fig. 1. El generador de funciones se ajusta para que entregue en vacío una señal sinusoidal de 2 V. de tensión pico.

Más detalles

UNIDAD DIDACTICA. Conceptos en trifásica. Sumario

UNIDAD DIDACTICA. Conceptos en trifásica. Sumario UDAD DDACTCA 7 1 3 x 400/230 V 2 3 1 2 3 4 Conceptos en trifásica. Sumario 1. ntensidades y potencias en trifásica. 2. La caída de tensión en trifásica. Ejercicios y actividades. Al término de esta Unidad

Más detalles

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA - PROBLEMAS -

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA - PROBLEMAS - SITEMAS DE CORRIENTE TRIFÁSICA 9. Tres bobinas de resistencia 10 Ω y coeficiente de autoinducción 0,01 H cada una se conectan en estrella a una línea trifásica de 80 V, 50 Hz. Calcular: a) Tensión de fase.

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A En la asociación de condensadores de la figura, calcular: a) Capacidad equivalente del circuito. b) Carga que adquiere cada condensador al aplicar una tensión de 13 V entre los puntos entre los

Más detalles

18. Potencia y Energía en circuitos trifásicos.

18. Potencia y Energía en circuitos trifásicos. 18. Potencia y Energía en circuitos trifásicos. 18.1. Potencia en los circuitos trifásicos equilibrados. 1) eceptor en estrella: La potencia consumida por un receptor trifásico es la suma de las potencias

Más detalles

W 1 Z 2 W 2 FIGURA 9.1

W 1 Z 2 W 2 FIGURA 9.1 OBJETIVOS: 1.- Medir la potencia a una carga trifásica balanceada utilizando el método de los dos wáttmetros. 2.- Determinar las potencias activa y reactiva, así como el factor de potencia de un sistema

Más detalles

EL VATIMETRO ANALÓGICO. CIRCUITOS TRIFÁSICOS: CONEXIÓN EN ESTRELLA Y EN DELTA.

EL VATIMETRO ANALÓGICO. CIRCUITOS TRIFÁSICOS: CONEXIÓN EN ESTRELLA Y EN DELTA. UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 2286 PRACTICA Nº 9 Objetivos EL VATIMETRO ANALÓGICO. CIRCUITOS TRIFÁSICOS: CONEXIÓN EN ESTRELLA

Más detalles

Electrotecnia. Proves d accés a la universitat. Serie 2. Convocatòria Primera parte. Ejercicio 1

Electrotecnia. Proves d accés a la universitat. Serie 2. Convocatòria Primera parte. Ejercicio 1 Proves d accés a la universitat Convocatòria 2015 Electrotecnia Serie 2 La prueba consta de dos partes de dos ejercicios cada una. La primera parte es común y la segunda tiene dos opciones (A y B). Resuelva

Más detalles

I. RESULTADOS DE APRENDIZAJE

I. RESULTADOS DE APRENDIZAJE CICLO I-15 MEDICIONES ELECTRICAS UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELÉCTRICA Y MECÁNICA GUIA DE LABORATORIO # 1 :Mediciones de potencia electrica I. RESULTADOS DE

Más detalles

POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA

POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA OBJETIVOS: Determinar la potencia activa, aparente y el factor de potencia en circuitos monofásicos. Observe las normas de seguridad al realizar

Más detalles

Tema 2. Sistemas Trifásicos. Ingeniería Eléctrica y Electrónica

Tema 2. Sistemas Trifásicos. Ingeniería Eléctrica y Electrónica 1 Tema 2. Sistemas Trifásicos 2 Sistemas trifásicos. Historia. Ventajas. Índice Conexión en estrella y en triángulo Sistemas trifásicos equilibrados Potencia en sistemas trifásicos equilibrados 3 Sistema

Más detalles

CURSO DE ELECTRICIDAD BÁSICA

CURSO DE ELECTRICIDAD BÁSICA Capítulo 1: Qué es la Electricidad? CURSO DE ELECTRICIDAD BÁSICA Introducción Los Átomos Electricidad Estática Corriente Eléctrica Conductores o Materiales Conductores en Orden decreciente de Calidad Aisladores

Más detalles

Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003.

Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003. Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003. PROBLEMA Nº 1: Por un circuito serie formado por un elemento resistivo de resistencia

Más detalles

9. En la siguiente conexión: a) V L = V f b) V f = V L / 3 c) I L = I f / 3 d) ninguna de las anteriores es cierta. b) V f 3= V L c) I f = I L / 3

9. En la siguiente conexión: a) V L = V f b) V f = V L / 3 c) I L = I f / 3 d) ninguna de las anteriores es cierta. b) V f 3= V L c) I f = I L / 3 1. Un alternador a) es una maquina rotativa de corriente continua b) es una máquina estática de corriente alterna c) es una máquina rotativa de corriente alterna d) ninguna de las anteriores es correcta

Más detalles

Trabajo Práctico N 3: Medición de potencia monofásica

Trabajo Práctico N 3: Medición de potencia monofásica < < < DEPARTAMENTO DE INGENIERÍA ELÉCTRICA ÁREA MÁQUINAS ELÉCTRICAS MÁQUINAS Y ACCIONAMIENTOS ELÉCTRICOS (3M4) Trabajo Práctico N 3: Medición de potencia monofásica Objetivos Medir la potencia activa de

Más detalles

MEDIDAS ELÉCTRICAS. Unidad Temática Nº 3

MEDIDAS ELÉCTRICAS. Unidad Temática Nº 3 MEDIDAS ELÉCTRICAS Unidad Temática Nº 3 Medición de Potencia en Sistemas Monofásicos y Trifásicos de Corriente Alterna. Caracterización de Impedancias. Guía del Trabajo Práctico Nº 3 Problemas Propuestos

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A OPCIÓN A Hallar el valor que ha de tener la fuerza electromotriz, ε del generador intercalado en el circuito de la figura, para que el potencial del punto A sea 9 voltios. Para conseguir crear una inducción

Más detalles

Convocatòria Electrotecnia. Proves d accés a la universitat. Serie 1. Primera parte

Convocatòria Electrotecnia. Proves d accés a la universitat. Serie 1. Primera parte Proves d accés a la universitat Electrotecnia Serie 1 La prueba consta de dos partes de dos ejercicios cada una. La primera parte es común y la segunda tiene dos opciones (A y B). Resuelva los ejercicios

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CRITERIOS ESPECÍFICOS DE CORRECCIÓN

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CRITERIOS ESPECÍFICOS DE CORRECCIÓN CRITERIOS ESPECÍFICOS DE CORRECCIÓN A- CALIFICACIÓN En el propio enunciado, a cada ejercicio se le asigna su valoración global máxima: 2,5 puntos En los ejercicios con varios apartados, la puntuación de

Más detalles

Facultad de Ingeniería (U.N.M.D.P.) - Dpto. de Ingeniería Eléctrica - Area Electrotecnia - Electrotecnia 3

Facultad de Ingeniería (U.N.M.D.P.) - Dpto. de Ingeniería Eléctrica - Area Electrotecnia - Electrotecnia 3 GUÍA DE PROBLEMAS Nº 1 Tema: El método por unidad PROBLEMA Nº 1: En un sistema eléctrico se tienen las siguiente tensiones: 108, 120 y 126 KV. Si se adopta como tensión base U b =120 [kv]. Cuál es el valor

Más detalles

Sistemas Lineales 1 - Práctico 10

Sistemas Lineales 1 - Práctico 10 Sistemas Lineales 1 - Práctico 10 Sistemas Polifásicos 1 er semestre 2018 1.-En los circuitos de la figura 1, las fuentes forman un sistema triásico y perfecto. Figura 1: Carga conectada en estrella y

Más detalles

PROGRAMA ANALÍTICO DE ELECTROTECNIA

PROGRAMA ANALÍTICO DE ELECTROTECNIA PROGRAMA ANALÍTICO DE ELECTROTECNIA Unidad 1: DEFINICIONES BÁSICAS DE CORRIENTE. 1. Definición de cargas en reposo y en movimiento: Régimen Estático; Régimen Permanente. Régimen Periódico: periódico, pulsatorio

Más detalles

Trabajo y potencia. Trabajo mecánico: Energía consumida al desplazar un cuerpo. Se mide en julios (J).

Trabajo y potencia. Trabajo mecánico: Energía consumida al desplazar un cuerpo. Se mide en julios (J). Tema 21.6 Trabajo y potencia Trabajo mecánico: Energía consumida al desplazar un cuerpo. Se mide en julios (J). Trabajo = Fuerza espacio 1 J (1 julio) = 1 N m (newton metro) 1 cal (caloría) = 4,187 J 1

Más detalles

CIRCUITOS TRIFÁSICOS: CONEXION EN ESTRELLA. Usar adecuadamente el Vatímetro para realizar mediciones de potencia en circuitos trifásicos.

CIRCUITOS TRIFÁSICOS: CONEXION EN ESTRELLA. Usar adecuadamente el Vatímetro para realizar mediciones de potencia en circuitos trifásicos. UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE CIRCUITOS ELÉCTRICOS EC 1081 PRACTICA Nº 10 CIRCUITOS TRIFÁSICOS: CONEXION EN ESTRELLA Objetivos Usar adecuadamente el Vatímetro

Más detalles

Práctico 4 - Int. a la Electrotécnica

Práctico 4 - Int. a la Electrotécnica Práctico 4 - Int. a la Electrotécnica Transformador Trifásico Problema 1 Tres transformadores monofásicos se conectan entre si para formar un banco trifásico. Los transformadores tienen relación de vueltas

Más detalles

I R C U I T O S T R I F Á S I C O S G E N E R A C I Ó N T R I F Á S I C A S I S T E M A S B A L A N C E A D O S S I S T E M A S DESBALANCEADOS

I R C U I T O S T R I F Á S I C O S G E N E R A C I Ó N T R I F Á S I C A S I S T E M A S B A L A N C E A D O S S I S T E M A S DESBALANCEADOS Electrotecnia (IM) Prof. Ing. G. Belliski CIRCUITOS TRIFÁSICOS GENERACIÓN TRIFÁSICA SISTEMAS BALANCEADOS SISTEMAS DESBALANCEADOS Sistema Trifásico Patentado por John Hopkinson en 1882 (quien también demostró

Más detalles

PRÁCTICA Nro. 8 MEDICIÓN DE POTENCIA Y FACTOR DE POTENCIA EN SISTEMAS TRIFÁSICOS BALANCEADOS CON CARGAS RESISTIVAS

PRÁCTICA Nro. 8 MEDICIÓN DE POTENCIA Y FACTOR DE POTENCIA EN SISTEMAS TRIFÁSICOS BALANCEADOS CON CARGAS RESISTIVAS PRÁCTICA Nro. 8 MEDICIÓN DE POTENCIA Y FACTOR DE POTENCIA EN SISTEMAS TRIFÁSICOS BALANCEADOS CON CARGAS RESISTIVAS A. OBJETIVOS : 1. Determinar en forma teórica y experimental; las relaciones entre voltajes

Más detalles

PRÁCTICA No. 9 RESPUESTA DE RÉGIMEN TRANSITORIO EN CIRCUITOS RLC

PRÁCTICA No. 9 RESPUESTA DE RÉGIMEN TRANSITORIO EN CIRCUITOS RLC PRÁCTICA No. 9 RESPUESTA DE RÉGIMEN TRANSITORIO EN CIRCUITOS RLC 1.- OBJETIVO: Deducir experimentalmente los distintos parámetros que rigen la respuesta transitoria en circuitos de segundo orden. 2.- PRE-LABORATORIO

Más detalles

Colección de problemas de Monofásica ( Mayo/2006)

Colección de problemas de Monofásica ( Mayo/2006) olección de problemas de Monofásica ( Mayo/006) Problema M- En el circuito de la figura determinar la lectura de los tres vatímetros que hay conectados. omprobar los resultados. D 3 +j +j 0 V -j B Problema

Más detalles

Prácticas de tablero Trifásico arranque directo Estrella triángulo Dos velocidades Dos velocidades, estrella triángulo Letrero luminoso Ascensor 3

Prácticas de tablero Trifásico arranque directo Estrella triángulo Dos velocidades Dos velocidades, estrella triángulo Letrero luminoso Ascensor 3 Prácticas de tablero Trifásico arranque directo Estrella triángulo Dos velocidades Dos velocidades, estrella triángulo Letrero luminoso Ascensor 3 paradas Monofásico Autómata Transformadores Trafo I Cálculos

Más detalles

BLOQUE III CIRCUITOS ELÉCTRICOS EN CA

BLOQUE III CIRCUITOS ELÉCTRICOS EN CA 1.- Una tensión viene dada por la expresión es de: v(t)=240 sen( t+30). Si se aplica la tensión v(t) a un receptor puramente inductivo cuya impedancia es de j2 2 Ω, hallar el valor de la intensidad instantánea

Más detalles

EXAMENES ELECTROTECNIA TEORIA

EXAMENES ELECTROTECNIA TEORIA EXAMENES En este archivo presento el tipo de exámenes propuesto en la asignatura de Electrotecnia en la fecha indicada, con las puntuaciones indicadas sobre un total de diez puntos. Según la guía académica

Más detalles

Conceptos básicos Sistemas trifásicos balanceados

Conceptos básicos Sistemas trifásicos balanceados Introducción menudo, se estudian redes o circuitos lineales de corriente directa (DC) con fuentes de valor constantes, los cuales tienen una amplia aplicación en el campo de la electrónica, puesto que

Más detalles

Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003.

Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003. Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003. PROBLEMA Nº 1: Por un circuito serie formado por un elemento resistivo de resistencia

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TÁCHIRA VICERRECTORADO ACADÉMICO COMISIÓN GENERAL DE CURRÍCULUM PROGRAMA SINÓPTICO U.C 1

UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TÁCHIRA VICERRECTORADO ACADÉMICO COMISIÓN GENERAL DE CURRÍCULUM PROGRAMA SINÓPTICO U.C 1 PROGRAMA SINÓPTICO Asignatura: Laboratorio de Ingeniería Eléctrica Núcleo Académico: Electricidad Código: 0213508L U.C 1 Pre-requisito Co-requisito Lab. de Física II 0842303L Departamento/Carrera Ing.

Más detalles

Z = 35 + j 18,31 (39,5 27,6 Ω) Y = 0, j 0,0117 S I = 2,53 2,38 A U AB = 50,6 2,38 V U BC = 25,17-87,6 V U CD = 37,95 2,38 V U DE = 71,5 92,4 V

Z = 35 + j 18,31 (39,5 27,6 Ω) Y = 0, j 0,0117 S I = 2,53 2,38 A U AB = 50,6 2,38 V U BC = 25,17-87,6 V U CD = 37,95 2,38 V U DE = 71,5 92,4 V CIRCUITOS CON EXCITACIÓN SENOIDAL Ejercicio 101: Para el circuito de la figura con U AE = 100 30,, Calcule: La impedancia de cada elemento y la total. La corriente y las tensiones parciales. Dibujar el

Más detalles

CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO

CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO PROBLEMAS PROPUESTOS 1:.Se coloca una bobina de 200 vueltas y 0,1 m de radio perpendicular a un campo magnético uniforme de 0,2 T. Encontrar la fem inducida

Más detalles

INDICE TEMA 1. ELEMENTOS ACTIVOS Y PASIVOS 1.1. Definición de dipolo eléctrico 1.2. Elementos activos y pasivos 1.2.1. Elementos pasivos 1.2.1.1. Elementos pasivos ideales: Resistencia ideal, Bobina ideal,

Más detalles

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÌSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÌSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÌSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO LABORATORIO 2: USO DE INSTRUMENTOS DE MEDICIÓN ELÉCTRICA (PARTE II) I. OBJETIVOS OBJETIVO

Más detalles

MOTORES ASINCRONOS ESTATOR

MOTORES ASINCRONOS ESTATOR MOTORES ASINCRONOS ESTATOR Parte fija del motor formada por paquetes de chapa magnética que alojan en ranuras a las bobinas que van a crear el campo magnético giratorio. Estas bobinas pueden estar conectadas

Más detalles

Máquinas Eléctricas Práctico 1 Transformadores I (repaso)

Máquinas Eléctricas Práctico 1 Transformadores I (repaso) Máquinas Eléctricas Práctico 1 Transformadores I (repaso) IIE - Facultad de Ingeniería - Universidad de la República Problema 1 Figura 1: Esquema Problema 1. El diagrama unifilar de la figura representa

Más detalles

Máquinas Eléctricas Práctico 2 Transformadores II

Máquinas Eléctricas Práctico 2 Transformadores II Problema 1 Máquinas Eléctricas Práctico 2 Transformadores II IIE - Facultad de Ingeniería - Universidad de la República Debido a un aumento previsto en la carga de la instalación de una planta que cuenta

Más detalles

PRÁCTICA Nº 1: TRANSFORMADORES TEMA IV: Transformadores

PRÁCTICA Nº 1: TRANSFORMADORES TEMA IV: Transformadores PRÁCTICA Nº 1: TRANSFORMADORES TEMA IV: Transformadores Máquinas Eléctricas 5º Curso Mecánicos Máquinas OBJETIVOS: Conocer y utilizar los equipos de laboratorio. Analizar la corriente de vacío de un transformador.

Más detalles

Uso del osciloscopio digital, para la determinación del factor de potencia

Uso del osciloscopio digital, para la determinación del factor de potencia Página 1/10 Uso del osciloscopio digital, para la determinación del factor de potencia N de práctica: 05 Página 2/10 1. Seguridad en la ejecución Peligro o Fuente de energía Riesgo asociado 1 Tensión Alterna

Más detalles

CIDEAD. 2º Bachillerato. Electrotecnia Tema 12.- Sistemas trifásicos.

CIDEAD. 2º Bachillerato. Electrotecnia Tema 12.- Sistemas trifásicos. Desarrollo del tema.1. Concepto de sistemas polifásicos. 2. Conexión de las fuentes en estrella y en triángulo. 3. La conexión de los receptores. 4. Conexión en estrella y triángulo en receptores. 5. Resolución

Más detalles

Calidad en el Servicio Eléctrico

Calidad en el Servicio Eléctrico balanceados, David Llanos Rodríguez dllanosr@eia.udg.es Girona, Febrero 20 de 2003 balanceados, Triángulo de Potencias La potencia activa se genera como consecuencia de la corriente activa. Esto permite

Más detalles

CONCEPTOS BÁSICOS GENERADORES

CONCEPTOS BÁSICOS GENERADORES CONCEPTOS BÁSICOS 1. Los dos cables de alimentación de un motor tienen una longitud de 3 m y están separados entre sí por 5 mm. Calcula la fuerza que se ejercen entre sí cuando por los cables circula una

Más detalles

Práctica E2: Circuito trifásico en estrella. 1. Objetivos. 2. Material necesario. 3. Procedimiento

Práctica E2: Circuito trifásico en estrella. 1. Objetivos. 2. Material necesario. 3. Procedimiento Circuito trifásico en estrella: Práctica E2 Práctica E2: Circuito trifásico en estrella. Objetivos Los objetivos de la práctica son:.- Experimentar las características de un circuito trifásico estrella-estrella.

Más detalles

2. EXPERIENCIAS DE TRANSFORMADORES 2.2. EXPERIENCIA N 2: TRANSFORMADORES TRIFASICOS.

2. EXPERIENCIAS DE TRANSFORMADORES 2.2. EXPERIENCIA N 2: TRANSFORMADORES TRIFASICOS. 2. EXPERIENCIAS DE TRANSFORMADORES 2.2. EXPERIENCIA N 2: TRANSFORMADORES TRIFASICOS. A.- INTRODUCCION El uso de transformadores en conexión trifásica en Sistemas de Potencia es de primera importancia,

Más detalles

CAPITULO III COMPENSACION REACTIVA

CAPITULO III COMPENSACION REACTIVA CAPITULO III COMPENSACION REACTIA 1. GENERALIDADES DE COMPENSACION REACTIA 1.1 FACTOR DE POTENCIA Factor de potencia es el nombre dado a la relación entre la potencia activa (kw) usada en un sistema y

Más detalles

Sin embargo, un circuito eléctrico puede contener uno o varios tipos diferentes de resistencias conectadas, entre las que se encuentran:

Sin embargo, un circuito eléctrico puede contener uno o varios tipos diferentes de resistencias conectadas, entre las que se encuentran: DIFERENTES TIPOS DE RESISTENCIAS De acuerdo con la Ley de Ohm, para que exista un circuito eléctrico cerrado tiene que existir: 1.- una fuente de fuerza electromotriz (FEM) o diferencia de potencial, es

Más detalles

Circuitos Eléctricos Trifásicos. Introducción.

Circuitos Eléctricos Trifásicos. Introducción. Circuitos Eléctricos Trifásicos. Introducción. La mayor parte de la generación, transmisión, distribución y utilización de la energía eléctrica se efectúa por medio de sistemas polifásicos; por razones

Más detalles

TRANSFORMADOR TRIFÁSICO

TRANSFORMADOR TRIFÁSICO TRANSFORMADOR TRIFÁSICO Las tensiones trifásicas pueden transformarse conectando tres transformadores monofásicos en forma adecuada o utilizando transformadores con núcleo de tres columnas. Cuando se conectan

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS MATERIA: ELECTROTECNIA OFICIALES DE GRADO (MODELO DE EXAMEN) Curso 2013-2014 INSTRUCCIONES GENERALES Y

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN En el circuito de la figura, se sabe que con k abierto, el amperímetro indica una lectura de 5 amperios. Hallar: a) Tensión U B b) Potencia disipada en la resistencia R. C + 20V = = 1Ω 10V + K 6Ω

Más detalles

24 V. i(t) 100 A. 1 t (sg)

24 V. i(t) 100 A. 1 t (sg) oletín de preguntas COTS de Exámenes de Electrotecnia oletín de preguntas COTS de Exámenes de Electrotecnia TEM 1 1.- Un condensador tiene 100 V entre sus terminales, Que tensión debería tener para que

Más detalles

INFORMACIÓN SOBRE LA PRUEBA DE ACCESO (PAU) A LA UNIVERSIDAD DE OVIEDO. CURSO 2015 / Materia: ELECTROTECNIA

INFORMACIÓN SOBRE LA PRUEBA DE ACCESO (PAU) A LA UNIVERSIDAD DE OVIEDO. CURSO 2015 / Materia: ELECTROTECNIA INFORMACIÓN SOBRE LA PRUEBA DE ACCESO (PAU) A LA UNIVERSIDAD DE OVIEDO. CURSO 2015 / 2016 Materia: ELECTROTECNIA 1. COMENTARIOS Y/O ACOTACIONES RESPECTO AL TEMARIO EN RELACIÓN CON LA PAU: Indicaciones

Más detalles

EL VATIMETRO ANALOGICO. CIRCUITOS TRIFASICOS: CONEXION EN ESTRELLA Y EN DELTA.

EL VATIMETRO ANALOGICO. CIRCUITOS TRIFASICOS: CONEXION EN ESTRELLA Y EN DELTA. UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 2286 PRACTICA Nº 8 Objetivos EL VATIMETRO ANALOGICO. CIRCUITOS TRIFASICOS: CONEXION EN ESTRELLA

Más detalles

Práctico 3. IIE - Facultad de Ingeniería - Universidad de la República

Práctico 3. IIE - Facultad de Ingeniería - Universidad de la República Ejercicio 3.1 Práctico 3 IIE - Facultad de Ingeniería - Universidad de la República Siendo Z = 10e j30 (Ω) calcular en ambos casos (donde la fuente es equillibrada, de valor 220 V) los valores de la corriente

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN DEPARTAMENTO DE INGENIERÍA SECCIÓN ELÉCTRICA

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN DEPARTAMENTO DE INGENIERÍA SECCIÓN ELÉCTRICA UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN DEPARTAMENTO DE INGENIERÍA SECCIÓN ELÉCTRICA LABORATORIO DE SISTEMAS ELÉCTRICOS DE POTENCIA II GRUPO: PROFESOR: ALUMNO:

Más detalles