Ejercicio transformador trifásico
|
|
|
- Rodrigo Palma Rojas
- hace 7 años
- Vistas:
Transcripción
1 Ejercicio transformador trifásico 31/10/2010 En este ejercicio se van a calcular, utilizando tanto los modelos prácticos como el real del transformador, una serie de magnitudes y podremos comprobar de cuanto es el orden del error que cometemos 1. Ejercicio transformador trifásico R I cc X cc 1 I 2 = /r t R I cc X cc 1 I 2 = /r t I Fe I o I I Fe I o I V 1 R Fe X V 1 R Fe X (A) (B) R I cc X cc 1 I 2 = /r t X cc I 1 I 2 = /r t V 1 V 1 (C) (D) Figura 1: Transformador trifásico que suministra energía a una carga 1.1. Datos del problema (tensión de línea y potencia trifásica) Dado un transformador trifásico, YNd11, cuyos valores nominales son: Sn = 32 MVA Vn1 = 132kV Vn2 = 21kV Y cuyos datos de ensayo en vacío y en cortocircuito son: En vacío: realizado en el secundario con Vn2=21kV, Po = 24015W, Io = 0.15 ( %) En cortocircuito: realizado en el primario con In1=139.96A, Pcc = W, Vcc( %) = Calcular: 1. Parámetros del circuito equivalente monofásico del modelo real. 2. Si el transformador está alimentando un consumo de 30MVA con un factor de potencia 0.8i y a una tensión de 20kV en el secundario, calcular utilizando los modelos prácticos A, B, C, D y el real la tensión e intensidad en el primario. Nota: Los datos del ensayo son tensiones de línea y potencias trifásicas. 1
2 1.2. Obtención parámetros del circuito monofásico equivalente Para el uso del modelo del transformador es más práctico obtener los parámetros de un transformador equivalente con conexión Yy y así se obtiene directamente el circuito monofásico equivalente del trafo. Por ejemplo para este caso calcularíamos los parámetros del secundario conectado en triángulo para luego realizar la conversión a estrella. ¾No es mejor ir directos ya al cálculo del estrella equivalente?. Por otro lado la relación de transformación del estrella equivalente es directa: rt = Vn1/Vn2 sean estas tensiones de línea o de fase. Al ser un transformador trifásico, no olvidar que los datos de los ensayos son potencia consumida por las tres fases y la tensión de línea. Salvo este detalle, el procedimiento para obtener los parámetros es el mismo que para el caso monofásico. Procedemos, a continuación, con el cálculo: Datos del transformador Vn1 = 132e3 Vn2 = 21e3 Sn = 32e6 In1 = Sn/(sqrt(3)*Vn1) In2 = Sn/(sqrt(3)*Vn2) rt = Vn1/Vn2 Vn1 = Vn2 = Sn = In1 = In2 = rt = Datos de los ensayos de vacío y de cortocircuito: Po = Io = 0.15/100*In2 Pcc = Vcc = 12.17/100*Vn1 Po = Io = Pcc = Vcc = e04 No olvidar que los ensayos no tienen por que realizarse en el mismo devanado, tal y como pasa en este caso, en que el ensayo de vacío se realizó en el devanado del baja tensión y el de cortocircuito en el de alta. Vamos a calcular Rfe y Xu visto desde el secundario puesto que este ensayo, tal y como ya se ha dicho, se realizó midiendo en el lado del secundario. Rfe2 = (Vn2/sqrt(3))^2/(Po/3) Xu2 = 1/sqrt((Io/(Vn2/sqrt(3)))^2-(1/Rfe2)^2) Rfe2 = Xu2 = e e04 Convertiremos Rfe y Xu a magnitudes del primario sin mas que utilizar la propiedad de adaptación de impedancias Rfe = Rfe2*rt^2 Xu = Xu2*rt^2 Rfe = Xu = e e05 Vamos a calcular Rcc y Xcc visto desde el primario puesto que este ensayo se realizó cortocircuitando el secundario y midiendo en el lado del primario. Rcc = Pcc/3/In1^2 Xcc = sqrt((vcc/sqrt(3)/in1)^2-rcc^2) 2
3 Rcc = Xcc = Y ahora nos falta calcular R1, R2 y X1 y X2. Para ello se suele hacer una aproximación y es considerar que la reactancia de dispersión de cada devanado es proporcional al número de espiras al cuadrado y que en el diseño de transformadores se suele hacer que las pérdidas en el primario sean iguales que las pérdidas en el secundario. Estas dos condiciones llevan a que: R1 = R2 = rt 2 R2 y que X1 = X2 = rt 2 X2 con lo que: R1 = Rcc/2 R2 = Rcc/2/rt^2 X1 = Xcc/2 X2 = Xcc/2/rt^2 R1 = R2 = X1 = X2 = Cálculo de la tensión e intensidad en el primario Si el transformador está alimentando un consumo de 16MVA con un factor de potencia 0.8i y a una tensión de 20kV en el secundario, calcular utilizando los modelos prácticos A, B, C, D y el real la tensión e intensidad en el primario Caso 0: Modelo transformador real Datos de la tensión e intensidad en la carga y que serán los mismos para el resto de apartados Vlineacarga = 20e3 Vfasecarga = Vlineacarga/sqrt(3) Scargatrifasica = 16e6*exp(j*acos(0.8)) Scargamonofasica = Scargatrifasica/3 Icarga = conj(scargamonofasica)/conj(vfasecarga) VcargaIcarga = [Vfasecarga; Icarga] Vlineacarga = Vfasecarga = e04 Scargatrifasica = e e06i Scargamonofasica = e e06i Icarga = i VcargaIcarga = e e00i e e02i El problema se puede resolver de varias formas y de ellas lo vamos a resolver por cuadripolos. Para ellos vamos a calcular los parámetros de transmisión de R1jX1, de la rama de vacío, del transformador ideal y de R2jX2 y, a partir de ellos, obtendremos los parámetros de transmisión de todos los modelos. ABCDR1X1 = [1 (R1j*X1); 0 1] ABCDRfeXu = [1 0; (1/Rfe1/(j*Xu)) 1] ABCDrt = [rt 0; 0 1/rt] ABCDR2X2 = [1 (R2j*X2); 0 1] ABCDR1X1 = i i i i ABCDRfeXu = i i i i ABCDrt = 3
4 ABCDR2X2 = i i i i Una vez calculado los bloques básicos obtendremos los parámetros del trafo real y, a continuación, los datos de la tensión y la intensidad en el origen ABCDreal = ABCDR1X1*ABCDRfeXu*ABCDrt*ABCDR2X2 V1I1real = ABCDreal*VcargaIcarga ABCDreal = e e-04i e e-05i V1I1real = e e01i e e-06i e e03i e e01i Caso 1: Modelo transformador A Reordenando las matrices se obtiene el modelo A ABCDA = ABCDRfeXu*ABCDR1X1*ABCDrt*ABCDR2X2 V1I1A = ABCDA*VcargaIcarga ABCDA = i i i i V1I1A = e e03i e e01i El mismo resultado se obtiene calculando primero los parámetros de transmisión de Rcc y Xcc. ABCDRccXcc = [1 ((R1rt^2*R2)j*(X1rt^2*X2)); 0 1] V1I1A = ABCDRfeXu*ABCDRccXcc*ABCDrt*VcargaIcarga ABCDRccXcc = i i i i V1I1A = e e03i e e01i Caso 2: Modelo transformador B V1I1B = ABCDRccXcc*ABCDRfeXu*ABCDrt*VcargaIcarga V1I1B = e e03i e e01i 4
5 Caso 3: Modelo transformador C V1I1C = ABCDRccXcc*ABCDrt*VcargaIcarga V1I1C = e e03i e e01i Caso 4: Modelo transformador D ABCDXcc = [1 (j*(x1rt^2*x2)); 0 1] V1I1D = ABCDXcc*ABCDrt*VcargaIcarga ABCDXcc = i i i i V1I1D = e e03i e e01i Comparación entre los casos Para poder comparar vamos a calcular los módulos de las tensiones de línea en kv y las potencias trifásicas en MW para nalmente crear una tabla resumen A continuación vamos a resumir en una tabla los valores obtenidos en dos escenarios de carga y el error cometido por los modelos prácticos referidos al modelo real. Tabla 1: Tabla obtenida para el consumo S = 16 MVA y fdp 0.8i Caso V1(kV) ph V1 (º) I1(A) ph I1 (º) P1(MW) Q1(MVAR) ErrV( %) ErrP1( %) ErrQ1( %) real A B C D Tabla 2: Tabla obtenida para el consumo S = 32 MVA y fdp 0.8i Caso V1(kV) ph V1 (º) I1(A) ph I1 (º) P1(MW) Q1(MVAR) ErrV( %) ErrP1( %) ErrQ1( %) real A B C D Tal y como vemos, no parece que el nivel de carga del transformador tenga una inuencia crítica. El uso del modelo D sigue sin superar el error del 1 %. Y, para nalizar, vamos a poner una tabla con el error obtenido para el consumo de 30 MVA y fdp 0.9i y vemos como varía el error en función del fdp. 5
6 Tabla 3: Tabla obtenida para el consumo S = 32 MVA y fdp 0.9i Caso V1(kV) ph V1 (º) I1(A) ph I1 (º) P1(MW) Q1(MVAR) ErrV( %) ErrP1( %) ErrQ1( %) real A B C D
Transformadores. Juan Alvaro Fuentes Moreno Departamento de Ingeniería Eléctrica Universidad Politécnica de Cartagena
Transformadores Juan Alvaro Fuentes Moreno [email protected] Departamento de Ingeniería Eléctrica Universidad Politécnica de Cartagena enero 2012 JAFM (Ingeniería Eléctrica UPCT) transformadores
TECNOLOGÍA ELÉCTRICA. UNIDAD DIDÁCTICA 2 CONCEPTOS BÁSICOS A RETENER Y PROBLEMAS RESUELTOS
TECNOLOGÍA ELÉCTRICA. UNIDAD DIDÁCTICA 2 CONCEPTOS BÁSICOS A RETENER Y PROBLEMAS RESUELTOS 1.- TRANSFORMADOR IDEAL Y TRANSFORMADOR REAL El funcionamiento de un transformador se basa en la Ley de Faraday
PROBLEMAS RESUELTOS (TRANSFORMADORES) Problema 1. Un transformador monofásico de VA. y 50 Hz. tiene las siguientes características:
PROBLEMAS RESUELTOS (TRANSFORMADORES) Problema. Un transformador monofásico de 4.344 VA. y 50 Hz. tiene las siguientes características: N 500 espiras.,, r 3 Ω,, x 0 Ω N 50 espiras.,, r 0,03 Ω,, x 0, Ω
Máquinas Eléctricas I - G862
Máquinas Eléctricas I - G862 Proto%po de Examen Final. Teoría y Problemas Miguel Ángel Rodríguez Pozueta Departamento de Ingeniería Eléctrica y Energé5ca Este tema se publica bajo Licencia: Crea5ve Commons
ELO 281 Sistemas Electromecánicos Jorge Pontt O. Adolfo Paredes P.
Capítulo 2: EL TRANSFORMADOR Universidad Técnica Federico Santa María ELO 281 Sistemas Electromecánicos Jorge Pontt O. Adolfo Paredes P. 1 2.1 Teoría del Transformador Monofásico Los transformadores son
Facultad de Ingeniería (U.N.M.D.P.) - Dpto. de Ingeniería Eléctrica - Area Electrotecnia - Electrotecnia 3
GUÍA DE PROBLEMAS Nº 1 Tema: El método por unidad PROBLEMA Nº 1: En un sistema eléctrico se tienen las siguiente tensiones: 108, 120 y 126 KV. Si se adopta como tensión base U b =120 [kv]. Cuál es el valor
P11: ENSAYOS DE LA MÁQUINA ASÍNCRONA PARA LA DETERMINACIÓN DE LOS PARÁMETROS DEL CIRCUITO EQUIVALENTE FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA
ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA INDUSTRIAL (BILBAO) Departamento de Ingeniería Eléctrica INDUSTRI INGENIARITZA TEKNIKORAKO UNIBERTSITATE-ESKOLA (BILBO) Ingeniaritza Elektriko Saila ALUMNO P11:
Tema III. Transformadores
Titulación. Ingeniero Organización Industrial Asignatura. Tecnología Eléctrica Rev. 1.0 (Enero-01) Tema III. Transformadores 3.1. PRINCIPIO DE FUNCIONAMIENTO DEL TRANSFORMADOR 3.. FINALIDAD Y UTILIZACIÓN
Resolución paso a paso de problemas de máquinas eléctricas
Resolución paso a paso de problemas de máquinas eléctricas Mario Ortiz García Sergio Valero Verdú Carolina Senabre Blanes Título: Autor: Resolución paso a paso de problemas de máquinas eléctricas Mario
Los siguientes datos de ensayo son de un transformador de dos bobinados de 30 kva, 3000/300 Volts, 10/100 A.
Ejercicio Nº 1 Circuito equivalente Los siguientes datos de ensayo son de un transformador de dos bobinados de 30 kva, 3000/300 Volts, 10/100 A. Ensayo voltaje aplicado corriente potencia Vacío 3000 V
Práctico 3 - Electrotécnica 2 Transformador trifásico
Práctico 3 - Electrotécnica 2 Transformador trifásico Problema 1 Tres transformadores monofásicos se conectan entre si para formar un banco trifásico. Los transformadores tienen relación de vueltas igual
En un instante determinado el generador está generando 500 kw y consumiendo 400 KVAr, y la tensión en bornas es 680 V.
n generador de un parque eólico de 690 V se conecta a las líneas interiores del parque a través de un transformador dy de 1.000 kva y relación de transformación 690/15.500 V. Dicho transformador tiene
Práctico 4 - Int. a la Electrotécnica
Práctico 4 - Int. a la Electrotécnica Transformador Trifásico Problema 1 Tres transformadores monofásicos se conectan entre si para formar un banco trifásico. Los transformadores tienen relación de vueltas
EXAMEN DE SISTEMAS ELÉCTRICOS
NOMBRE: TEST DE TRANSFORMADORES Y MÁQUINAS 1ª PREGUNTA RESPUESTA A 50 Hz, un transformador tiene unas pérdidas por histéresis de 3 kw siendo las pérdidas totales en el hierro de 5 kw. Si la frecuencia
PRIMER PARCIAL ELECTROTÉCNICA 2 29 de setiembre de 2010
PRIMER PARCIAL ELECTROTÉCNICA 2 29 de setiembre de 2010 Duración: 3 horas // Comenzar cada problema en hojas separadas, indicando la cantidad de hojas entregadas para cada problema // Escribir de un solo
Facultad de Ingeniería (U.N.M.D.P.) - Dpto. de Ingeniería Eléctrica - Area Electrotecnia Electrotecnia 3
GUÍA DE PROBLEMAS Nº 3 Tema: Estudio de fallas simétricas y asimétricas PROBLEMA Nº 1: Un generador de 20 MVA, a 13,8 kv, tiene una reactancia subtransitoria directa de 0,25 p.u. Las reactancias de secuencia
Máquinas Eléctricas Práctico 1 Transformadores I (repaso)
Máquinas Eléctricas Práctico 1 Transformadores I (repaso) IIE - Facultad de Ingeniería - Universidad de la República Problema 1 Figura 1: Esquema Problema 1. El diagrama unifilar de la figura representa
Máquinas Eléctricas II
Máquinas Eléctricas II Tema 1. Transformadores. Problemas propuestos Miguel Ángel Rodríguez Pozueta Departamento de Ingeniería Eléctrica y Energé5ca Este tema se publica bajo Licencia: Crea5ve Commons
Máquinas Eléctricas I - G862
Máquinas Eléctricas I - G862 Tema 3. Máquinas Asíncronas o de Inducción. Problemas propuestos Miguel Ángel Rodríguez Pozueta Departamento de Ingeniería Eléctrica y Energé5ca Este tema se publica bajo Licencia:
ELECTROTECNIA Y MÁQUINAS ELÉCTRICAS
niversidad acional de Cuyo MÁQIAS ELÉCTRICAS GABIETE IDSTRIAL 06 ASIGATRA: CRSO: SEMESTRE: MÁQIAS ELÉCTRICAS 3 5 OMBRE Y APELLIDO: ALMO DOCETES FOTO Prof. Tit. J.T.P. J.T.P. Aux. Docente Ayte Ad Honorem
TECNOLOGÍA ELÉCTRICA. UNIDAD DIDÁCTICA 6 CONCEPTOS BÁSICOS A RETENER Y PROBLEMAS RESUELTOS
TECNOLOGÍA ELÉCTRICA. UNIDAD DIDÁCTICA 6 CONCEPTOS BÁSICOS A RETENER Y PROBLEMAS RESUELTOS 1.- CONCEPTOS GENERALES DE CORTOCIRCUITOS Las causas más frecuentes de cortocircuitos en instalaciones de BT son:
Transformadores (Parte 1)
UNIVERSIDAD NACIONAL DE MAR DEL PLATA Máquinas Eléctricas (34) Curso: Ingeniería Mecánica Transformadores (Parte 1) Prof. Justo José Roberts Introducción MÁQUINAS ESTÁTICAS Transformador Autotransformador
UNIVERSIDAD DE CANTABRIA. Departamento de Ingeniería Eléctrica y Energética
ENSAYOS DE UN MOTOR ASINCRONO TRIFASICO Datos del motor a ensayar: Referencia del motor a ensayar: Tipo de motor según NEMA: Potencia nominal: kw Velocidad nominal: r.p.m. Tensión nominal: / V Frecuencia
APELLIDOS: NOMBRE: TEORÍA (Responder Razonadamente)
CURSO 12-13. 2º PARCIAL, 22 de Enero de 2.013. Curso de Adaptación al Grado en Tecnologías Industriales. Asignatura: MAQUINAS Y ACCIONAMIENTOS ELECTRICOS TEORÍA (Responder Razonadamente) 1.- La máquina
Para el estudio de las redes en régimen desequilibrado es necesario disponer las impedancias de secuencia de los transformadores partes de las mismas.
Impedancias de Secuencia en Transformadores. 1. Introducción. Para el estudio de las redes en régimen desequilibrado es necesario disponer las impedancias de secuencia de los transformadores partes de
Tema 2. Transformadores. Joaquín Vaquero López, 2014 Máquinas Eléctricas
Tema. Transformadores Joaquín aquero López, 04 0 Máquinas eléctricas estáticas 0 Transformador ideal y real Índice 03 Circuitos equivalentes 04 Corriente de vacío y de conexión 05 Transformadores trifásicos
MAQUINAS ELECTRICAS MODULO DE AUTOAPRENDIZAJE V
1. GENERALIDADES SESION 3: EL TRANSFORMADOR TRIFASICO La gran mayoría de los sistemas de generación y de distribución de energía que existen en el mundo son sistemas trifásicos (3Ø) de corriente alterna
III Examen Parcial Máquinas Eléctricas I (06/07/04)
III Examen Parcial Máquinas Eléctricas I (06/07/04) A una máquina de inducción se le realizan las siguientes pruebas: Vacío Vo = 416 V Io = 38 A Po = 800 W Cortocircuito Vcc = 170 V Icc = 188 A Pcc = 32000
EJERCICIOS PROPUESTOS DE MAQUINAS ELECTRICAS TEMA-2 (TRANSFORMADORES)
EJERCICIO Nº1 EJERCICIOS PROPUESTOS DE MAQUINAS ELECTRICAS TEMA-2 (TRANSFORMADORES) Un transformador monofásico de 10KVA, relación 500/100V, tiene las siguientes impedancias de los devanados: Ω y Ω. Al
Máquinas Eléctricas I - G862
Máquinas Eléctricas I - G862 Tema 4. Máquinas Síncronas. Problemas propuestos Miguel Ángel Rodríguez Pozueta Departamento de Ingeniería Eléctrica y Energé5ca Este tema se publica bajo Licencia: Crea5ve
Pauta Control 1 Pauta por: Lorenzo Reyes
EL57A Sistemas Eléctricos de Potencia Pauta Control 1 Pauta por: Lorenzo Reyes Pregunta 1 1. El diagrama unilineal del problema se presenta en la Figura 1: Figura 1: diagrama unilineal Utilizando entonces
MÁQUINAS ELÉCTRICAS PROBLEMAS CURSO Norberto Redondo Melchor. Profesor Asociado Ingeniero Industrial Doctor por la Universidad de Salamanca
UNIVERSIDAD DE SALAMANCA ESCUELA POLITÉCNICA SUPERIOR Avda. Cardenal Cisneros 34 49002 ZAMORA Fax 980 54 50 01 Telf. 980 54 50 00 ÁREA DE INGENIERÍA ELÉCTRICA MÁQUINAS ELÉCTRICAS PROBLEMAS CURSO 2016-2017
3. El transformador de la actividad anterior debe alimentar una carga de 10 Ω. Calcula las corrientes por el primario y el secundario.
El Transformador Monofásico Actividades 1. Explica la discrepancia que se plantea entre el modelo de transformador ideal para vacío y para carga. El transformador ideal en vacío al conectar al primario
PROBLEMAS DE MICROONDAS: PARÁMETROS S Y ANÁLISIS DE CIRCUITOS DE MICROONDAS
PROBLEMAS DE MICROONDAS: PARÁMETROS S Y ANÁLISIS DE CIRCUITOS DE MICROONDAS PROBLEMA 1 Calcular la matriz S del siguiente cuadripolo: R l 1 l 2 Z 1 Z 2 PROBLEMA 2 Determine la matriz de parámetros ABCD
Circuitos Magnéticos y Transformadores Problema 4.3
Circuitos Magnéticos y Transformadores roblema 4. n transformador Dy5 de 5 Hz alimenta una instalación eléctrica formada por los siguientes consumidores (todos ellos trifásicos o repartidos igualmente
Electrotecnia General Tema 35 TEMA 35 TRANSFORMADORES MONOFÁSICOS II TRANSFORMADOR MONOFÁSICO. CIRCUITO DE KAPP REFERIDO AL PRIMARIO.
TEMA 35 TRANSFORMADORES MONOFÁSICOS II 35.1. TRANSFORMADOR MONOFÁSICO. CIRCUITO DE KAPP REFERIDO AL PRIMARIO. Según la hipótesis de Kapp, la intensidad del transformador en vacío I v se considera despreciable,
Tema III. Transformadores
Titulación. Ingeniero Organización Industrial Asignatura. Tecnología Eléctrica Rev. 1.0 (Enero-2012) Tema III. Transformadores Universidad Politécnica de Cartagena DPTO. DE INGENIERÍA ELÉCTRICA FRANCISCO
Máquinas Eléctricas Práctico 2 Transformadores II
Problema 1 Máquinas Eléctricas Práctico 2 Transformadores II IIE - Facultad de Ingeniería - Universidad de la República Debido a un aumento previsto en la carga de la instalación de una planta que cuenta
EL 57A SISTEMAS ELECTRICOS DE POTENCIA
EL 57A SISTEMAS ELECTRICOS DE POTENCIA Clase 8: Transformadores Luis argas AREA DE ENERGIA DEPARTAMENTO DE INGENIERIA ELECTRICA EL 57A Sistemas Eléctricos de Potencia - Prof. Luis argas - Otoño 9 Contenido.
FACULTAD REGIONAL BUENOS AIRES DTO. DE ELECTRÓNICA
UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL BUENOS AIRES DTO. DE ELECTRÓNICA Cátedra: Máquinas e Instalaciones Eléctricas GUIA DE PROBLEMAS CURSO 2007 - (Primera Parte) Coordinador: Ing. Jorge A.
TRANSFORMADORES DE POTENCIA
TRANSFORMADORES DE POTENCIA Profesor: César Chilet 16/09/2013 [email protected] 2 1 OBJETIVO Definir el modelo del transformador para estudios de transmisión de potencia eléctrica en régimen permanente
CALCULO POR UNIDAD. Ing. Rodmy Miranda Ordoñez
CALCULO POR UNIDAD Ing. Rodmy Miranda Ordoñez Sistema Eléctrico de Potencia Un Sistema Eléctrico de Potencia está formado por un conjunto de elementos que interactúan y que se pueden dividir en dos grupos:
BOLETÍN DE PROBLEMAS SISTEMAS TRIFÁSICOS EQUILIBRADOS
TECNOLOGÍA ELÉCTRICA Ingeniero Químico Curso 2004/2005 BOLETÍN DE PROBLEMAS SISTEMAS TRIFÁSICOS EQUILIBRADOS Problema 1. En el circuito de la figura, calcular: a) Las intensidades de línea. b) Las tensiones
Transformador monofásico
GUIA DE TRABAJOS PRACTICOS DE LABORATORIO TPN 1 Transformador monofásico 1. Objetivos Realizar la identificación de bobinados y obtener su polaridad (homología). Determinar la curva de magnetización y
UNIVERSIDAD NACIONAL DE TUCUMÁN
UNIVERSIDAD NACIONAL DE TUCUMÁN Facultad de Ciencias Exactas y Tecnología SISTEMAS DE POTENCIA TRABAJO PRÁCTICO Nº 4 Cálculo de Cortocircuito ALUMNO: AÑO 2017 INTRODUCCIÓN El Cortocircuito es una conexión
EXAMEN DE SISTEMAS ELÉCTRICOS
NOMBRE: TEST DE TRANSFORMADORES Y MÁQUINAS 1ª PREGUNTA RESPUESTA 10.0 7.5 λ Un transformador monofásico tiene unas pérdidas en el hierro de 6000 W a 50 Hz con chapas de 2 mm de espesor. Siendo su ciclo
Máquinas Eléctricas I - G862
Máquinas Eléctricas I - G862 Tema 4. Máquinas Síncronas. Problemas propuestos Miguel Ángel Rodríguez Pozueta Departamento de Ingeniería Eléctrica y Energé5ca Este tema se publica bajo Licencia: Crea5ve
Transformadores (Parte 1)
UNIVERSIDAD NACIONAL DE MAR DEL PLATA Máquinas Eléctricas (34) Curso: Ingeniería Mecánica Transformadores (Parte 1) Prof. Justo José Roberts Introducción MÁQUINAS ESTÁTICAS Transformador Autotransformador
TECNOLOGÍA ELÉCTRICA. UNIDAD DIDÁCTICA 3 CONCEPTOS BÁSICOS A RETENER Y PROBLEMAS RESUELTOS
TECNOLOGÍA ELÉCTRICA. UNIDAD DIDÁCTICA 3 CONCEPTOS BÁSICOS A RETENER Y PROBLEMAS RESUELTOS 1.- CARACTERÍSTICAS DE LA MÁQUINA SÍNCRONA Las máquinas síncronas son máquinas eléctricas cuya velocidad de rotación
Tema 4: Líneas de transporte y distribución. Ingeniería Eléctrica
1 Tema 4: Líneas de transporte y distriución usana Borromeo, 01 Joaquín aquero, 016 Índice 01 istema Eléctrico de Potencia 0 istema en alores por Unidad 03 Flujo de Cargas 3 istema Eléctrico de Potencia
TRANSFORMADORES TRIFÁSICOS CON CARGAS DESEQUILIBRADAS
DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA TRANSFORMADORES TRIFÁSICOS CON CARGAS DESEQUILIBRADAS Miguel Angel Rodríguez Pozueta Doctor Ingeniero Industrial 2016, Miguel Angel Rodríguez Pozueta Universidad
PRUEBAS DE ACCESO A LA UNIVERSIDAD DE 2005 EXAMEN DE SEPTIEMBRE DE MATERIA: ELECTROTECNIA
PRUEBAS DE ACCESO A LA UNIVERSIDAD DE 2005 EXAMEN DE SEPTIEMBRE DE 2005. MATERIA: ELECTROTECNIA C1) En el circuito de la figura una fuente de tensión está alimentando a cuatro resistencias R 1, R 2, R
PRUEBAS DE ACCESO A LA UNIVERSIDAD DE 2005 EXAMEN DE JUNIO DE MATERIA: ELECTROTECNIA
PRUEBAS DE ACCESO A LA UNIVERSIDAD DE 2005 EXAMEN DE JUNIO DE 2005. MATERIA: ELECTROTECNIA C1) En el circuito de la figura una fuente de tensión senoidal está alimentando a tres resistencias R 1, R 2 y
Tecnología Eléctrica Ingeniero Químico
Dpto. de ngeniería Eléctrica Tecnología Eléctrica ngeniero Químico Universidad de Valladolid Problemas de Sistemas Trifásicos Problema 4. Una carga trifásica con configuración en estrella y otra en triángulo
PROTECCION DIFERENCIAL
PROTECCION DIFERENCIAL Cátedra: Transmisión de la Energía Eléctrica Tiene por objeto desconectar el transformador en tiempo mínimo (disparo instantáneo) ante un cortocircuito dentro del dominio protegido,
SISTEMAS ELÉCTRICOS PROBLEMAS DE TRANSFORMADORES
SISTEMAS ELÉCTRICOS PROBLEMAS DE TRANSFORMADORES TR_1 Del circuito equivalente de un transformador se conocen todos los parámetros que lo forman. Determínense todas las magnitudes eléctricas que aparecen
Circuitos Eléctricos Trifásicos. Introducción.
Circuitos Eléctricos Trifásicos. Introducción. La mayor parte de la generación, transmisión, distribución y utilización de la energía eléctrica se efectúa por medio de sistemas polifásicos; por razones
Transformador en vacío alimentado a tensión y frecuencia nominal.
Transformadores. 1. Ensayo de Vacío. Este ensayo se realiza en las siguientes condiciones: Transformador en vacío alimentado a tensión y frecuencia nominal. A partir del mismo se determinan las pérdidas
UNIVERSIDAD DE COSTA RICA
UNIVERSIDAD DE COSTA RICA IE-035 LABORATORIO DE MÁQUINAS ELÉCTRICAS I EXPERIMENTO 5 - GRUPO 0 PROFESOR: JUAN RAMON RODRÍGUEZ Transformador Monofásico. Relación de transformación y Circuito Equivalente.
UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL BUENOS AIRES DEPARTAMENTO DE INGENIERIA ELECTRICA INGENIERÍA ELÉCTRICA MAQUINAS ELÉCTRICAS I
UNIERSIDD TECNÓLOGIC NCIONL FCULTD REGIONL BUENOS IRES DEPRTMENTO DE INGENIERI ELECTRIC CRRER: CÁTEDR: PROFESOR:.T.P.: Ing. Roberto WULF Ing. Sergio ROTT Ing. Pablo YORNET INGENIERÍ ELÉCTRIC MQUINS ELÉCTRICS
Tipo A Curso 2011/2012.
TECNOLOGÍA ELÉCTRICA Tipo A Curso 2011/2012. Nombre: Hojas a entregar: Hoja de lectura óptica y hoja de examen identificada y rellena Nota: Únicamente está permitido el uso de calculadora. TIEMPO: 2 HORAS
TRANSFORMADORES - PROBLEMAS
TRANSFORMADORES - PROBLEMAS Problema 1. Considerando el transformador ideal de la figura, calcular: a) El número de espiras del bobinado secundario, N 2 b) A amplitud del Ф m Фm =? + + U 1 v= g 240 V -
UD. 4 MAQUINAS ELECTRICAS ELECTROTECNIA APLICADA A LA INGENIERIA MECÁNICA
ELECTROTECNIA APLICADA A LA INGENIERIA MECÁNICA UD. 4 MAQUINAS ELECTRICAS Descripción: Principios de electromagnetismo y funcionamiento y aplicaciones de las diferentes máquinas eléctricas. 1 Tema 4.2.
PRÓLOGO A LA SEGUNDA EDICIÓN... VII PRÓLOGO A LA TERCERA EDICIÓN... XI
PRÓLOGO A LA SEGUNDA EDICIÓN... VII PRÓLOGO A LA TERCERA EDICIÓN... XI I. FUNDAMENTOS DE ELECTROMAGNETISMO E INTRODUCCIÓN AL ESTUDIO DE LOS CIRCUITOS MAGNÉTICOS EN LAS MÁQUINAS ELÉCTRICAS... 1 I.1. PLANTEAMIENTO
Facultad de Ingeniería (U.N.M.D.P.) - Dpto. de Ingeniería Eléctrica - Area Electrotecnia Electrotecnia General
GUÍA DE PROBLEMAS Nº 5 Circuitos trifásicos equilibrados PROBLEMA Nº 1: Se dispone de un sistema trifásico equilibrado, de distribución tetrafilar, a la que se conectan tres cargas iguales en la configuración
Tema VI. Diseño de instalaciones eléctricas: Cálculo eléctrico de líneas.
Titulación. Ingeniero Organización Industrial signatura. Tecnología Eléctrica Rev. 1.0 (Enero-2012) Tema VI. Diseño de instalaciones eléctricas: Cálculo eléctrico de líneas. Universidad Politécnica de
Máquinas Eléctricas II
Máquinas Eléctricas II Proto%po de Examen Final. Teoría y Problemas Miguel Ángel Rodríguez Pozueta Departamento de Ingeniería Eléctrica y Energé5ca Este tema se publica bajo Licencia: Crea5ve Commons BY-
UNIVERSIDAD NACIONAL DE TUCUMÁN
UNIVERSIDAD NACIONAL DE TUCUMÁN Facultad de Ciencias Exactas y Tecnología SISTEMAS DE POTENCIA TRABAJO PRÁCTICO Nº 4 Cálculo de Cortocircuito ALUMNO: AÑO 2018 INTRODUCCIÓN El Cortocircuito es una conexión
Protecciones. las. Líneas. Eléctricas. Indice. 1. Generalidades. 2. Relés de protección.
Protecciones de las Líneas Eléctricas Indice 1. Generalidades 2. Relés de protección. 2.1. Tipos de relé de protección y vigilancia de líneas y redes. 2.1.1. Relé de intensidad. 2.1.2. Relés de tensión.
PRUEBA DE VACIO Y CORTO CIRCUITO
I. OBJETIVOS: PRUEBA DE VACIO Y CORTO CIRCUITO Determinar los parámetros del circuito equivalente para la experiencia en vacio de un transformador monofásico. Determinar si el valor de las perdidas en
13 Esquema equivalente de Thevenin de un transformador visto desde el secundario
Esquema equivalente de Thevenin de un transformador visto desde el secundario 79 3 Esquema equivalente de Thevenin de un transformador visto desde el secundario Cuando el primario de un transformador está
Cuestiones de laboratorio Supone el 30% de la nota del laboratorio de máquinas eléctricas. Utilizar la PRIMERA columna de la hoja de respuestas.
DEPARTAMENTO DE INGENIERÍA ELÉCTRICA 0m 3º IEM. Máquinas Eléctricas 12 diciembre 2014 Prueba ordinaria Modelo A Duración: 3 horas PRIMERA PARTE: CUESTIONES (duración: 1 hora) Esta primera parte consta
No, ya que existen perdidas, pudiendo hacer tal conexionado en un transformador ideal.
1. Un transformador de tensión es reversible. Si se toman dos transformadores idénticos de 230/12 V y si conectan los dos secundarios entre si y uno de los primarios se conecta a una toma de tensión, En
UNIVERSIDAD NACIONAL DE TUCUMÁN
UNIVERSIDAD NACIONAL DE TUCUMÁN Facultad de Ciencias Exactas y Tecnología SISTEMAS DE POTENCIA TRABAJO PRÁCTICO Nº 4 Cálculo de Cortocircuito ALUMNO: AÑO 2015 INTRODUCCIÓN El Cortocircuito es una conexión
TEMA 7. Máquinas rotativas de corriente continua. Principio y descripción CONSTITUCIÓN DE UNA MÁQUINA DE CORRIENTE CONTINUA.
TEMA 7. Máquinas rotativas de corriente continua. Principio y descripción. CONTENIDO: 7.1.- Constitución de una máquina de corriente continua. 7.2.- Principio de funcionamiento. 7.3.- Tipos de excitación.
UNIVERSIDAD NACIONAL DE TUCUMÁN. Facultad de Ciencias Exactas y Tecnología
UNIVERSIDAD NACIONAL DE TUCUMÁN Facultad de Ciencias Exactas y Tecnología SISTEMAS DE POTENCIA TRABAJO PRÁCTICO Nº 1 INTRODUCCIÓN - SISTEMAS EN POR UNIDAD ALUMNO: AÑO 2017 INTRODUCCIÓN En el campo de análisis
UD. 4 MAQUINAS ELECTRICAS ELECTROTECNIA APLICADA A LA INGENIERIA MECÁNICA
ELECTROTECNIA APLICADA A LA INGENIERIA MECÁNICA UD. 4 MAQUINAS ELECTRICAS Descripción: Principios de electromagnetismo y funcionamiento y aplicaciones de las diferentes máquinas eléctricas. 1 Tema 4.1.
GENERALIDADES. El autotransformador puede ser considerado como un caso particular del transformador.
AUTOTRANSFORMADOR GENERALIDADES El autotransformador puede ser considerado como un caso particular del transformador. A diferencia del transformador, tiene un sólo bobinado sobre el núcleo, con una parte
Máquinas eléctricas de corriente alterna. Capítulo 3 Máquina Síncrona
Universidad Carlos III de Madrid Dept. Ingenería eléctrica Máquinas eléctricas de corriente alterna Capítulo 3 Máquina Síncrona David Santos Martín CAPÍTULO 3 Máquina Síncrona 3.1.- Introducción 3.2.-
Circuitos. Sistemas Trifásicos Mayo 2003
Mayo 00 PROBLEMA 8. La carga trifásica de la figura está constituida por tres elementos simples ideales cuyas impedancias tienen el mismo I C I módulo, 0 Ω, y se conecta a una red trifásica equilibrada
ALTERNA (III) TRIFÁSICA: Problemas de aplicación
ALTERNA (III) TRIFÁSICA: Problemas de aplicación 1º.- Determinar la tensión compuesta que corresponde a un sistema trifásico que posee una tensión simple de 127 V. Solución: 220 V 2º.- Si la tensión de
2. EXPERIENCIAS DE TRANSFORMADORES 2.2. EXPERIENCIA N 2: TRANSFORMADORES TRIFASICOS.
2. EXPERIENCIAS DE TRANSFORMADORES 2.2. EXPERIENCIA N 2: TRANSFORMADORES TRIFASICOS. A.- INTRODUCCION El uso de transformadores en conexión trifásica en Sistemas de Potencia es de primera importancia,
Potencia Eléctrica en C.A.
Potencia Eléctrica en C.A. Potencia Eléctrica en Circuitos Puramente Resistivos (o en Circuitos con C.C.) Si se aplica una diferencia de potencial a un circuito, éste será recorrido por una determinada
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS MATERIA: ELECTROTECNIA OFICIALES DE GRADO (MODELO DE EXAMEN) Curso 2013-2014 INSTRUCCIONES GENERALES Y
EXAMENES ELECTROTECNIA TEORIA
EXAMENES En este archivo presento el tipo de exámenes propuesto en la asignatura de Electrotecnia en la fecha indicada, con las puntuaciones indicadas sobre un total de diez puntos. Según la guía académica
