Diseño digital CMOS. TRANSISTOR
|
|
|
- Mercedes Botella Farías
- hace 7 años
- Vistas:
Transcripción
1 Diseño digital CMOS DIODO TRANSISTOR
2 Transistor nmos Un transistor MOS (Metal-Oxide-Silicon) de canal n (nmos)esunaestructurafísicacreada mediante la superposición de df diferentes materiales: Un sustrato tipo p ligeramente dopado. Dos regiones tipo n fuertemente dopadas, fuente y drenador, separadas por una región de sustrato llamada canal. Una fina capa de aislante sobre el canal. Una capa de polisilicio sobre el aislante. Eléctricamente, un transistor nmos es un dispositivo de 4 terminales que permite controlar por voltaje la intensidad que circula por el canal. Sustrato: típicamente no se tiene en cuenta porque suele estar conectado a GND. Puerta: es un terminal de control que regula la intensidad que circula por el canal. Fuente y drenador: son los terminales origen y destino de los portadores de carga (electrones), físicamente son equivalentes, su nombre depende del sentido de la intensidad Fuente: origen del flujo de electrones, destino de intensidad. Drenador: destino del flujo de electrones, origen de intensidad. Conceptualmente su comportamiento es: Si existe it una diferenciai de potencial positivo suficiente i entre puerta ysustrato t se induce un canal conductor de tipo n entre drenador y fuente. Si existe una diferencia de potencial entre drenador y fuente, y existe canal, la corriente circula a través del mismo.
3 Transistor nmos
4 Transistor pmos Un transistor MOS de canal p (pmos) es un dispositivo con una construcción y comportamiento duales a las dl del transistor nmos. La sección vertical de un transistor pmos está formada típicamente por: Un sustrato tipo n ligeramente dopado. Dos regiones tipo p fuertemente dopadas, fuente y drenador, separadas por una región de sustrato llamada canal. Una fina capa de aislante sobre el canal. Una capa de polisilicio sobre el aislante. Eléctricamente, un transistor pmos es un dispositivo de 4 terminales que también permite controlar por voltaje la intensidad que circula por el canal. Sustrato: típicamente no se tiene en cuenta porque suele estar conectado a PWR. Puerta: es un terminal de control que regula la intensidad que circula por el canal. Fuente y drenador: d son los terminales origen y destino de los portadores de carga (huecos), físicamente son equivalentes, su nombre depende del sentido de la intensidad. Conceptualmente su comportamiento es: Si existe una diferencia de potencial negativo suficiente entre puerta y sustrato se induce un canal conductor de tipo p entre drenador y fuente. Si existe una diferencia de potencial entre drenador y fuente, y existe canal, la corriente circula a través del mismo.
5 Transistor pmos
6 Abstracción digital del comportamiento de transistores MOS: puertas de paso Considera un transistores MOS como interruptores. Consideraciones 1 lógico : voltaje comprendido entre 1.5V y 15V, representado por Vdd, o PWR. 0 lógico, voltaje de 0V, representado por Vss, o GND. Por convenio, la intensidad circula de Vdd a Vss, en sentido contrario al flujo de e-. La fuerza de una señal ( 0 ó 1 ) en un punto se define como la capacidad de ese punto de conducir intensidad (más fuerza = más capacidad). Vdd es una fuente de 1 fuertes. Vss es una fuente de 0 fuertes. Las salidas son más fuertes que las entradas. Comportamiento de un transistor nmos: Si G= 0 fuente y drenador se aíslan, en transistor no conduce. Si G= 1 fuente y drenador se unen mediante el canal, el transistor conduce transmitiendo sin distorsionar los 0 s s. transmitiendo distorsionados los 1 s. Comportamiento de un transistor pmos: Si G= 1 fuente y drenador se aíslan, en transistor no conduce. Si G= 0 fuente y drenador se unen mediante el canal, el transistor conduce transmitiendo sin distorsionar los 1 s. transmitiendo distorsionados los 0 s.
7 Puertas de paso
8 Puertas de paso CMOS Los transistores MOS funcionando por separado como puertas de paso son imperfectos pero complementarios: nmos transmite sin degradar 0 cuando la puerta vale 1. pmos transmite sin degradar 1 cuando la puerta vale 0. Una combinación en paralelo de un transistor nmos y otro pmos con valores de puerta opuestos será una puerta de paso (o interruptor) perfecta. Si s= 0, ningún transistor conduce, la salida se aísla. Si s= 1 ambos transistores conducen, las salida sigue a la entrada Cuando hay un 0, el transistor nmos lo transmite. Cuando hay un 1 lo transmite el transistor pmos.
9 Diseño con puertas de paso CMOS Una aplicación inmediata de las puertas de paso CMOS es la construcción de multiplexores. si las entradas de datos se conectan a Vdd ó Vss podemos usar los multiplexores para implementar tablas de verdad
10 Inversor CMOS Observaciones: las funciones lógicas generan a la salida valores diferentes que los presentes a la entrada. usando drenador y fuente como entrada y salida sólo conseguimos pasar una señal para transformarlas será crucial usar la puerta del transistor como entrada para nmos, un terminal será la salida y el otro estará conectado permanentemente a Vss (ya que el transistor nmos sólo transmite sin degradar 0 s) para pmos, un terminal será la salida y el otro estará conectado permanentemente a Vdd (ya que el transistor pmos sólo transmite sin degradar 1 s) qué sucederá si se unen las entradas y salidas de un transistor nmos y otro pmos? hemos diseñado un inversor
11 Inversor CMOS Un inversor CMOS (Complementary MOS) estático está formado por un transistor pmos en serie con un transistor nmos con sus puertas unidas: la entrada del inversor es la puerta común y la salida, el punto de unión de los transistores. el transistor pmos se llama transistor de pull-up, up, tiene un terminal conectado avddyeselencargado de poner la salida a 1 cuando conduce (cuando la entrada vale 0 ). el transistor nmos se llama transistor de pull-down, tiene un terminal conectado a Vss y es el encargado de poner la salida a 0 cuando conduce (cuando la entrada vale 1 ).
12 Lógica combinacional CMOS Todo circuito combinacional CMOS estático se basa en la conexión de dos árboles duales con entradas comunes y salida ld común, que en estado estacionario no conducen simultáneamente lá Arbol de pull-up, formado únicamente por transistores pmos, que conectan condicionalmente (en función de las entradas) la salida avdd. Arbol de pull-down, formado únicamente por transistores nmos, que conectan condicionalmente i (en función de las entradas) la salida avss. Reglas de diseño Los transistores se usan como interruptores (controlados por puerta). Los árboles se construyen conectando en serie o en paralelo grupos de transistores del mismo tipo. Es condición suficiente aunque no necesaria que las estructuras de transistores de los árboles sean duales (ej. Si en el árbol de pull-up los transistores están en serie, en el de pull-down estarán en paralelo). Implementa lógica inversora, es decir, funciones inversas se implementan directamente, funciones directas requieren de un inversor adicional.
13 Diseño de funciones a nivel CMOS Metodología partiendo de una expresión de conmutación Para implementar el árbol de pull-up se trabaja con la función sin complementar. Manipular la función para que sólo dependa de variables complementadas. Cada término producto se diseña mediante transistores pmos en serie. Cada término suma se diseña mediante transistores pmos en paralelo. Para implementar el árbol de pull-down se trabaja con la función complementada. Manipular la función para que sólo dependa de variables sin complementar. Cada a término suma se diseña mediante transistores tasstoesnmos en paralelo. a Cada término producto se diseña mediante transistores nmos en serie. Metodología partiendo de un diagrama de Karnaugh Para implementar el árbol de pull-up se agrupan los 1. Representar la función como una suma de productos de variables complementadas. Proceder como se ha explicado anteriormente. Para implementar el árbol de pull-down se agrupan los 0. Representar la función como un producto de sumas de variables sin complementar. Proceder como se ha explicado anteriormente.
14 Puertas NAND y NOR
15 Ejercicio 1 Dado el siguiente mapa de Karnaugh diseñar lógica combinacional apropiada mediante transistores CMOS ab cd
16 Ejercicio 2 Implementar con transistores CMOS la siguiente función lógica combiancional: y=(a b+c d) b+cd)
17 Bibliografía Diseño de circuitos integrados J M Mendías Dpto Diseño de circuitos integrados, J.M. Mendías, Dpto. Arquitectura de computadores y Automática UCM.
Módulo I Tecnología CMOS
Tema 2: diseño digital CMOS iseño de Circuitos Integrados I José Manuel Mendías Cuadros Hortensia Mecha López pto. Arquitectura de Computadores y Automática Universidad Complutense de Madrid 1 Módulo I
TEMA 5.2 FUNCIONES LÓGICAS TEMA 5 SISTEMAS DIGITALES FUNDAMENTOS DE ELECTRÓNICA
TEMA 5.2 FUNCIONES LÓGICAS TEMA 5 SISTEMAS DIGITALES FUNDAMENTOS DE ELECTRÓNICA 17 de febrero de 2015 TEMA 5.2 FUNCIONES LÓGICAS Puertas lógicas Simplificación de funciones lógicas 2 TEMA 5.2 FUNCIONES
Introducción volts.
Constantes y Variables Booleanas Tabla de Verdad. Funciones lógicas (AND, OR, NOT) Representación de las funciones lógicas con compuerta lógicas básicas (AND, OR, NOT) Formas Canónicas y Standard (mini
ELECTRÓNICA DIGITAL. Ejercicios propuestos Tema 1
ELECTRÓNICA DIGITAL Ejercicios propuestos Tema 1 Ejercicio 1. Simplificar las siguientes funciones lógicas utilizando los postulados y las propiedades del algebra de Boole. a) Y = A B C + A B C + A B C
Fundamentos del transitor MOSFET
Fundamentos del transitor MOSFET Lección 04.1 Ing. Jorge Castro-Godínez EL2207 Elementos Activos Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica I Semestre 2014 Jorge Castro-Godínez
Tema 8. Circuitos electrónicos digitales
Tema 8. Circuitos electrónicos digitales Sistemas digitales. Conmutación. Operaciones lógicas. Álgebra de Boole. Síntesis lógica. Mapas de Karnaugh. Fundamentos Físicos de la Ingeniería II. Tema 8: Electrónica
APOYO PARA EL LOGRO DEL PRIMER APRENDIZAJE ESPERADO: CONCEPTOS PREVIOS
Profesor/a(s) Nivel o Curso/s 4º Ramon Flores Pino Unidad/Sub Unidad 2.- Circuitos de lógica Combinacional Contenidos 1 Compuertas lógicas 2. Enfoque de problemas, 3.- Codificadores y decodificadores GUÍA
normalmente abiertos N M O S V TN > 0 P M O S V TP < 0
Transistores de Efecto de Campo de Compuerta Aislada IGFET o MOSFET enriquecimiento normalmente abiertos P M O S V TP < 0 N M O S V TN > 0 enriquecimiento NMOS V T > 0 PMOS V T < 0 zona resistiva i D =
FUNDAMENTOS DE COMPUTADORES Ejercicios U2: Circuitos Combinacionales
U_. Se desea transmitir las primeras cuatro letras del alfabeto de un ordenador ORD a otro ORD. En el primero las cuatro letras están codificadas en tres líneas X, X y X y en el segundo tan sólo en dos,
Transistor MOSFET ELEMENTOS ACTIVOS EL-2207 I SEMESTRE 2011
Transistor MOSFET ELEMENTOS ACTIVOS EL-2207 I SEMESTRE 2011 ITCR - Elementos Activos I 2011 Objetivos El transistor de efecto de campo MOSFET y la tecnología CMOS (6 semanas) Construcción, símbolo, clasificación.
PROBLEMAS TECNOLOGÍA INDUSTRIAL II. CONTROL DIGITAL
PROBLEMAS TECNOLOGÍA INDUSTRIAL II. CONTROL DIGITAL 1. 2. 3. 4. 5. 6. a) Convierta el número (5B3) 16 al sistema decimal b) Convierta el número (3EA) 16 al sistema binario c) Convierta el número (235)
Conceptos preliminares Familias lógicas Topologías Compuertas Flip Flops Osciladores. Introducción a la Electrónica
CIRCUITOS DIGITALES Conceptos preliminares Familias lógicas Topologías Compuertas Flip Flops Osciladores Memorias Conceptos preliminares Máximo nivel de tensión de entrada para un nivel lógico bajo V IL
TEMA 4 TRANSISTORES DE EFECTO CAMPO
TEMA 4 TRANSISTORES DE EFECTO CAMPO Profesores: Germán Villalba Madrid Miguel A. Zamora Izquierdo 1 CONTENIDO Introducción El transistor JFET Análisis de la recta de carga. Circuitos de polarización. El
CIRCUITOS DE SALIDA DE LAS PUERTAS LÓGICAS
CIRCUITOS DE SALIDA DE LAS PUERTAS LÓGICAS MAPA CONCEPTUAL DE LOS CIRCUITOS INTEGRADOS Circuitos Integrados Digitales Monolíticos (CIDM) Según la realización física Según la forma en que se realiza el
Ejercicios Tema Implemente las siguientes funciones lógicas:
Ejercicios Tema 5.2 1. Implemente las siguientes funciones lógicas: f = a + b c g = d (c + ba) + a a. Con las puertas lógicas que desee b. Solo con puertas NAND c. Solo con puertas NOR 2. Implemente la
Conocer la aplicación de dispositivos semiconductores, como conmutadores, así como las compuertas lógicas básicas y sus tablas de verdad.
OBJETIVO GENERAL: PRACTICA No. 1: PRINCIPIOS BÁSICOS Conocer la aplicación de dispositivos semiconductores, como conmutadores, así como las compuertas lógicas básicas y sus tablas de verdad. OBJETIVOS
Stuck-at. 1.1 Stuck-at Fault
Capítulo 1 Stuck-at 1.1 Stuck-at Fault Este fallo es modelado asignando un valor fijo (0 ó 1) a la línea de señal en el circuito. Una línea de señal es una entrada o salida de una compuerta lógica o un
LECCIÓN Nº 02 FUNCIONES DE LOGICA COMBINACIONAL (PARTE 1)
LECCIÓN Nº 02 FUNCIONES DE LOGICA COMBINACIONAL (PARTE 1) 1. CONVERSORES DE CODIGO La disponibilidad de una gran variedad de códigos para los mismos elementos discretos de información origina el uso de
TRANSITORES DE EFECTO DE CAMPO (Field effect transistor, FET) INTRODUCCIÓN: Son dispositivos de estado sólido Tienen tres o cuatro terminales Es el
TRANSITORES DE EFECTO DE CAMPO (Field effect transistor, FET) INTRODUCCIÓN: Son dispositivos de estado sólido Tienen tres o cuatro terminales Es el campo eléctrico el que controla el flujo de cargas El
TEMA 3.1 MOSFET TEMA 3 TRANSISTOR MOS FUNDAMENTOS DE ELECTRÓNICA
TEMA 3.1 MOSFET TEMA 3 TRANSISTOR MOS FUNDAMENTOS DE ELECTRÓNICA 18 de abril de 2015 TEMA 3.1 MOSFET Introducción Regiones de operación Efecto Early Efecto Body 2 TEMA 3.1 MOSFET Introducción Regiones
Seminario de Dispositivos Semiconductores 2do Cuatrimestre de Fig. 1 M1 VDD. Fig. 2
Guía de Ejercicios Nº7 CMOS 1) Cómo son las tensiones V DS en el circuito de dos transistores n-mosfet de la Fig. 1? V DS1 = V DS2 V DS1 > V DS2 V DS1 < V DS2 M1 VDD VG M2 Fig. 1 2) A qué tensión final
TRANSISTOR MOSFET. Tipos: Canal n y canal p. Uno y otro son complementarios: simétricos y opuestos en cuanto a la polaridad de las tensiones
TRANSISTOR MOSFET MOSFET: Metal-Oxide-Semiconductor Field-Effect Transistor Tipos: Canal n y canal p. Uno y otro son complementarios: simétricos y opuestos en cuanto a la polaridad de las tensiones Estructura
ESCUELA DE FORMACIÓN PROFESIONAL DE INGENIERÍA DE SISTEMAS
LABORATORIO NRO. 02 TEMA: Compuertas Lógicas ALUMNO: CODIGO: GRUPO: Lunes: 2:00 pm 3:00pm Martes: 2:00 pm 5:00pm NOTA 1 OBJETIVO Adquirir conocimiento y destreza en el manejo de las compuertas lógicas
IES PALAS ATENEA. DEPARTAMENTO DE TECNOLOGÍA. 4º ESO ELECTRÓNICA DIGITAL
ELECTRÓNICA DIGITAL 1.- La Información Cuando una señal eléctrica (Tensión o Intensidad), varía de forma continua a lo largo del tiempo, y puede tomar cualquier valor en un instante determinado, se la
PRACTICA Nº3: FAMILIAS LOGICAS
PRACTICA Nº3: FAMILIAS LOGICAS El objetivo de esta práctica es comprobar el funcionamiento de los inversores básicos bipolar y MOS, observando sus características de transferencia y midiendo sus parámetros.
Facultad de Ingeniería Eléctrica
Facultad de Ingeniería Eléctrica Laboratorio de Electrónica Ing. Luís García Reyes Práctica Número 10 Demultiplexores Materia: Laboratorio de Electrónica Digital I Objetivo: Comprobación del funcionamiento
ÍNDICE TEMÁTICO. 4 Características de las familias lógicas Circuitos lógicos combinacionales
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: INGENIERÍA EN TELECOMUNICACIONES, SISTEMAS Y ELECTRÓNICA DENOMINACIÓN DE LA ASIGNATURA: Sistemas Digitales
INDICE Capítulo 1. Principios del Modelado y Procesamiento de Señal Capítulo 2. Amplificadores Operacionales
INDICE Prólogo XI Prólogo a la Edición en Español XIV Capítulo 1. Principios del Modelado y Procesamiento de Señal 1 1.1. Sinergia hombre computador 3 1.2. Características tensión corriente y transferencia
EL MOSFET DE EMPOBRECIMIENTO
MOSFET El MOSFET (Metal Oxide Semiconductor FET), tiene tres terminales fuente, puerta y drenador. Sin embargo, a diferencia del JFET, la puerta está aislada eléctricamente del canal. Por esta causa, la
ARQUITECTURAS ESPECIALES
ARQUITECTURAS ESPECIALES EL - 337 Página Qué es un Multiplexor? EL - 337 Un multiplexor o MUX es un switch digital (interruptor digital) que conecta una de las entradas con su única salida. Desde el punto
FUNDAMENTOS DE COMPUTADORES INGENIERÍA TÉCNICA INFORMÁTICA DE GESTIÓN
FUNDAMENTOS DE COMPUTADORES INGENIERÍA TÉCNICA INFORMÁTICA DE GESTIÓN LISTADO DE PRÁCTICAS CURSO 2005/2006 Practicas de Fundamentos de Computadores (05/06) 2 Práctica 1 Construcción de Funciones Lógicas
Dispositivos Electrónicos
Dispositivos Electrónicos Ingeniería Informática. Ingeniería Técnica en Informática de Sistemas. Obligatoria, 1er Curso, 2º Cuatrimestre 6 Créditos. Profesores: Francisco Javier Marín Martín Manuel Jesús
TEMA 3. Circuitos digitales básicos CMOS.
Ingeniería Técnica de Telecomunicación SS. EE. Curso 3º Microelectrónica I 2010/11 Resumen TEMA 3. Circuitos digitales básicos CMOS. 3.2 Otros Circuitos digitales básicos. Diseño de puertas CMOS Puertas
IMPLEMENTACIÓN DE CIRCUITOS COMBINACIONALES
IMPLEMENTACIÓN DE CIRCUITOS COMBINACIONALES SIMPLIFICACIÓN DE FUNCIONES LÓGICAS Para implementar mediante un circuito digital formado por puertas lógicas una función lógica el primer paso consiste en realizar
INDICE 1. Operación del Computador 2. Sistemas Numéricos 3. Álgebra de Boole y Circuitos Lógicos
INDICE Prólogo XI 1. Operación del Computador 1 1.1. Calculadoras y Computadores 2 1.2. Computadores digitales electrónicos 5 1.3. Aplicación de los computadores a la solución de problemas 7 1.4. Aplicaciones
Tema 5. Familias CMOS. Introducción Puertas lógicas Parámetros característicos Subfamilias CMOS Compatibilidad entre familias
Tema 5. Familias CMOS Introducción Puertas lógicas Parámetros característicos Subfamilias CMOS Compatibilidad entre familias Teoría Bibliografía Principios y aplicaciones digitales. Malvino. Ed. Marcombo.
Universidad Carlos III de Madrid Electrónica Digital Ejercicios
1. Dibuje el esquema de transistores de una puerta lógica que realice la función lógica f = ab(c+d) a) en tecnología NMOS b) en tecnología CMOS 2. El circuito que aparece en la figura pertenece a la familia
Código: Titulación: ING. TÉCNICO IND. EN ELECTRÓNICA INDUSTRIAL Curso: 2
ASIGNATURA: ELECTRÓNICA DIGITAL Código: 126212006 Titulación: ING. TÉCNICO IND. EN ELECTRÓNICA INDUSTRIAL Curso: 2 Profesor(es) responsable(s): JOSE ALFONSO VERA REPULLO - Departamento: TECNOLOGÍA ELECTRONICA
1º Escuela Técnica Superior de Ingeniería de Telecomunicación TECNOLOGÍA Y COMPONENTES ELECTRÓNICOS Y FOTÓNICOS. PROBLEMAS de transistores MOS
1º Escuela écnica Superior de Ingeniería de elecomunicación ECNOLOGÍA Y COMPONENES ELECRÓNICOS Y FOÓNICOS 4 PROBLEMAS de transistores MOS EJERCICIOS de diodos: ECNOLOGÍA Y COMPONENES ELECRÓNICOS Y FOÓNICOS
1ª evaluación: 1: INTRODUCCIÓN A LOS SISTEMAS DIGITALES SISTEMAS DE NUMERACIÓN BINARIO OCTAL Y HEXADECIMAL CAMBIOS DE BASE
Electrónica digital Página 1 1ª evaluación: 1: 2: 3: 4: INTRODUCCIÓN A LOS SISTEMAS DIGITALES SISTEMAS DE NUMERACIÓN BINARIO OCTAL Y HEXADECIMAL CAMBIOS DE BASE ALGEBRA DE BOOLE POSTULADOS Y TEOREMAS PUERTAS
Operadores lógicos con dispositivos de función fija TTL
Práctica 2 Operadores lógicos con dispositivos de función fija TTL Objetivos particulares Durante el desarrollo de esta práctica el estudiante asociará el símbolo, con la expresión matemática y la tabla
TRABAJO PRÁCTICO Nº 3 - EJERCICIOS RESUELTOS
TRBJO PRÁCTICO Nº 3 - EJERCICIOS RESUELTOS Ejercicio 1) a) F = B + BC + BC + C Comenzamos representando la función en el diagrama de Karnaugh (que nos permitirá visualizar los minitérminos y los maxitérminos
PUERTAS LOGICAS. Objetivo específico Conectar los circuitos integrados CI TTL Comprobar el funcionamiento lógico del AND, OR, NOT, NAND y NOR
Cód. 25243 Laboratorio electrónico Nº 5 PUERTAS LOGICAS Objetivo Aplicar los conocimientos de puertas lógicas Familiarizarse con los circuitos integrados Objetivo específico Conectar los circuitos integrados
Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta
Centro Asociado Palma de Mallorca Arquitectura de Ordenadores Tutor: Antonio Rivero Cuesta Unidad Didáctica 1 Representación de la Información y Funciones Lógicas Tema 3 Algebra Booleana y Puertas Lógicas
FUNDAMENTOS DE SISTEMAS DIGITALES. Tema 3: Lógica combinacional (II): Ruta de datos
FUNDAMENTOS DE SISTEMAS DIGITALES Tema 3: Lógica combinacional (II): Ruta de datos 1 Programa 1. Circuitos selectores de datos (multiplexores). 2. Demultiplexores. 3. Codificadores con prioridad. 4. Amplificadores
Componentes Digitales Estructurados
Prof. Rodrigo Araya E. [email protected] Universidad Técnica Federico Santa María Departamento de Informática Valparaíso, 1 er Semestre 2006 1 2 3 4 5 6 7 Los se construyen a partir de unidades más simples
EJERCICIOS TEMA 17: CIRCUITOS DIGITALES COMBINACIONALES
EJERCICIOS TEMA 17: CIRCUITOS DIGITALES COMBINACIONALES Ejercicio PAU Septiembre 2010/2011 a) Rellenamos la tabla de la verdad colocando salidas 1 en las posiciones indicadas: Posición a b c d f 0 0 0
Unidad 4 Electrónica
Unidad 4 Electrónica 1. Componentes electrónicos pasivos: resistores y condensadores Un resistor es un componente pasivo diseñado y fabricado para ofrecer una determinada resistencia al paso de la corriente.
El número decimal 57, en formato binario es igual a:
CURSO: ELECTRÓNICA DIGITAL UNIDAD 1: COMPUERTAS LÓGICAS - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA 1. NÚMEROS BINARIOS EJEMPLO En el cuadro anterior, está la representación de los números binarios en formato
16/11/2016. MEMORIAS de SEMICONDUCTORES
El funcionamiento de una memoria se evalúa por: i. el área del chip por bit de almacenamiento ii. el tiempo de acceso R/W iii. Durabilidad iv. Confiabilidad v. Costo MEMORIAS de SEMICONDUCTORES 1 MEMORIAS
El funcionamiento de una memoria se evalúa por: i. el área del chip por bit de almacenamiento ii. el tiempo de acceso R/W iii. Durabilidad iv.
El funcionamiento de una memoria se evalúa por: i. el área del chip por bit de almacenamiento ii. el tiempo de acceso R/W iii. Durabilidad iv. Confiabilidad v. Costo MEMORIAS de SEMICONDUCTORES MEMORIAS
J-FET de canal n J-FET (Transistor de efecto campo de unión) J-FET de canal p FET
I. FET vs BJT Su nombre se debe a que el mecanismo de control de corriente está basado en un campo eléctrico establecido por el voltaje aplicado al terminal de control, es decir, a diferencia del BJT,
Electrónica Digital. Práctica 3: Dado Digital. Objetivo de la práctica: Conocimientos previos: Material necesario:
Práctica 3: Dado Digital Objetivo de la práctica: El objetivo de la práctica es introducir algunas de las características reales de las puertas lógicas y el aprendizaje de circuitos combinacionales básicos.
PARAMETROS CARACTERISTICOS DE LA FAMILIA CMOS PARAMETROS CARACTERISTICOS DE LA FAMILIA CMOS
PARAMETROS CARACTERISTICOS DE LA FAMILIA CMOS 1 CIRCUITOS DIGITALES ESCALA DE INTEGRACION SSI MSI LSI VLSI ULSI TECNOLOGIA DE FABRICACION FAMILIAS LOGICAS 2 ESCALAS DE INTEGRACION Puertas/mm 2 SSI (Small
Electrónica Básica. Lógica Programable. Electrónica Digital. José Ramón Sendra Sendra Dpto. de Ingeniería Electrónica y Automática ULPGC
Electrónica ásica Lógica Programable Electrónica Digital José Ramón Sendra Sendra Dpto. de Ingeniería Electrónica y utomática ULPG Matrices lógicas Programables (PLs) loques funcionales prefabricados de
El transistor de efecto de campo
1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA ONCE SEGUNDO 6 DOCENTE(S) DEL AREA:NILSON YEZID VERA CHALA COMPETENCIA: USO Y APROPIACION DE LA TECNOLOGIA NIVEL DE COMPETENCIA: INTERPRETATIVA
Tabla 5.2 Compuertas básicas A B A B A B
Compuertas lógicas Un bloque lógico es una representación simbólica gráfica de una o más variables de entrada a un operador lógico, para obtener una señal determinada o resultado. Los símbolos varían de
Tabla de contenidos. 1 Lógica directa
Tabla de contenidos 1 Lógica directa o 1.1 Puerta SI (YES) o 1.2 Puerta Y (AND) o 1.3 Puerta O (OR) o 1.4 Puerta OR-exclusiva (XOR) 2 Lógica negada o 2.1 Puerta NO (NOT) o 2.2 Puerta NO-Y (NAND) o 2.3
BIBLIOGRAFÍA 2.1 INTRODUCCIÓN 2.1 INTRODUCCIÓN (2) Tema 3: EL TRANSISTOR FET
BIBLIOGRAFÍA Tema 3: EL TRANSISTOR FET.1 Introducción. El Mosfet de acumulación Funcionamiento y curvas características Polarización.3 El Mosfet de deplexión Funcionamiento y curvas características.4 El
TECNOLOGÍA DE COMPUTADORES. CURSO 2017/18. Problemas propuestos tema 7
TECNOLOGÍA DE COMPUTADORES. CURSO 2017/18. Problemas propuestos tema 7 1) Identifica el circuito de la figura: A Codificador 2x4 con Enable invertido B Decodificador 2x4 con salida invertida C Decodificador
Transistores de efecto de campo II (MOSFET)
Transistores de efecto de campo II (MOSFET) Tema 6 Índice 1. Introducción... 1 2. Estructura y funcionamiento del MOSFET... 2 2.1. Canal conductor y zonas de funcionamiento... 2 2.2. Característica estática...
Tema 3.1 Introducción a los circuitos combinacionales. Algebra de Boole
Tema 3.1 Introducción a los circuitos combinacionales. Algebra de Boole Índice Algebra de Boole. Definición. Operaciones lógicas: OR, AND, XOR y NOT Puertas lógicas Algebra de Boole Postulados Teoremas
TEMA 3 ELECTRÓNICA TECNOLOGÍA 3º ESO. Samuel Escudero Melendo
TEMA 3 ELECTRÓNICA TECNOLOGÍA 3º ESO Samuel Escudero Melendo QUÉ VEREMOS? CONCEPTOS BÁSICOS ELECTRICIDAD y ELECTRÓNICA CANTIDAD DE CARGA, INTENSIDAD, VOLTAJE, RESISTENCIA LEY DE OHM ELEMENTOS DE CIRCUITOS
A.- Electrones fluyendo por un buen conductor eléctrico, que ofrece baja resistencia.
DEPARTAMENTO DE ORIENTACIÓN: TECNOLOGÍA 4E_F Primer trimestre Curso: 2014/2015 TEMA II: ELECTRICIDAD Y ELECTRÓNICA La electrónica forma parte de nuestra vida cotidiana.- Los electrodomésticos, los medios
CURSO: ELECTRÓNICA DIGITAL UNIDAD 1: COMPUERTAS LÓGICAS - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA
CURSO: ELECTRÓNICA DIGITAL UNIDAD 1: COMPUERTAS LÓGICAS - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA Las compuertas lógicas son bloques que realizan las operaciones básicas de la aritmética binaria del álgebra
Práctica Nº 4 DIODOS Y APLICACIONES
Práctica Nº 4 DIODOS Y APLICACIONES 1.- INTRODUCCION El objetivo Los elementos que conforman un circuito se pueden caracterizar por ser o no lineales, según como sea la relación entre voltaje y corriente
Clase Nº 2. Ing. Manuel Rivas DEPARTAMENTO DE ELECTRÓNICA. Trimestre Enero - Marzo 2006
EC2175 Ingeniería Electrónica 2 Clase Nº 2 Ing. Manuel Rivas DEPARTAMENTO DE ELECTRÓNICA Trimestre Enero - Marzo 2006 Objetivos de aprendizaje Conocer las operaciones lógicas básicas: AND, OR y NOT Estudiar
CIRCUITOS ELECTRÓNICOS DIGITALES BOLETÍN DE PROBLEMAS 5
CIRCUITOS ELECTRÓNICOS DIGITALES GRADO EN INGENIERÍA INFORMÁTICA TECNOLOGÍAS INFORMÁTICAS BOLETÍN DE PROBLEMAS 5 P1.- Realice la función f= Σ(0,3,6) con los siguientes componentes: a) Utilizando un decodificador
CAPITULO I INTRODUCCIÓN. Diseño Digital
CAPITULO I INTRODUCCIÓN Diseño Digital QUE ES DISEÑO DIGITAL? UN SISTEMA DIGITAL ES UN CONJUNTO DE DISPOSITIVOS DESTINADOS A LA GENERACIÓN, TRANSMISIÓN, PROCESAMIENTO O ALMACENAMIENTO DE SEÑALES DIGITALES.
Axiomas Básicos. ...Axiomas Básicos. Arquitecturas de Computadores Prof. MAURICIO SOLAR 3 Algebra de Boole. Temario.
27-4-2 Temario Arquitecturas de Computadores Prof. MAURICIO SOLAR 3 Algebra de Boole Introducción 2 Axiomas Básicos 3 Definiciones 4 Teoremas 5 Funciones 6 Compuertas Lógicas 7 Minimización de Funciones
PROGRAMA INSTRUCCIONAL CIRCUITOS DIGITALES
UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA ESCUELA DE COMPUTACIÓN PROGRAMA INSTRUCCIONAL CIRCUITOS DIGITALES CÓDIGO ASIGNADO SEMESTRE U. C DENSIDAD HORARIA H.T H.P/H.L H.A
Definición y representación de los
Definición y representación de los circuitos lógicos. LÁMARA R + - + - OBJETIVO GENERAL BATERÍA Utilizar el álgebra booleana para analizar y describir el funcionamiento de las combinaciones de las compuertas
TAREA DE SIMULACIÓN TS1
TAREA DE SIMULACIÓN CONSTRUCCIÓN Y SIMULACIÓN DE CIRCUITOS COMBINACIONALES SENCILLOS CON CIRCUITOS INTEGRADOS ESTANDAR OBJETIVOS: - Conocer e interpretar las hojas de características del fabricante, de
Por ejemplo: Para saber cuál es el comportamiento de un circuito lógico con 3 entradas y 2 salidas, podríamos usar la siguiente notación:
Taller 8 Álgebra Booleana compuertas lógicas Sólo como aclaración. El álgebra Booleana es muy diferente al álgebra normal, ya que mientras que en la normal podemos utilizar cualquier símbolo para representar
PUERTAS LOGICAS. Una tensión alta significa un 1 binario y una tensión baja significa un 0 binario.
PUERTAS LOGICAS Son bloques de construcción básica de los sistemas digitales; operan con números binarios, por lo que se denominan puertas lógicas binarias. En los circuitos digitales todos los voltajes,
Arquitectura de Computadoras Circuitos Combinatorios Basadas en las Notas de Teórico Versión 1.0 del Dpto. de Arquitectura-InCo-FIng
Basadas en las Versión 1.0 del Dpto. de Arquitectura-InCo-FIng CIRCUITOS COMBINATORIOS 1 Introducción En este capítulo presentaremos los elementos básicos para la implementación en hardware de las funciones
5.3. Álgebras de Boole y de conmutación. Funciones lógicas
5.3. Álgebras de Boole y de conmutación. Funciones lógicas 5.3.1. Algebra de conmutación o algebra booleana 5.3.1.1. Axiomas [ Wakerly 4.1.1 pág. 195] 5.3.1.2. Teoremas de una sola variable [ Wakerly 4.1.2
EVALUACIÓN DE ELECTRÓNICA BÁSICA, 50 PREGUNTAS, TIEMPO = 1 HORA
EVALUACIÓN DE ELECTRÓNICA BÁSICA, 50 PREGUNTAS, TIEMPO = 1 HORA 1. Es un material semiconductor que se ha sometido al proceso de dopado. a) Intrínseco b) Extrínseco c) Contaminado d) Impurificado 2. Material
Electrónica Digital II. Arquitecturas de las Celdas Lógicas. Octubre de 2014
Electrónica Digital II Arquitecturas de las Celdas Lógicas Octubre de 2014 Estructura General de los FPLDs Un FPLD típico contiene un número de celdas dispuestas en forma matricial, en las cuales se pueden
TEMA 5 ELECTRÓNICA TECNOLOGÍA 4º ESO. Samuel Escudero Melendo
TEMA 5 ELECTRÓNICA TECNOLOGÍA 4º ESO Samuel Escudero Melendo QUÉ VEREMOS? CONCEPTOS BÁSICOS ELECTRICIDAD y ELECTRÓNICA CANTIDAD DE CARGA, INTENSIDAD, VOLTAJE, RESISTENCIA LEY DE OHM ELEMENTOS DE CIRCUITOS
TEMA 3 BLOQUES COMBINACIONALES.
TEMA 3 BLOQUES COMBINACIONALES. Objetivos. Describir la diferencia entre circuitos combinacionales y secuenciales. Interpretar la función de un multiplexor, un demultiplexor, un codificador y un decodificador.
TÍTULO: PUERTAS LÓGICAS Y CIRCUITOS LÓGICOS COMBINACIONALES
UNIVERSIDAD CATÓLICA DE SANTA MARÍA PROGRAMA PROFESIONAL DE INGENIERÍA DE SISTEMAS CÓDIGO: 7106316 ASIGNATURA: ARQUITECTURA DEL COMPUTADOR PRIMERA FASE: LÓGICA DIGITAL COMBINACIONAL TÍTULO: PUERTAS LÓGICAS
TEMA 7. FAMILIAS LOGICAS INTEGRADAS
TEMA 7. FAMILIAS LOGICAS INTEGRADAS http://www.tech-faq.com/wp-content/uploads/images/integrated-circuit-layout.jpg IEEE 25 Aniversary: http://www.flickr.com/photos/ieee25/with/289342254/ TEMA 7 FAMILIAS
Codificación de la información y álgebra de conmutación EDIG
Codificación de la información y álgebra de conmutación Analógico vs. digital Analógico: Las señales varían de forma continua en un rango dado de tensiones, corrientes, etc. Digital: Las señales varían
